Next: About this document ...
Up: Berryman: Geomechanical constants of
Previous: Appendix B: Hill's Equation
-
Avellaneda, M., 1987, Iterated homogenization, differential
effective medium theory and applications:
Commun. Pure Appl. Math., 40, 527-554.
-
Backus, G. E., 1962, Long-wave elastic anisotropy produced by horizontal
layering: J. Geophys. Res., 67, 4427-4440.
-
Benveniste, Y., and G. J. Dvorak, 1990, On a correspondence between
mechanical and thermal effects in two-phase composites,
in Micromechanics and Inhomogeneity: The Toshio Mura
65th Anniversary Volume, edited by G. J. Weng, M. Taya,
and H. Abé (Springer-Verlag, New York, New York), pp. 65-81.
-
Berryman, J. G., 1992, Effective stress for transport properties
of inhomogeneous porous rock: J. Geophys. Res., 97, 17409-17424.
-
Berryman, J. G., 1995, Mixture theories for rock properties:
in Rock Physics and Phase Relations: American Geophysical
Union Handbook of Physical Constants, edited by T. J. Ahrens
(AGU, New York), pp. 205-228.
-
Berryman, J. G., 1998, Transversely isotropic poroelasticity
arising from thin isotropic layers: in
Mathematics of Multiscale Materials, edited by K. M. Golden,
G. R. Grimmett, R. D. James, G. W. Milton, and P. N. Sen
(Springer-Verlag, New York), pp. 37-50.
-
Berryman, J. G., 1999, Origin of Gassmann's equations:
Geophysics, 64, 1627-1629.
-
Berryman, J. G., 2004a, Poroelastic shear modulus dependence on
pore-fluid properties arising in a model of thin isotropic layers:
Geophys. J. Int., 157, 415-425.
-
Berryman, J. G., 2004b, Bounds on elastic constants for random
polycrystals of laminates: J. Appl. Phys., 96,
4281-4287.
-
Berryman, J. G., 2005, Bounds and estimates on elastic constants for random
polycrystals of laminates: Int. J. Solids Structures 42,
3730-3743.
-
Berryman, J. G., P. A. Berge, and B. P. Bonner, 2002a,
Estimating rock porosity and fluid saturation using only seismic
velocities: Geophysics, 67, 391-404.
-
Berryman, J. G., and G. W. Milton, 1991, Exact results for generalized
Gassmann's equations in composite porous media with two constituents:
Geophysics, 56, 1950-1960.
-
Berryman, J. G., S. R. Pride, and H. F. Wang, 2002b, A differential scheme
for elastic properties of rocks with dry or saturated cracks:
Geophys. J. Int., 151, 597-611.
-
Berryman, J. G., L. Thigpen, and R. C. Y. Chin, 1988,
Bulk wave propagation for partially saturated porous solids:
J. Acoust. Soc. Am. 84, 360-373.
-
Berryman, J. G., and H. F. Wang, 1995, The elastic coefficients of
double-porosity models for fluid transport in jointed rock:
J. Geophys. Res., 100, 24611-24627.
-
Berryman, J. G., and H. F. Wang, 2001, Dispersion in poroelastic systems:
Phys. Rev. E 64, 011303.
-
Biot, M. A., and D. G. Willis, 1957, The elastic coefficients of the
theory of consolidation: J. Appl. Mech., 24, 594-601.
-
Bruggeman, D. A. G., 1937, Berechnung verschiedener physikalischer
Konstanten von heterogenen Substanzen: II. Die elastischen Konstanten
der quasi-isotropen Mischkörper aus isotropen Substanzen:
Ann. Phys. (Leipzig), 29, 160-178.
-
Coussy, O., 2004, Poromechanics (John Wiley, Chichester, West
Sussex, England).
-
Dvorak, G. J., and Y. Benveniste, 1997,
On micromechanics of inelastic and piezoelectric composites:
in Theoretical and Applied Mechanics 1996,
edited by T. Tatsumi, E. Watanabe, and T. Kambe
(Elsevier Science, Amsterdam), pp. 65-81.
-
Dvorkin, J., D. Moos, J. L. Packwood, and A. M. Nur, 1999,
Identifying patchy saturation from well logs:
Geophysics, 64, 1756-1759.
-
Einstein, A., 1906, Eine neue Bestimmung der Moleküldimensionen:
Ann. Phys. (Leipzig), 19, 289-306.
-
Gassmann, F., 1951, Über die elastizität poröser medien:
Veirteljahrsschrift der Naturforschenden Gesellschaft in Zürich,
96, 1-23.
-
Goertz, D., and R. Knight, 1998, Elastic wave velocities during
evaporative drying: Geophysics, 63, 171-183.
-
Gurevich, B., 2004, A simple derivation of the effective stress coefficient
for seismic velocities in porous rocks:
Geophysics, 69, 393-397.
-
Guéguen, Y., and V. Palciauskas, 1994,
Introduction to the Physics of Rocks, Princeton University Press,
Princeton, NJ, pp. 193-195.
-
Hashin, Z., and S. Shtrikman, 1962a, A variational approach to the
theory of the effective magnetic permeability of multiphase materials:
J. Appl. Phys., 33, 3125-3131.
-
Hashin, Z., and S. Shtrikman, 1962b, On some variational principles in
anisotropic and nonhomogeneous elasticity:
J. Mech. Phys. Solids, 10, 335-342.
-
Hashin, Z., and S. Shtrikman, 1962c, A variational approach to the
theory of the elastic behaviour of polycrystals,
J. Mech. Phys. Solids, 10, 343-352.
-
Hashin, Z., and S. Shtrikman, 1963a, A variational approach to the
theory of the elastic behavior of multiphase materials:
J. Mech. Phys. Solids, 11, 127-140.
-
Hashin, Z., and S. Shtrikman, 1963b,
Conductivity of polycrystals: Phys. Rev. 130, 129-133.
-
Hill, R., 1952, The elastic behaviour of a crystalline aggregate:
Proc. Phys. Soc. London A, 65, 349-354.
-
Hill, R., 1963, Elastic properties of reinforced solids: Some
theoretical principles: J. Mech. Phys. Solids, 11, 357-372.
-
Hill, R., 1964, Theory of mechanical properties of fiber-strengthened
mateirals: I. Elastic behavior:
J. Mech. Phys. Solids, 12, 199-212.
-
Johnson, D. L., 2001, Theory of frequency dependent acoustics in
patchy-saturated porous media:
J. Acoust. Soc. Am., 110, 682-694.
-
Knight, R., and R. Nolen-Hoeksema (1990), A laboratory study of the
dependence of elastic wave velocities on pore scale fluid distribution,
Geophys. Res. Lett., 17, 1529-1532.
-
Li, X., L. R. Zhong, and L. J. Pyrak-Nolte, 2001,
Physics of partially saturated porous media: Residual
saturation and seismic-wave propagation:
in Annual Review of Earth and Planetary Sciences, Vol. 29
(Annual Reviews, Palo Alto, CA), pp. 419-460.
-
Makse, H. A., N. Gland, D. L. Johnson, and L. M. Schwartz, 1999,
Why effective medium theory fails in granular materials:
Phys. Rev. Lett. 83, 5070-5073.
-
Mavko, G., and D. Jizba, 1991, Estimating grain-scale fluid effects on
velocity dispersion in rocks: Geophysics, 56, 1940-1949.
-
Mavko, G., and T. Mukerji, 1998, Bounds on low-frequency seismic
velocities in partially saturated rocks:
Geophysics, 63, 918-924.
-
Mavko, G., T. Mukerji, and J. Dvorkin, 1998, The Rock Physics
Handbook: Tools for Seismic Analysis in Porous Media
(Cambridge University Press, Cambridge, England).
-
Maxwell, J. C., 1873, Treatise on Electricity and Magnetism,
Clarendon Press, Oxford, England.
-
Milton, G. W., 1985, The coherent potential approximation is a realizable
effective medium scheme: Comm. Math. Phys., 99,
463-500.
-
Milton, G. W., and J. G. Berryman, 1997,
On the effective viscoelastic moduli of two-phase
media. II. Rigorous bounds on the complex shear modulus in three
dimensions: Proc. Roy. Soc. London A, 453, 1849-1880.
-
Milton, G. W., 2002, The Theory of Composites.
Cambridge, University Press, Cambridge, UK, pp. 77-78, 163, 457-498.
-
Norris, A. N., 1985, A differential scheme for the effective moduli of
composites: Mech. Mater., 4, 1-16.
-
Norris, A. N., 1993), Low-frequency dispersion and attenuation in partially
saturated rocks: J. Acoust. Soc. Am., 94, 359-370.
-
Nur, A., and J. D. Byerlee, 1971, An exact effective stress law for
elastic deformation of rocks with fluids:
J. Geophys. Res. 76, 6414-6419.
-
Peselnick, L., and R. Meister, 1965, Variational method of determining
effective moduli of polycrystals: (A) Hexagonal symmetry,
(B) trigonal symmetry:
J. Appl. Phys., 36, 2879-2884.
-
Postma, G. W., 1955, Wave propagation in a stratified medium:
Geophysics, 20, 780-806.
-
Pride, S. R., and J. G. Berryman, 2003, Linear dynamics of
double-porosity dual-permeability materials:
I. Governing equations and acoustic attenuation,
Phys. Rev. E, 68, 036603.
-
Pride, S. R., J. G. Berryman, and J. M. Harris, 2004,
Seismic attenuation due to wave induced flow:
J. Geophys. Res., 109, B01201.
-
Reuss, A.,1929, Berechung der Fliessgrenze von Mischkristallenx
auf Grund der Plastizitätsbedingung für Einkristalle:
Z. Angew. Math. Mech., 9, 49-58.
-
Skempton, A. W., 1954, The pore-pressure coefficients A and B:
Geotechnique, 4, 143-147.
-
Voigt, W., 1928, Lehrbuch der Kristallphysik, Teubner, Leipzig.
-
Wang, H. F., 2000, Theory of Linear Poroelasticity with
Applications to Geomechanics and Hydrogeology,
Princeton University Press, Princeton, NJ.
-
Watt, J. P., and L. Peselnick, 1980, Clarification of the
Hashin-Shtrikman bounds on the effective elastic moduli of
polycrystals with hexagonal, trigonal, and tetragonal symmetries:
J. Appl. Phys., 51, 1525-1531.
-
White J. E., 1983, Computed seismic speeds and attenuation in rocks with
partial gas saturation: Geophysics 40, 224-232.
-
Zimmerman, R. W., 2000, Coupling in poroelasticity and
thermoelasticity: Int. J. Rock Mech., 37, 79-87.
.
Next: About this document ...
Up: Berryman: Geomechanical constants of
Previous: Appendix B: Hill's Equation
Stanford Exploration Project
5/3/2005