Next: Absorbing boundary condition for
Up: Guojian: Absorbing boundary condition
Previous: Introduction
For the one-way wave equation
![\begin{displaymath}
\frac{\partial p}{\partial z}=
\pm \frac{i\omega}{c}\sqrt{1+\frac{c^2}{\omega^2}\frac{\partial^2}{\partial x^2}}
p,\end{displaymath}](img1.gif)
we can write its (2n+1)th order approximation Zhang (1985) in time domain
| ![\begin{eqnarray}
\left(\frac{\partial}{\partial z}\pm\frac{1}{c}\frac{\partial}{...
... x^2}\right)q(s_k,t,x,z)
=\frac{\partial^2}{\partial x^2}p(t,x,z),\end{eqnarray}](img2.gif) |
(1) |
| (2) |
where q is the auxiliary wavefield, c is the velocity, and
![\begin{displaymath}
s_k=\cos(\frac{k\pi}{n+1}),\ \ \ \ a_k=\frac{1}{n+1}\sin^2(\frac{k\pi}{n+1}),\ \ \ \ k=0,1,\cdots,n+1.\end{displaymath}](img3.gif)
When n=0, we obtain the 5o one-way equation
| ![\begin{displaymath}
\left(\frac{\partial}{\partial z}\pm\frac{1}{c}\frac{\partial}{\partial t}\right)p=0.\end{displaymath}](img4.gif) |
(3) |
When n=1, we obtain the 15o one-way equation in Claerbout (1999)
| ![\begin{eqnarray}
\left(\frac{\partial}{\partial z}\mp\frac{1}{c}\frac{\partial}{...
...al^2}{\partial t^2}q=\frac{1}{2}\frac{\partial^2}{\partial x^2}p .\end{eqnarray}](img5.gif) |
(4) |
| (5) |
When n=2, we obtain the 45o one-way wave equation in Claerbout (1999)
| ![\begin{eqnarray}
\left(\frac{\partial}{\partial z}\mp\frac{1}{c}\frac{\partial}{...
...\partial t^2}\right)q=\frac{1}{2}\frac{\partial^2}{\partial x^2}p.\end{eqnarray}](img6.gif) |
(6) |
| (7) |
Next: Absorbing boundary condition for
Up: Guojian: Absorbing boundary condition
Previous: Introduction
Stanford Exploration Project
6/8/2002