The impulse response of constant-velocity constant-offset migration is an ellipse with foci at source and receiver. Each point on the impulse response ellipse represents a different time dip in the data. A small segment of a dipping reflection event assumed to contain only a single traveltime dip, after migration becomes the tangent to the impulse response ellipse for the appropriate traveltime. The traveltime determines the size of the ellipse, and the traveltime dip determines the position of the image along the impulse response ellipse. Seen in reverse, given an image point and its depth dip, we can solve for the position of the source and receiver that have an impulse response that goes through our point and is tangent to the dipping reflector segment.

Starting at some point in depth with an assumed dip and solving for the source and receiver points that contain a specular reflection from the point, we can write an equation in polar coordinates that describes the migration ellipse that goes through the point.

The origin is shifted to be the center of the ellipse. Equation (1) describes all image points that have specular reflections recorded at this shot receiver pair. Specify a point of interest as .Write the traveltime of the reflection from the dipping reflector as where and .Also write the time dip of any reflection from a tangent to the ellipse as Figure 1 shows a selected point ``
After choosing an initial depth and depth dip and solving for the
shot receiver pair,
equations (1)-(3) give the traveltime and
traveltime dip of
the specular reflection from that point.
When the migration slowness changes,
the migration ellipse will
move to a new position.
The key to finding the position of the
reflector as the slowness changes is to remember that the traveltime,
midpoint, and traveltime dip of the reflector segment in
the constant-offset section is fixed.
Only its image in depth changes as the migration slowness
changes.
First, find a new impulse response after the migration slowness
changes for the original
shot-receiver pair that has the same traveltime as
the previous impulse response at the old migration
velocity. Then find
a point on the new impulse response that has the same
traveltime dip as the original point using the original migration slowness.
This procedure gives the new location and dip of the event.
Keeping *t* fixed as the
traveltime of a reflection from our original point,
the equation of the new impulse response ellipse at
slowness *w*_{n} can be written as

The time dip imaged at any point on the new impulse response ellipse is likewise given by:

Equating traveltime dip of the reflector at the new and original slownesses and plugging in the new relation for which equates the traveltimes gives a single equation to solve for as a function of and the position of the original point.

Unfortunately, equation (7) is very difficult to solve analytically except for the trivial cases of zero dip or zero offset. To compute the operator I solve equation (7) numerically using Newton's method for finding roots.

Converting the solution of equation (7) back to Cartesian coordinates gives and ,the new position of the dipping reflector segment as shown in Figure 2.

Solving equation (7) for an initial depth and all initial dips will trace out the ``spraying" operator for residual constant-offset migration. The operator traces out the new positions of events for a range of dips after the migration slowness changes for a fixed original point in the image. This curve is also the summation path if we change the role of starting and final points by redefining .It is often more convenient to write the computer code in terms of a summation operator. The equations are symmetric so the summation operator for is the ``spraying" operator for .

Figure 3 shows an example of the summation operator when the slowness increases. Depending on the change in migration slowness and the initial depth of the reflector, the operator can triplicate.

This happens for image points with large offset/depth ratio. Figure 4 shows an examples of the residual migration operators for less than one, when slowness decreases.

To get the correct amplitudes along the summation operator, compute the points on the summation operators in equal dip angle increments in the original image. To prevent operator aliasing I resample the summation operators in equal arclength along the summation trajectory. To recover equal dip weighting of the image, the amplitude along the summation path can be taken as the jacobian of the change of variables from arclength to dip angle.

1/13/1998