next up previous [pdf]

Next: Interpretation Up: Almomin and Tang: WEMVA Previous: Introduction

Theory

First, we start with the imaging condition as the following:

$\displaystyle I(\mathbf x, \mathbf h) = \sum_{\omega,\mathbf x_s,\mathbf x_r} G...
...^*(\mathbf x + \mathbf h,\mathbf x_r,\omega) d(\mathbf x_r,\mathbf x_s,\omega),$ (1)

where $ I$ is the image, $ G$ is the Green's function, $ d$ is the surface data, $ \mathbf x_s$ and $ \mathbf x_r$ are the source and receiver coordinates, $ \mathbf h$ is the subsurface offset, $ \mathbf x$ is the Green's functions' coordinate and $ \omega$ is frequency. Next, we define the Green's functions based on the two-way wave equation as follows:

$\displaystyle \left( \nabla^2 + \omega^2 s^2(\mathbf x) \right) G(\mathbf x,\mathbf x_s,\omega)=-\delta(\mathbf x-\mathbf x_s),$ (2)

$\displaystyle \left( \nabla^2 + \omega^2 s^2(\mathbf x) \right) G(\mathbf x,\mathbf x_r,\omega)=-\delta(\mathbf x-\mathbf x_r),$ (3)

where $ s$ is slowness. Then, we can obtain the derivative of $ I$ with respect to the slowness as follows;

$\displaystyle \frac{\partial I(\mathbf x, \mathbf h)}{\partial s(\mathbf y)}$ $\displaystyle = \sum_{\omega,\mathbf x_s,\mathbf x_r} \left( \frac{\partial G(\...
...G^*(\mathbf x + \mathbf h,\mathbf x_r,\omega) d(\mathbf x_r,\mathbf x_s,\omega)$    
  $\displaystyle + \sum_{\omega,\mathbf x_s,\mathbf x_r} G^*(\mathbf x - \mathbf h...
..._r,\omega)}{\partial s(\mathbf y)} \right)^* d(\mathbf x_r,\mathbf x_s,\omega),$ (4)

where $ \mathbf y$ is the slowness coordinate. Now, we can perturb the slowness:

$\displaystyle s(\mathbf x) = s_0(\mathbf x) + \Delta s(\mathbf x),$ (5)

where $ s_0$ is the background slowness. Then, we apply a first order approximation by squaring the slowness and ignoring the second order perturbation term as follows:

$\displaystyle s^2(\mathbf x) \approx s_0^2(\mathbf x) + 2 s_0(\mathbf x) \Delta s(\mathbf x).$ (6)

We define a background Green's function that corresponds to the background slowness:

$\displaystyle \left( \nabla^2 + \omega^2 s_0^2(\mathbf x \right) G_0(\mathbf x,\mathbf x_s,\omega)=-\delta(\mathbf x-\mathbf x_s).$ (7)

By substituting this into the original wave equation, we arrive at the following:

$\displaystyle \left( \nabla^2 + \omega^2 s_0^2(\mathbf x) \right) G(\mathbf x,\...
...a s(\mathbf x) G(\mathbf x,\mathbf x_s,\omega) - \delta(\mathbf x-\mathbf x_s).$ (8)

Now, we apply Born's approximation to simplify the previous equation to the following expression:

$\displaystyle \left( \nabla^2 + \omega^2 s_0^2(\mathbf x \right) \Delta G(\math...
... \omega^2 s_0(\mathbf x) \Delta s(\mathbf x) G_0(\mathbf x,\mathbf x_s,\omega),$ (9)

where $ \Delta G$ is the perturbed Green's function. Then, we solve for the perturbed Green's function as follows:

$\displaystyle \Delta G(\mathbf x,\mathbf x_s,\omega)=-2 \omega^2 \sum_{\mathbf ...
...thbf y,\mathbf x_s,\omega) \Delta s(\mathbf y) G_0(\mathbf x,\mathbf y,\omega),$ (10)

which enables us to find the derivative of the Green's function with respect to slowness as shown in the following:

$\displaystyle \frac{\partial G(\mathbf x,\mathbf x_s,\omega)}{\partial s(\mathb...
...0(\mathbf y) G_0(\mathbf y,\mathbf x_s,\omega) G_0(\mathbf x,\mathbf y,\omega).$ (11)

We can follow the same steps for the receiver Green's function to get:

$\displaystyle \frac{\partial G(\mathbf x,\mathbf x_r,\omega)}{\partial s(\mathb...
...0(\mathbf y) G_0(\mathbf y,\mathbf x_r,\omega) G_0(\mathbf x,\mathbf y,\omega),$ (12)

Then, we substitute equations (11) and (12) in the image derivative to get the result:

  $\displaystyle \frac{\partial I(\mathbf x, \mathbf h)}{\partial s(\mathbf y)}\vert_{s_0} =$    
  $\displaystyle \sum_{\omega,\mathbf x_s,\mathbf x_r} \left\lbrace-2 \omega^2 s_0...
...0^*(\mathbf x + \mathbf h,\mathbf x_r,\omega) d(\mathbf x_r,\mathbf x_s,\omega)$    
$\displaystyle +$ $\displaystyle \sum_{\omega,\mathbf x_s,\mathbf x_r} \left\lbrace-2 \omega^2 s_0...
...t\rbrace G_0^*(\mathbf y,\mathbf x_r,\omega) d(\mathbf x_r,\mathbf x_s,\omega).$ (13)

Finally, we can express the image perturbation as the following:

  $\displaystyle \Delta I(\mathbf x, \mathbf h) = \sum_{\mathbf y} \frac{\partial I(\mathbf x, \mathbf h)}{\partial s(\mathbf y)} \Delta s(\mathbf y)$    
  $\displaystyle = \sum_{\omega,\mathbf x_s,\mathbf x_r,\mathbf y} \left\lbrace-2 ...
...hbf h,\mathbf x_r,\omega) d(\mathbf x_r,\mathbf x_s,\omega) \Delta s(\mathbf y)$    
  $\displaystyle + \sum_{\omega,\mathbf x_s,\mathbf x_r,\mathbf y} \left\lbrace-2 ...
...bf y,\mathbf x_r,\omega) d(\mathbf x_r,\mathbf x_s,\omega) \Delta s(\mathbf y),$ (14)

Similarly, we can now compute the gradient, as given by:

  $\displaystyle \Delta s(\mathbf y) = \sum_{\mathbf x,\mathbf h} \left( \frac{\pa...
... h)}{\partial s(\mathbf y)}\vert_{s_0} \right)^* \Delta I(\mathbf x, \mathbf h)$    
  $\displaystyle = \sum_{\omega ,\mathbf x_s,\mathbf x_r,\mathbf x,\mathbf h} \lef...
... x_r,\omega) d^*(\mathbf x_r,\mathbf x_s,\omega) \Delta I(\mathbf x, \mathbf h)$    
  $\displaystyle + \sum_{\omega ,\mathbf x_s,\mathbf x_r,\mathbf x,\mathbf h} \lef...
... x_r,\omega) d^*(\mathbf x_r,\mathbf x_s,\omega) \Delta I(\mathbf x, \mathbf h)$    
  $\displaystyle = -2 \omega^2 s_0(\mathbf y) \sum_{\omega ,\mathbf x_s,\mathbf x_...
...a) G_0(\mathbf x + \mathbf h,\mathbf x_r,\omega) \Delta I(\mathbf x, \mathbf h)$    
  $\displaystyle -2 \omega^2 s_0(\mathbf y) \sum_{\omega ,\mathbf x_s,\mathbf x_r}...
...) G_0(\mathbf x - \mathbf h,\mathbf x_s,\omega) \Delta I(\mathbf x, \mathbf h).$ (15)


next up previous [pdf]

Next: Interpretation Up: Almomin and Tang: WEMVA Previous: Introduction

2010-11-26