Next: About this document ...
Up: Biondi: RMO in anisotropic
Previous: Independence of depth perturbations
In this Appendix I present the analytical expressions
for the derivatives of the group slowness function
with respect to the velocity-perturbation parameters
.These derivatives depend
on the particular form chosen to approximate
the slowness function.
In this paper I use following approximation of the VTI slowness function
Fowler (2003):
| ![\begin{eqnarray}
S^2_{\rm VTI}\left(\theta\right)
&=&
\frac
{
{S_V}^2\cos^2 \the...
...ht)
+
{S_V}^2\left({S_N}^2-{S_H}^2\right)
\sin^2 2 \theta
}
}
{2},\end{eqnarray}](img70.gif) |
|
| (36) |
where
| ![\begin{displaymath}
S^2_{\rm Ell}\left(\theta\right)
=
{S_V}^2\cos^2 \theta+ {S_H}^2\sin^2 \theta\end{displaymath}](img71.gif) |
(37) |
is the elliptical component.
The derivatives are then written as:
| ![\begin{eqnarray}
\left.
\frac{\partial S_{\rm VTI}\left(\theta\right)}{\partial ...
...\right)
+
{S_V}^2\left({S_N}^2-{S_H}^2\right)
\sin^2 2 \theta
}
},\end{eqnarray}](img72.gif) |
(38) |
| (39) |
| (40) |
where the derivatives of the elliptical component with
respect to
and
are:
Next: About this document ...
Up: Biondi: RMO in anisotropic
Previous: Independence of depth perturbations
Stanford Exploration Project
11/1/2005