next up previous print clean
Next: Mixed-domain solutions Up: Theory Previous: Theory

Space-domain solution

The space-domain finite-differences solution to equation (9) is derived based on the square-root expansion, first introduced to Geophysics by Muir Claerbout (1985):  
 \begin{displaymath}
k_\tau\approx \omega a + \omega\frac{ \nu \left (\frac{ k_\g...
 ... )^2}
 {\mu-\rho\left (\frac{ k_\gamma}{ \omega}\right )^2} \;,\end{displaymath} (10)
where the coefficients $\mu$, $\nu$ and $\rho$ take the form:
\begin{displaymath}
\left\{ \begin{array}
{l}
\nu = - c_1a \left (\frac{b }{a }\...
 ...\\ \rho= b\left (\frac{b }{a }\right )^2\;. \end{array}\right. \end{displaymath} (11)
In the special case of Cartesian coordinates, a=s and b=1, equation (10) takes the familiar form
\begin{displaymath}
k_\tau\approx \omega s - \omega\frac{ \frac{c_1}{s} \left (\...
 ... -\frac{b}{s^2} \left (\frac{ k_\gamma}{ \omega}\right )^2} \;,\end{displaymath} (12)
where the coefficients c1 and b take different values for different orders of the Muir expansion: c15=(c1,b)=(0.50,0.00) for the $15^\circ$ equation, and c45=(c1,b)=(0.50,0.25) for the $45^\circ$ equation.
next up previous print clean
Next: Mixed-domain solutions Up: Theory Previous: Theory
Stanford Exploration Project
10/23/2004