next up previous print clean
Next: Discontinuities and high-frequency band Up: 2: THE STANDARD DISCONTINUITIES Previous: Fourier-transformation

Convolution

It follows directly from convolution theorem and Formula 15 that

\begin{displaymath}
aR_{q}(t)\ast bR_{p}(t)=abR_{q+p+1}(t).\end{displaymath}

Moreover, if $f_{1}(t)\stackrel {q}{\sim }aR_{q}(t)$ and $f_{2}(t) \stackrel{p}{\sim } bR_{p}(t)$, then  
 \begin{displaymath}
f_{1}(t) \ast f_{2}(t) \stackrel{q+p+1}{\sim } a \cdot b R_{q+p+1}(t).\end{displaymath} (16)
Proof: Let us express Fourier-transformations of f1(t) and f2(t) according to equation (2), taking N=r=q (for f1(t)) and N=r=p (for f2(t)). Performing multiplication, we get:

\begin{displaymath}
F_{1}(\omega)F_{2}(\omega)={ab \over {(i\omega)}^{p+q+2}}+0 \left( {1 \over \omega^{p+q+2}} \right).\end{displaymath}

That is exactly the same that equation (16) expresses in temporal domain. The convolution

\begin{displaymath}
f(t) \ast R_{q}(t)=f_{q+1}(t)\end{displaymath}

is the qth integration of the f(t).
next up previous print clean
Next: Discontinuities and high-frequency band Up: 2: THE STANDARD DISCONTINUITIES Previous: Fourier-transformation
Stanford Exploration Project
1/13/1998