next up previous print clean
Next: PROOF FOR 15-DEGREE PARTIAL Up: Jedlicka: Cascaded normal moveout Previous: 15-DEGREE PARTIAL NORMAL MOVEOUT

PARTIAL NORMAL MOVEOUT

The case of the Nth partial normal moveout that is not a truncated Taylor series is easier, so let us examine it first. Define now the Nth partial normal moveout by  
 \begin{displaymath}
\tau_N(t) = \sqrt{t^2-{x^2 \over Nv^2}}.\end{displaymath} (5)
We can see that the truncated Taylor series of equation (5) is equation (2). Now we will prove that
\begin{displaymath}
T_N(t)=\tau_N \tau_N \cdots \tau_N(t)=\sqrt{t^2-{x^2 \over v^2}}\end{displaymath} (6)
holds exactly for all N. Let us denote the application of the Nth partial normal moveout i times by
\begin{displaymath}
{\cal T}_i(t)=\tau_N \tau_N \cdots \tau_N(t)\end{displaymath} (7)
It holds true that
\begin{displaymath}
{\cal T}_N = T_N.\end{displaymath} (8)
The superposition of Nth partial normal moveouts may be written
\begin{displaymath}
{\cal T}_i = \sqrt{{\cal T}^2_{i-1}-{x^2 \over Nv^2}}\end{displaymath} (9)
for $i=1,2,\cdots,N$ and ${\cal T}_0=t$.Let us rewrite this equation into a system of equations:
\begin{eqnarray}
{\cal T}^2_1&=&{\cal T}^2_0-{x^2 \over Nv^2} \\ {\cal T}^2_2&=&...
 ...} \\ &\ldots & \\ {\cal T}^2_N&=&{\cal T}^2_{N-1}-{x^2 \over Nv^2}\end{eqnarray} (10)
(11)
(12)
(13)
By summing up all the equations we get  
 \begin{displaymath}
{\cal T}^2_N=t^2-N{x^2 \over Nv^2}=t^2-{x^2 \over v^2},\end{displaymath} (14)
which is the desired result.


next up previous print clean
Next: PROOF FOR 15-DEGREE PARTIAL Up: Jedlicka: Cascaded normal moveout Previous: 15-DEGREE PARTIAL NORMAL MOVEOUT
Stanford Exploration Project
1/13/1998