In this first model, the hydrate is treated as part of the pore fluid (Figure 2A). The bulk modulus of the fluid can be calculated as an average of the water and hydrate moduli:

(1) |

where *K*_{h} is the bulk modulus of the hydrate, *K*_{w} the bulk modulus of
water and *S*_{w} the water saturation. In this first model, the hydrate does not
affect the moduli of the solid sediment frame. Those solid moduli
can be calculated using
the modified Hashin-Shtrikman-Hertz-Mindlin theory of
Dvorkin and Nur Dvorkin and Nur (1996).

First, the effective moduli are calculated at the critical porosity() using the Hertz-Mindlin theory Mindlin (1949):

where *K* and *G* are the bulk and shear moduli of the solid phase, in this
case the sediment. The Poisson's ratio is given by , *P* is the effective
pressure and *n* is the average number of grain contacts, taken to be 8.5
Murphy (1982). Subsequently, the dry moduli of the solid phase can be
calculated for porosities above and below the critical porosity using a modified
Hashin-Strikam upper and lower bound Dvorkin and Nur (1996); Ecker et al. (1996).

__Porosity below critical porosity :__

For sediment porosities below the critical porosity, the dry moduli are determined by:

__Porosity above critical porosity :__

If the porosity is above the critical porosity of 0.4, the dry moduli can be calculated as follows:

__Saturated Sediment Properties__

After having determined the dry properties of the solid phase and the moduli of the fluid phase, the saturated rock properties can be determined using Gassman's equations:

The elastic velocities *v*_{p} and *v*_{s} and the bulk density are
then given by:

where is the bulk density of the solid phase and the density of the pore fluid.

10/9/1997