next up previous print clean
Next: From ODCIGs to ADCIGs Up: Shragge et al.: Forward-scattered Previous: Shot-profile migration

Plane-wave ODCIGs

In this section, we examine the ODCIG volumes generated by forward-scattered wavefields. For simplicity, we illustrate these concepts using plane-wave S and R wavefields. We also assume that S and R propagate at constant, though not necessarily equal, slownesses (i.e., reciprocal of velocity). These idealizations allow us to generate an analytic surface in ODCIG space for both P-P diffracted and P-S converted waves. We specify planar S and R wavefields in constant velocity media using source and receiver ray parameter vectors, $\mathbf{w}_s$ and $\mathbf{w}_r$, defined by,
\begin{displaymath}
\mathbf{w}_s=\left[p_s,q_s\right]= s_s \;\left[\;{\rm sin}\;...
 ...]= s_r \;\left[\;{\rm sin}\;\beta_r,{\rm cos}\;\beta_r\right],
\end{displaymath} (3)
where ps and pr are the source and receiver horizontal ray parameters, qs and qr are the source and receiver vertical ray parameters, and ss and sr are the source and receiver wavefield propagation slownesses, respectively. Also, we use a convention where angles are defined clockwise positive with respect to the vertical depth axis.

Forward-scattered S and R wavefields must satisfy the causality arguments illustrated in Figure [*], which requires a negative sign in the source and receiver extrapolation operators. Using the aforementioned assumptions, we generate the following extrapolated S and R wavefield volumes,  
 \begin{displaymath}

S(\mathbf{x_s};t) = \delta( t+\mathbf{w}_s\cdot \mathbf{x_...
 ...R(\mathbf{x_r};t) = \delta( t+\mathbf{w}_r\cdot \mathbf{x_r}).
\end{displaymath} (4)
Applying a Fourier transform over the t-axis of both S and R yields,  
 \begin{displaymath}

S(\mathbf{x_s};\omega) = {\rm exp} \left(-i \omega\mathbf{...
 ...{\rm exp} \left(-i \omega\mathbf{w}_r\cdot\mathbf{x_r}\right).
\end{displaymath} (5)
Evaluating the imaging condition in Equation (2) with the wavefields in Equation (5) generates the following image-space volume,
   \begin{eqnarray}

I(\mathbf{x},\mathbf{h}) = & \sum_{\omega} \delta(\mathbf{x_s...
 ...) + \mathbf{h}\cdot(\mathbf{w}_s+\mathbf{w}_r) \right]. \nonumber
\end{eqnarray}
(6)
The non-zero $\delta$-function argument,  
 \begin{displaymath}

x \left(p_r-p_s\right)+ z \left(q_r-q_s \right)- h_x \left(p_r+p_s \right)- h_z
\left(q_r+q_s \right)=0,
\end{displaymath} (7)
represents an analytic forward-scattered ODCIG hyper-plane surface. Importantly, this surface interrelates source and receiver plane-wave angles, propagation slownesses and image-space variables, $\mathbf{x}$ and $\mathbf{h}$. In the next section, we manipulate this formula to generate constraint equations that help isolate the receiver-side contribution to the total reflection angle.


next up previous print clean
Next: From ODCIGs to ADCIGs Up: Shragge et al.: Forward-scattered Previous: Shot-profile migration
Stanford Exploration Project
5/3/2005