next up previous print clean
Next: B. Two-layer media Up: 7: GEOMETRICAL PROBLEMS OF Previous: Geometrical analysis of imaging

A. Homogenous layer with a planar reflector

Let equation

\begin{displaymath}
z=x\tan \phi + h_{0}\end{displaymath}

describe the location of a reflector.

First step: calculation of two-way zero-offset travel time in a true model:

\begin{displaymath}
t_{0} = {2 \sin \phi \over v} x + {2h_{0} \cos \phi \over v}.\end{displaymath}

Second step: reverse Eiconal's continuation of t0(x) with wrong velocity $(v_{c}={v^{\prime} \over 2}, {\:}v^{\prime} \neq v)$: 
 \begin{displaymath}
\tau^{(-)}(x,z)= {2h_{0} \cos \phi \over v} + {2 \sin \phi \...
 ...t{1-{\left( {v^{\prime} \over v}\right) }^{2} \sin ^{2} \phi }.\end{displaymath} (73)

Third step: imaging from the condition  
 \begin{displaymath}
\tau^{(-)} (x,z)=0.\end{displaymath} (74)
Inserting equation (73) into equation (74) and solving with respect to z, we derive location of the image in depth-section:

\begin{displaymath}
z= {({v^{\prime} \over v}) \cos \phi \over \sqrt{1-{({v^{\prime}\over v})}^{2} \sin^{2} \phi }} (h_{0}+
x \tan \phi ).\end{displaymath}

The reflection image in time section we receive after substitution $z=tv^{\prime}$ is:

\begin{displaymath}
t= {1 \over v} {\cos \phi \over \sqrt{1-{({v^{\prime}\over v})}^{2}\sin^{2} \phi }}
(h_{0} + x\tan \phi ).\end{displaymath}

Time-to-depth migration in this situation is depth scaling with true velocity $(t={z\over v})$:

\begin{displaymath}
z= {\cos \phi \over \sqrt{1-{({v^{\prime}\over v})}^{2} \sin^{2} \phi }}(h_{0} + x\tan \phi ).\end{displaymath}

We see that depth scaling does not supply correct imaging, although the error is not big: it is proportional to $(v_{c}-v){\sin }^{2} \phi$.


next up previous print clean
Next: B. Two-layer media Up: 7: GEOMETRICAL PROBLEMS OF Previous: Geometrical analysis of imaging
Stanford Exploration Project
1/13/1998