next up previous print clean
Next: 8: CLASSIFICATION OF K-OPERATORS Up: 7: GEOMETRICAL PROBLEMS OF Previous: C. 15-degree algorithm in

D. CSP-depth migration in one-layer medium

We suggest that a reflector is flat: z=H.

First step: We represent travel-time dependence for common source gathered in a true model in the following form:

\begin{displaymath}
t(\theta )={2H\over v \cos \theta}\end{displaymath}

 
 \begin{displaymath}
x(\theta )=2H\tan \theta\end{displaymath} (76)
where $\theta$ is incident angle.

Second step: Reverse Eiconal's continuation can be determined with help of ray's equations  
 \begin{displaymath}
\xi (l)=x(\theta )- l\sin \theta ^{\prime}\end{displaymath} (77)
 
 \begin{displaymath}
\zeta (l)=l\cos \theta^{\prime}\end{displaymath} (78)
where $\theta ^{\prime}$ is incident angle of a ray which is correspondent to reverse Eiconal's continuation:  
 \begin{displaymath}
\sin \theta ^{\prime} = {v^{\prime} \over v} \sin \theta , {...
 ...t{1-{\left( {v^{\prime} \over v}\right) }^{2}\sin^{2} \theta },\end{displaymath} (79)
l is a length of the ray from the point $(x(\theta ),0)$ to the point $(\xi ,\zeta )$. So

\begin{displaymath}
\tau^{(-)}=t(\theta ) - {l \over v^{\prime}}.\end{displaymath}

Third step: The location of the reflector's image can be found from the condition $\tau^{(-)}=\tau _{d}$, that is

\begin{displaymath}
t(\theta ) - {l \over v^{\prime}}= {1 \over v^{\prime}} \sqrt{\xi ^{2} + \zeta ^{2}}.\end{displaymath}

Having usage of equations (76),  (77),  (78), and  (79), we derive

\begin{displaymath}
l={v^\prime \over v}{H \over \cos^{3} \theta } \cdot 
\left[...
 ...t( {v^{\prime} \over v}\right) }^{2} \sin ^{2} \theta
 \right].\end{displaymath}

Now we substitute this formula into equations (77) and  (78) and finally get parametric descriptions of the reflector image:

\begin{displaymath}
\xi (\theta )=2H\tan \theta \left[ 1-{{({v^{\prime} \over v})}^{2} - \sin^{2} \theta 
\over 2\cos^{2} \theta} \right]\end{displaymath}

\begin{displaymath}
\zeta (\theta )= {v \over v^{\prime}}H \cdot {{({v^{\prime} ...
 ...{1-{\left( {v^{\prime} \over v}\right) }^{2} \sin^{2} \theta }.\end{displaymath}


next up previous print clean
Next: 8: CLASSIFICATION OF K-OPERATORS Up: 7: GEOMETRICAL PROBLEMS OF Previous: C. 15-degree algorithm in
Stanford Exploration Project
1/13/1998