next up previous print clean
Next: Generalized formulation of wave-equation Up: Wave-equation datuming operators Previous: Phase-shift datuming with lateral

Finite-difference datuming

Finite-difference wave extrapolation is performed by transforming the dispersion relation into a differential equation (Claerbout, 1985). In 2-D, the dispersion relationship

\begin{displaymath}
k_z \;=\; \frac{\omega}{v}\,\sqrt{1 - \frac{v^2 k_x^2}{\omega^2}},\end{displaymath}

is converted to a differential equation by substituting $ik_z \rightarrow \partial /\partial z$, to get

\begin{displaymath}
\frac{\partial P}{\partial z}\;=\;\frac{i\omega}{v}\,
\sqrt{1 - \frac{v^2}{\omega^2}k_x^2}\, P.\end{displaymath}

Muir's continued fraction expansion approximation to the square root and the substitution $ik_x \rightarrow \partial /\partial x$yields the $15^{\circ}$ equation  
 \begin{displaymath}
\frac{\partial P}{\partial z}\;=\;
\frac{i\omega}{v(x,z)}P\,
+ \frac{v(x,z)}{-i2\omega}\,\frac{\partial^2 P}{\partial x^2}.\end{displaymath} (22)

Depth stepping proceeds by solution of equation ([*]) in two stages. The first stage,

\begin{displaymath}
\frac{\partial P}{\partial z}\;=\;\frac{i\omega}{v}P,\end{displaymath}

is solved analytically by

\begin{displaymath}
P(z-\Delta z)\;=\;P(z)e^{\frac{i\omega}{v}\Delta z}.\end{displaymath}

The second stage,

\begin{displaymath}
\frac{\partial P}{\partial z}\;=\;
\frac{v}{-i2\omega}\,\frac{\partial^2 P}{\partial x^2},\end{displaymath}

is solved by use of some method of finite differencing. For a given depth step, $\Delta z$, the finite-difference extrapolation is given by the product Di Li, where Di is a matrix representation of the finite-difference solution method. In principle this could be any solver, but in practice the examples in this dissertation are solved using the Crank-Nicholson implicit method (Claerbout, 1985).

For the geometry of Figure [*], Li is the matrix

\begin{displaymath}
\left[
 \begin{array}
{cccccc}
 e^{i\frac{\omega}{v(x_1,z_i)...
 ...e^{i\frac{\omega}{v(x_6,z_i)} \Delta z} \\  \end{array}\right].\end{displaymath}

Therefore, the upward continuation operator can be written as  
 \begin{displaymath}
\displaystyle{
\left[
 \begin{array}
{ccc}
D_3 L_3 D_2 L_2 D...
 ...]
\left[
\begin{array}
{c}
P(x,z_s,\omega)\end{array}\right],
}\end{displaymath} (23)
The adjoint algorithm is found by transposing each matrix and reversing the multiplication order, as follows:  
 \begin{displaymath}
\displaystyle{
\left[
 \begin{array}
{ccc}
 A & B & C 
 \end...
 ...
\begin{array}
{c}
P(x,z_{\rm dat},\omega)\end{array}\right].
}\end{displaymath} (24)

Prestack finite-difference datuming can be performed by extrapolation of shot and receiver gathers separately or by implementation of the double square root equation,

\begin{displaymath}
\frac{\partial P}{\partial z}\;=\;
\left[
\sqrt{
\left(\frac...
 ...ac{\partial^2}{\partial x_s^2}
}
\,\right]\,
P(x_s,x_g,\omega),\end{displaymath}

and alternation between shot xs and group xg coordinates for every depth step $\Delta z$.


next up previous print clean
Next: Generalized formulation of wave-equation Up: Wave-equation datuming operators Previous: Phase-shift datuming with lateral
Stanford Exploration Project
2/12/2001