Next: About this document ...
Up: Sava and Fomel: Riemannian
Previous: 2-D point-source ray coordinates
This appendix details the computations associated with the
finite-difference solution
to the
equation in a 2-D orthogonal Riemannian space.
The 3-D wave equation (22)
takes in two dimensions the simpler form:
| ![\begin{displaymath}
k_\zeta\approx i \frac{\c_{\zeta}}{2\c_{\zeta\zeta}} + \; k_...
...right)^2-\frac{\c_{\xi\xi}}{\c_{\zeta\zeta}} \right]k_\xi^2 \;.\end{displaymath}](img100.gif) |
(38) |
If we substitute the Fourier-domain wavenumbers by their equivalent
space-domain partial derivatives, we obtain
| ![\begin{displaymath}
\frac{\partial \mathcal{U}}{\partial k_\zeta } \approx -\fra...
...ta}} \right]\frac{\partial^2 \mathcal{U}}{\partial k_\xi^2} \;.\end{displaymath}](img101.gif) |
(39) |
A finite-difference implementation of equation (39)
involving the Crank-Nicolson method is
|  |
|
| (40) |
If we make the notations
| ![\begin{eqnarray}
\mu &=&
\frac{i\c_{\xi}}{2\c_{\zeta\zeta}\; k_o}
\frac{\Delta\...
...xi}}{\c_{\zeta\zeta}} \right]
\frac{\Delta\zeta}{2\Delta\xi^2} \;,\end{eqnarray}](img103.gif) |
|
| (41) |
we can write equation (40) as
|  |
|
| (42) |
or, if we isolate the terms corresponding to the two extrapolation levels as:
|  |
|
| (43) |
After grouping the terms, we obtain
which is a finite-difference representation of the
solvable using
fast tridiagonal solvers.
Next: About this document ...
Up: Sava and Fomel: Riemannian
Previous: 2-D point-source ray coordinates
Stanford Exploration Project
10/14/2003