previous up next print clean
Next: About this document ... Up: Ecker, et al.: Hydrate Previous: CONCLUSIONS

REFERENCES

Dvorkin, J., and Nur, A., 1993, Rock physics for characterization of gas hydrates: The Future of Energy Gases, U.S. Geol. Survey Professional Paper 1570, pages 293-298.

Dvorkin, J., and Nur, A., 1996, Elasticity og High-Porosity Sandstones: Theory for Two North Sea Datasets: Geophysics, 61, 1363-1370.

Ecker, C., Dvorkin, J., and Nur, A., 1996, Sediments with gas hydrates: Internal structure from seismic AVO: Geophysics, submitted for publication.

Ecker, C., 1997, Characterization of a hydrate reservoir: SEP-94, 1-15.

Korenaga, J., Holbrook, W. S., Singh, S. C., and Minshull, T. A., 1997, Natural gas hydrates on the southeast U.S. margin: Constraints from full-waveform and travel time inversions of wide-angle seismic data: Jour. Geophys. Res., 102, 15345-15365.

Lee, M. W., Hutchinson, D. R., Dillon, W. P., Miller, J. J., Agena, W. F., and Swift, B. A., 1992, A method of estimating the amount of in situ gas hydrates in deep marine sediments: USGS Open File Report, 276.

Lumley, D. E., and Beydoun, W. B., 1993, Angle-dependent reflectivity estimation by Kirchhoff migration/inversion: Theory: SEP-79, 205-226.

Matsumoto, R., Paull, C., Wallace, P., and the Leg 164 Scientific party, 1996, Gas hydrate sampling on the Blake Ridge and Carolina Rise: ODP, Leg 164 Preliminary Report.

Mindlin, R. D., 1949, Compliance of elastic bodies in contact: Trans. ASME, 71, A-259.

Murphy, W. F. I., 1982, Effects of microstructure and pore fluids on the accoustic properties of granular sedimentary materials: Ph.D. thesis, Stanford University.

Sholl, D. W., and Hart, P. E., 1993, Velocity and amplitude structure on seismic-reflection profiles- possible massive gas-hydrate deposits and underlying gas accumulations in the Bering Sea: The Future of Energy Gases, U.S. Geo. Surv. Prof. paper 1570.

Wood, W. T., Stoffa, P. L., and Shipley, T. H., 1994, Quantitative detection of methane hydrate through high-resolution seismic velocity analysis: J. Geophys. Res., 99, 9681-9695.

Wood, A. B., 1941, A text book of sound: New York, MacMillan.

Wyllie, M. R. J., Gregory, A. R., and Gardner, G. H. F., 1958, An experimental investigation of factors affecting elastic wave velocities in porous media: Geophysics, 23, 459-493.

Yuan, T., Hyndman, R. D., Spence, G. D., and Desmons, B., 1996, Seismic velocity increase and deep-sea hydrate concentration above a bottom-simulating reflector on the northern Cascadian slope: Jour. Geophys. res., 101, 13655-13671.




A

The Parameters Sn and Stau are calculated as follows:

\begin{eqnarray}
S_n&=&\:A_n (\Lambda_n)\:\alpha^2\:+\:B_n (\Lambda_n)\:\alpha\:...
 ...pha& = &\: \left[{{2\:S_h\:\phi}\over{3\:(1-\phi)}}\right ]^{0.5};\end{eqnarray}

where G and $\nu$ are the shear modulus and Poisson's ratio, respectively, of the sediment. The hydrate properties are given by its shear moduli Gh and Poisson's ratio $\nu_h$. The parameter $\alpha$ is the ratio of the cemented contact radius to the grain radius in case of hydrate evenly enveloping the sediment grains.

B

Here we give the calculation parameters for the sediment, hydrate, water, and gas properties used in the forward modeling approach.

Substance Bulk Modulus [GPa] Shear Modulus [GPa] Density [g/cm3]
Calcite 76.8 32 2.71
Clay 20.9 6.85 2.58
Quartz 36 45 2.65
Water 2.5   1.032
Pure Hydrate 5.6 2.4 0.9
Gas 0.1   0.235

Table 1: Properties of sediment mineralogy, water, gas and pure hydrate and

C

Here we describe the calculation parameters used for the synthetic modeling.

Layer Thickness [km] Saturation (Model 1) (Model 2) (Model 3)
Water 3.315 100% brine    
Brine sediment 0.2 100% brine    
Hydrate sediment 0.3 31% 23% 0.08%
Gas sediment 0.3 2% gas    
Brine sediment 0.5 100% brine    

Table 2: Model used to calculate synthetic seismograms.


previous up next print clean
Next: About this document ... Up: Ecker, et al.: Hydrate Previous: CONCLUSIONS
Stanford Exploration Project
10/9/1997