The near seafloor parameters can be determined through the reflection coefficient at the fluid/solid interface. Amundsen and Reitan 1995 have shown that the reflection coefficient can be calculated by spectral division of the pressure and vertical particle velocity of the direct wave and primary reflection transformed to the frequency-radial wavenumber ()domain. The data can be transformed to the () domain by applying a Fourier transform with respect to time and a Hankel transform of order 0 with respect to offset Amundsen (1993). The reflection coefficient can then be expressed as:

(1) |

where is the pressure component and
is the vertical particle velocity component. Both of them are measured at the
seafloor, whose depth is given by *z _{1}*.
The vertical slowness is given
by
and

The density, P-wave, and S-wave velocity of the near seafloor can then be determined by inversion. This requires minimization of the difference between the calculated and theoretical reflection coefficient. The theoretical reflection coefficient for plane waves incident at a fluid/solid interface can be described as Berkhout (1987):

(2) |

where and are shear coefficients, ,and are the vertical P- and S-wave slownesses in the fluid and solid, and is the horizontal slowness.

11/11/1997