Next: CGG with iteratively reweighted
Up: Ji: Conjugate Guided Gradient
Previous: Iteratively Reweighted Least Squares
Whithin the CG method,
the IRLS algorithm can be considered as the LS method,
but with its operator,
, modified by the weight,
.The only change that distinguishes the IRLS algorithm
from the LS one is the substitution of
and
for
and
, respectively.
Instead of modifying the operator,
we can choose a way to guide the minimizing search
to find the minimum
-norm in a specific model subspace
so as to obtain a solution that meets a user's specific criteria.
The specific model subspace could be
guided by a specific
-norm's gradient
or constrained by an a priori model.
Such guiding of the model vector can be realized by
weighting the residual vector or gradient vector in the CG algorithm.