previous up next print clean
Next: ANELLIPTIC PARAMETERS FOR TI Up: Dellinger, Muir, & Karrenbach: Previous: Consistency

THE SECOND ANELLIPTIC APPROXIMATION

The first anelliptic approximation has a certain lack of symmetry. There are two vertical control parameters, Vz and $V_{\mbox{\rm\scriptsize NMO}}$,but only a single horizontal control parameter Vx. If our data includes sources and receivers separated both horizontally and vertically, it makes sense to use an approximation that is symmetric between x and z. We can do this by generalizing to the following template:  
 \begin{displaymath}
f =
{
\mbox{\rm z-term}^6
+
(2 + F_x) \,
\mbox{\rm z-term}^4...
 ...rm}^6
\over
(
\mbox{\rm z-term}^2
+
\mbox{\rm x-term}^2
)^2
}
.\end{displaymath} (14)
If $F_z \equiv F_x$ equation ([*]) reduces to the first anelliptic form given by equation ([*]); if $F_z \equiv F_x \equiv 1$ equation ([*]) reduces to the original elliptical form given by equation ([*]).

Following this newer template, equation ([*]) (the ray equation) becomes  
 \begin{displaymath}
M(\phi_{r}) =\end{displaymath} (15)

\begin{displaymath}
{
\Bigl(M_z C\Bigr)^3
+
( 2 + M_{x{\mbox{\rm\scriptsize NMO}...
 ... S\Bigr)^2
+
\Bigl(M_x S\Bigr)^3
\over
(
M_z C 
+
M_x S
)^2
}
,\end{displaymath}

where $S = \sin^2(\phi_{r})$,$C = \cos^2(\phi_{r})$,and as before M indicates slowness squared (Mx = 1/ Vx2, $M_{x{\mbox{\rm\scriptsize NMO}}} = 1/ V_{x{\mbox{\rm\scriptsize NMO}}}^2$,$M_{z{\mbox{\rm\scriptsize NMO}}} = 1/ V_{z{\mbox{\rm\scriptsize NMO}}}^2$,and Mz = 1/ Vz2).

Similarly, equation ([*]) (the dispersion relation) becomes  
 \begin{displaymath}
W(\phi_{w}) =\end{displaymath} (16)

\begin{displaymath}
{
\Bigl(W_z C\Bigr)^3
+
( 2 + W_{x{\mbox{\rm\scriptsize NMO}...
 ... S\Bigr)^2
+
\Bigl(W_x S\Bigr)^3
\over
(
W_z C 
+
W_x S
)^2
}
,\end{displaymath}

where $S = \sin^2(\phi_{w})$,$C = \cos^2(\phi_{w})$,and as before W indicates velocity squared (Wx = Vx2, $W_{x{\mbox{\rm\scriptsize NMO}}} = V_{x{\mbox{\rm\scriptsize NMO}}}^2$,$W_{z{\mbox{\rm\scriptsize NMO}}} = V_{z{\mbox{\rm\scriptsize NMO}}}^2$,and Wz = Vz2).

Note that the ${x{\mbox{\rm\scriptsize NMO}}}$ subscript indicates moveout velocity measured for near-vertical propagation; i.e., $W_{x{\mbox{\rm\scriptsize NMO}}}$ is the square NMO velocity we use every day in surface-to-surface data processing. (If an x subscript seems confusing for a paraxial measurement about the vertical, remember that in an elliptic world it is a horizontal velocity that surface moveout measures.) The ${z{\mbox{\rm\scriptsize NMO}}}$ subscript indicates moveout velocity measured for near-horizontal propagation, such as might be found in a cross-borehole experiment.


previous up next print clean
Next: ANELLIPTIC PARAMETERS FOR TI Up: Dellinger, Muir, & Karrenbach: Previous: Consistency
Stanford Exploration Project
11/17/1997