next up previous [pdf]

Next: APPENDIX C Up: Image-space wave-equation tomography in Previous: APPENDIX A

APPENDIX B

This appendix demonstrates a matrix representation of the forward tomographic operator $ {\bf T}$. Let us start with the source wavefield, where the source wavefield $ {\bf D}_z$ at depth $ z$ is downward continued to depth $ z+\Delta z$ by the one-way extrapolator $ {\bf E}_z({\bf s}_z)$ as follows:

$\displaystyle {\bf D}_{z+\Delta z} = {\bf E}_z({\bf s}_z){\bf D}_z,$     (B-1)

where the one-way extrapolator is defined as follows:
$\displaystyle {\bf E}_{z}({\bf s}_z) = e^{-ik_z({\bf s}_z)\Delta z} = e^{-i\sqrt{\omega^2{\bf s}_z^2-\vert{\bf k}\vert^2}}$     (B-2)

The perturbed source wavefield at some depth level can be derived from the background wavefield by a simple application of the chain rule to equation B-1:

$\displaystyle {\bf\Delta D}_{z+\Delta z} = {\bf E}_z({\widehat{\bf s}}_z){\bf\Delta D}_z + {\bf\Delta E}_z({\widehat{\bf s}}_z)\widehat{{\bf D}}_z,$     (B-3)

where $ \widehat{{\bf D}}_z$ is the background source wavefield and $ {\bf\Delta E}_z$ represents the perturbed extrapolator, which can be obtained by a formal linearization with respect to slowness of the extrapolator defined in Equation B-2:
$\displaystyle {\bf E}_z({\bf s}_z) = e^{-ik_z({\bf s}_z)\Delta z}$ $\displaystyle \approx$ $\displaystyle e^{-i\Delta z {\widehat k_z}} +
e^{-i\Delta z {\widehat k_z}}\lef...
...\bf s}_z} \right\vert _{{\bf s}_z={\widehat {\bf s}}_z} \right) {\bf\Delta s}_z$  
  $\displaystyle =$ $\displaystyle {\bf E}_z(\widehat{{\bf s}}_z) + {\bf E}_z(\widehat{{\bf s}}_z)
\...
...\bf s}_z} \right\vert _{{\bf s}_z={\widehat {\bf s}}_z}\right) {\bf\Delta s}_z,$ (B-4)

where $ {\widehat k}_z=k_z({\widehat {\bf s}}_z)$ and $ \widehat{{\bf s}}_z$ is the background slowness at depth $ z$. From Equation B-4, the perturbed extrapolator reads as follows:
$\displaystyle {\bf\Delta E}_z({\widehat {\bf s}}_z) = {\bf E}_z(\widehat{{\bf s...
...\bf s}_z} \right\vert _{{\bf s}_z={\widehat {\bf s}}_z}\right) {\bf\Delta s}_z.$     (B-5)

Substituting Equation B-5 into B-3 yields
$\displaystyle {\bf\Delta D}_{z+\Delta z} = {\bf E}_z({\widehat{\bf s}}_z){\bf\D...
...t _{{\bf s}_z={\widehat {\bf s}}_z}\right) \widehat{{\bf D}}_z {\bf\Delta s}_z.$     (B-6)

Let us define a scattering operator $ {\bf G}_z$ that interacts with the background wavefield as follows:
$\displaystyle {\bf G}_z(\widehat{{\bf D}}_z,{\widehat {\bf s}}_z) = \left( - i\...
...c{\vert{\bf k}\vert^2}{\omega ^2 {\widehat {\bf s}}_z^2}}} \widehat{{\bf D}}_z.$     (B-7)

Then the perturbed source wavefield for depth $ z+\Delta z$ can be rewritten as follows:
$\displaystyle {\bf\Delta D}_{z+\Delta z} = {\bf E}_z({\widehat {\bf s}}_z){\bf\...
...bf s}}_z) {\bf G}_z({\widehat {\bf D}}_z,{\widehat {\bf s}}_z) {\bf\Delta s}_z.$     (B-8)

We can further write out the recursive Equation B-8 for all depths in the following matrix form:
$\displaystyle \left( \begin{array}{c}
{\bf\Delta D}_0 \\
{\bf\Delta D}_1 \\
{\bf\Delta D}_2 \\
{\vdots}\\
{\bf\Delta D}_n
\end{array} \right)$ $\displaystyle =$ $\displaystyle \left( \begin{array}{cccccc}
{\bf0} & {\bf0} & {\bf0} & {\cdots} ...
... D}_1 \\
{\bf\Delta D}_2 \\
{\vdots}\\
{\bf\Delta D}_n
\end{array} \right)
+$  
    $\displaystyle \left( \begin{array}{cccccc}
{\bf0} & {\bf0} & {\bf0} & {\cdots} ...
...a s}_1 \\
{\bf\Delta s}_2 \\
{\vdots}\\
{\bf\Delta s}_n
\end{array} \right),$  

or in a more compact notation,
$\displaystyle {\bf\Delta D} = {\bf E}({\widehat {\bf s}}){\bf\Delta D} +
{\bf E}({\widehat {\bf s}}){\bf G}({\widehat {\bf D}},{\widehat {\bf s}}){\bf\Delta s}.$     (B-9)

The solution of Equation B-9 can be formally written as follows:
$\displaystyle {\bf\Delta D} = \left( {\bf 1} - {\bf E}({\widehat {\bf s}}) \rig...
...{\widehat {\bf s}}){\bf G}({\widehat {\bf D}},{\widehat {\bf s}}){\bf\Delta s}.$     (B-10)

Similarly, the perturbed receiver wavefield satisfies the following recursive relation:

$\displaystyle {\bf\Delta U}_{z+\Delta z} = {\bf E}_z({\widehat {\bf s}}_z){\bf\...
... s}}_z) {{\bf G}_z({\widehat {\bf U}}_z,{\widehat {\bf s}}_z)} {\bf\Delta s}_z,$     (B-11)

where $ {\bf G}_z({\widehat {\bf U}}_z,{\widehat {\bf s}}_z)$ is the scattering operator, which interacts with the background receiver wavefield as follows:
$\displaystyle {\bf G}_z({\widehat {\bf U}}_z,{\widehat {\bf s}}_z) =
\left( - i...
...{\vert{\bf k}\vert^2}{\omega ^2 {\widehat {\bf s}}_z^2}}} {\widehat {\bf U}}_z.$     (B-12)

We can also write out the recursive Equation B-12 for all depth levels in the following matrix form:
$\displaystyle \left( \begin{array}{c}
{\bf\Delta U}_0 \\
{\bf\Delta U}_1 \\
{\bf\Delta U}_2 \\
{\vdots}\\
{\bf\Delta U}_n
\end{array} \right)$ $\displaystyle =$ $\displaystyle \left( \begin{array}{cccccc}
{\bf0} & {\bf0} & {\bf0} & {\cdots} ...
... U}_1 \\
{\bf\Delta U}_2 \\
{\vdots}\\
{\bf\Delta U}_n
\end{array} \right)
+$  
    $\displaystyle \left( \begin{array}{cccccc}
{\bf0} & {\bf0} & {\bf0} & {\cdots} ...
...a s}_1 \\
{\bf\Delta s}_2 \\
{\vdots}\\
{\bf\Delta s}_n
\end{array} \right),$  

or in a more compact notation,
$\displaystyle {\bf\Delta U} = {\bf E}({\widehat {\bf s}}){\bf\Delta U} +
{\bf E}({\widehat {\bf s}}){\bf G}({\widehat {\bf U}},{\widehat {\bf s}}){\bf\Delta s}.$     (B-13)

The solution of Equation B-13 can be formally written as follows:
$\displaystyle {\bf\Delta U} = \left( {\bf 1} - {\bf E}({\widehat {\bf s}}) \rig...
...\widehat {\bf s}})
{\bf G}({\widehat {\bf U}},{\widehat {\bf s}}){\bf\Delta s}.$     (B-14)

With the background wavefields and the perturbed wavefields, the perturbed image can be obtained as follows:

$\displaystyle \left( \begin{array}{c}
{\bf\Delta I}_0 \\
{\bf\Delta I}_1 \\
{...
...}_1}\\
{{\bf\Delta U}_2}\\
{\vdots}\\
{{\bf\Delta U}_n}
\end{array} \right),$      

or in a more compact notation,
$\displaystyle {\bf\Delta I} = {\rm diag}\left({\widehat {\bf U}}\right){\bf\Delta D} +
{\rm diag}\left( {\widehat{\bf D}}\right){\bf\Delta U}.$     (B-15)

Substituting Equations B-10 and B-14 into Equation B-15 yields
$\displaystyle {\bf\Delta I}$ $\displaystyle =$ $\displaystyle \left( {\rm diag}\left( {\widehat {\bf U}}\right)
\left( {\bf 1} ...
... E}({\widehat {\bf s}}){\bf G}({\widehat {\bf D}},{\widehat {\bf s}}) \right. +$  
    $\displaystyle \left. {\rm diag}\left({\widehat {\bf D}} \right)
\left( {\bf 1} ...
...t {\bf s}}){\bf G}({\widehat {\bf U}},{\widehat {\bf s}})
\right){\bf\Delta s},$ (B-16)

from which we can read the forward tomographic operator $ {\bf T}$ as follows:
$\displaystyle {\bf T}$ $\displaystyle =$ $\displaystyle {\rm diag}\left( {\widehat {\bf U}}\right)
\left( {\bf 1} - {\bf ...
...-1}
{\bf E}({\widehat {\bf s}}){\bf G}({\widehat {\bf D}},{\widehat {\bf s}}) +$  
    $\displaystyle {\rm diag}\left({\widehat {\bf D}} \right)
\left( {\bf 1} - {\bf ...
...{-1}
{\bf E}({\widehat {\bf s}}){\bf G}({\widehat {\bf U}},{\widehat {\bf s}}).$ (B-17)


next up previous [pdf]

Next: APPENDIX C Up: Image-space wave-equation tomography in Previous: APPENDIX A

2009-04-13