Suppose I know the Green's function traveltime field for all subsurface coordinates due to a source at a (surface) position
. Estimating the traveltime field due to an adjacent
surface source position , from the given field , is defined as
traveltime *extrapolation*.

I assume that has been previously calculated by solving the ray-theoretic eikonal equation (Cervený et al., 1977):

(1) |

where is the vector gradient operator, and is the earth slowness (inverse velocity) field. The unknown field can be decomposed without loss of generality as follows:

(2) |

where is the traveltime difference between the known field and the unknown field , and is a function of subsurface location and the two specified source positions and . Naturally, one requires that the extrapolated field also satisfies the eikonal:

(3) |

Expanding the squared term in (3) and substituting (1) results in an equation for in terms of the known field :

(4) |

In this form, solving for looks harder than solving for directly from the eikonal equation! However, given that , the term can be expanded as follows:

(5) |

where is the angle at any subsurface point between the ray connecting to , and the ray connecting to . Substituting (5) into (4), the equation for in terms of becomes:

(6) |

which can also be expressed as an equation for directly in terms of :

(7) |

This last equation is simply a statement that the dot product of the two gradient fields is the cosine of the angle between the local ray directions, scaled by the local value of the slowness squared.

If can be approximated in some physically reasonable
and robust manner, then (6) or (7) represent a single
first-order linear PDE to extrapolate the unknown field . I believe such
an approximation is attainable, since only the angle between the two
rays is required, and not each ray angle individually. In fact, if
the surface source location is on the order of a few tens of meters away
from , and we are interested in extrapolating traveltimes at imaging
points a few kilometers distant from the source region, then can not stray too far from a value of unity, based on arguments of traveltime
field continuity. This is a mathematical
reinforcement of our intuition that, if we perturb our source location a bit,
then the resulting perturbed traveltime field should not be tremendously
different from the unperturbed field. Many of us have noted this effect
while tracing traveltime maps along a line for prestack depth migration,
and have been frustrated that we were forced to completely recalculate
*slightly* different traveltime fields from CMP to adjacent CMP.

As a first approximation, the function could be approximated by the Law of Cosines, as:

(8) |

where *r _{1}* is the (straight) ray distance from to , and

Both (6) and (7) can be cast into the general 3-D form:

(9) |

(10) |

where are the components of the gradient vector of the known field

, *d* is a function of squared slowness *s ^{2}*
and , and
are the components of the unknown traveltime
gradient field, or , which
are to be solved for.
The extrapolation equation (9) can be solved by a finite difference
method, for example, and represents a first-order linear PDE which should
require less effort to solve than the nonlinear eikonal PDE for .The solution will be in terms of the

(11) |

for applications in data acquisition survey design, or shot gather seismic data continuation, for example.

11/17/1997