Next: REFERENCES
Up: Appendix
Previous: New notations and definitions
Given the values of the function
, downward continuation consists of finding the
values of
. An expression describing this process lays at the end of the
following proof:
Obtain the Helmholtz equation by applying the Fourier transform
defined by (24) to the wave equation (22) while
taking into account the notation (26) and the property
(25) and rearranging:
| ![\begin{displaymath}
\Delta P + P_{zz} + m^2 P = 0.\end{displaymath}](img50.gif) |
(29) |
By derivating relation (28) with respect to x and z we
obtain:
| ![\begin{displaymath}
P_{x_i } = Q_{x_i } e^{i\bar mz} ,\end{displaymath}](img51.gif) |
(30) |
| ![\begin{displaymath}
\Delta P = \left( {\Delta Q} \right)e^{i\bar mz} ,\end{displaymath}](img52.gif) |
(31) |
| ![\begin{displaymath}
P_z = (Q_z + i\bar mQ)e^{i\bar mz} ,\end{displaymath}](img53.gif) |
(32) |
| ![\begin{displaymath}
P_{zz} = (Q_{zz} + 2i\bar mQ_z - \bar m^2 Q)e^{i\bar mz} .\end{displaymath}](img54.gif) |
(33) |
By plugging into in (29) and eliminating the exponential, we
get:
| ![\begin{displaymath}
\Delta Q + Q_{zz} + 2i\bar mQ_z + \left( {m^2 - \bar m^2 } \right)Q = 0.\end{displaymath}](img55.gif) |
(34) |
The second derivative with respect to z can be eliminated by
derivating with respect to z, multiplying by
, and
adding the result to (34):
| ![\begin{displaymath}
\frac{i}{{2\bar m}}Q_{zzz} + \frac{i}{{2\bar m}}\left( {\Del...
... +
\frac{{im}}{{\bar m}}\frac{{\partial m}}{{\partial z}}Q = 0.\end{displaymath}](img57.gif) |
(35) |
Note that no approximation has been made between the wave equation
(22) and this point. Eq. 35 is simply the wave
equation in a different coordinate system. Now Qzzz is
approximated by zero:
| ![\begin{displaymath}
\frac{i}{{2\bar m}}\left( {\Delta Q} \right)_z + \Delta Q + ...
... + \frac{{im}}{{\bar
m}}\frac{{\partial m}}{{\partial z}}Q = 0.\end{displaymath}](img58.gif) |
(36) |
For the case of a homogenous medium,
and the equation
turns into the familiar
equation:
| ![\begin{displaymath}
\frac{i}{{2\bar m}}\left( {\Delta Q} \right)_z + \Delta Q + 2i\bar
mQ_z = 0 .\end{displaymath}](img60.gif) |
(37) |
The
equation is obtained by neglecting the Qxxz term
also:
| ![\begin{displaymath}
\Delta Q + 2i\bar mQ_z = 0 .\end{displaymath}](img61.gif) |
(38) |
Downward continuation proceeds by considering
| ![\begin{displaymath}
Q\left( {\forall \vec x,z,\forall \omega } \right) = P\left( {\forall \vec x,z,\forall \omega } \right)\end{displaymath}](img62.gif) |
(39) |
then by using one of the equations 36, 37 or
38 to find the values of
and by finally finding P by undoing
the variable change:
| ![\begin{displaymath}
P\left( {\forall \vec x,z + \delta z,\forall \omega } \right...
... \omega }
\right)e^{im_{\left( {\vec x,z} \right)} \delta z} . \end{displaymath}](img64.gif) |
(40) |
Next: REFERENCES
Up: Appendix
Previous: New notations and definitions
Stanford Exploration Project
6/8/2002