next up previous print clean
Next: PARTIAL NORMAL MOVEOUT Up: Jedlicka: Cascaded normal moveout Previous: Introduction

15-DEGREE PARTIAL NORMAL MOVEOUT

Let us repeat basic definitions from Claerbout's paper. A truncated Taylor series of the normal moveout equation is given by the equation:
\begin{displaymath}
\tau = t-{x^2/v^2 \over 2t}.\end{displaymath} (1)
The Nth partial normal moveout is given by the equation:  
 \begin{displaymath}
\tau_N(t) = t-{x^2/v^2 \over 2tN}.\end{displaymath} (2)
The Nth partial normal moveout can be applied N times:  
 \begin{displaymath}
T_N(t) = \tau_N \tau_N \cdots \tau_N(t)\end{displaymath} (3)
The equation to be proved is
\begin{displaymath}
T_\infty = \sqrt{t^2-x^2/v^2};\end{displaymath} (4)
i.e., normal moveout can be expressed as a superposition of N Nth partial normal moveouts with arbitrary precision as $N \to \infty$.


next up previous print clean
Next: PARTIAL NORMAL MOVEOUT Up: Jedlicka: Cascaded normal moveout Previous: Introduction
Stanford Exploration Project
1/13/1998