next up previous print clean
Next: One-way wave-equation Up: Riemannian wavefield extrapolation Previous: Introduction

Acoustic wave-equation

The acoustic propagation of a monochromatic wave is governed by the Helmholtz equation:  
 \begin{displaymath}
 \LAP \UU = - \frac{\ww^2}{v^2} \UU \;,\end{displaymath} (1)
where $\ww$ is temporal frequency, v is the spatially variable wave propagation velocity, and $\UU$ represents a wavefield.

The Laplacian operator acting on a scalar function $\UU$ in an arbitrary Riemannian space with coordinates $\qvec=\{\qone,\qtwo,\qthr\}$ takes the form  
 \begin{displaymath}
 \LAP \UU = \sum_{i=1}^{3}\frac{1}{\sqrt{\vert\gvec\vert}}\,...
 ...qrt{\vert\gvec\vert}\,\frac{\partial \UU}{\partial \qx_j}
 \rp,\end{displaymath} (2)
where gij is a component of the associated metric tensor, and $\vert\gvec\vert$ is its determinant (106). The differential geometry of any coordinate system is fully represented by the metric tensor gij.

The expression simplifies if one of the coordinates, e.g. the coordinate of one-way wave extrapolation $\qone$,is orthogonal to the other coordinates $(\qtwo,\qthr)$. The metric tensor reduces to  
 \begin{displaymath}
 \left[g_{ij}\right] = \lb\bea{ccc}
 E& F& 0 \\  F& G& 0 \\  0 & 0 & \AA^2
 \eea\rb\;,\end{displaymath} (3)
where E, F, G, and $\AA$ are differential forms that can be found from mapping Cartesian coordinates $\xvec=\lc \xone,\xtwo,\xthr \rc$ to general Riemannian coordinates $\qvec=\lc \qone,\qtwo,\qthr \rc$, as follows:

  E& = & _k _k _k ,
  F& = & _k _k _k ,
  G& = & _k _k _k ,
  Å^2 & = & _k _k _k .

The associated metric tensor $\lb g^{ij} \rb = \lb g_{ij} \rb ^{-1}$has the matrix  
 \begin{displaymath}
 \lb g^{ij} \rb =
 \lb \bea{ccc}
 +G/J^2 & -F/J^2 & 0 \\  -F/J^2 & +E/J^2 & 0 \\  0 & 0 & 1/\AA^2
 \eea\rb\;,\end{displaymath} (4)
where $J^2 = E\,G-F^2$. The metric determinant takes the form  
 \begin{displaymath}
 \vert\gvec\vert = \AA^2\,J^2\;.\end{displaymath} (5)

Substituting ametric and det into laplac, and making the notations $\qone=\qx$, $\qtwo=\qy$, and $\qthr=\qz$, with $\qz$ orthogonal to both $\qx$ and $\qy$,we obtain the Helmholtz wave helm for propagating waves in a 3D semi-orthogonal Riemannian space:  1ÅJ

JÅ + GÅJ - FÅJ + EÅJ - FÅJ

= - ^2v^2 .

In weqrc.3d, $v \lp \qx,\qy,\qz \rp$ is the wave propagation velocity mapped to Riemannian coordinates.

For the special case of two dimensional spaces (F=0 and G=1), the Helmholtz wave equation reduces to the simpler form:  
 \begin{displaymath}
\frac{1}{\AA J}
\lb \eone{\lp \frac{J}{\AA} \done{\UU}{\qz} ...
 ...J} \done{\UU}{\qx} \rp}{\qx} \rb 
= - \frac{\ww^2}{v^2} \UU \;,\end{displaymath} (6)
which corresponds to a curvilinear orthogonal coordinate system.

Particular examples of coordinate systems for one-way wave propagation are:

Cartesian (propagation in depth):
$\xone=\qx$, $\xtwo=\qy$, $\xthr=\qz$,
\begin{eqnarraystar}
E& = & G\quad = \quad \AA \quad = \quad J\quad = \quad 1\;, \\  F& = & 0\;.
 \end{eqnarraystar}
Cylindrical (propagation in radius):
$\xone=\qz\,\cos{\qx}$, $\xtwo=\qz\,\sin{\qx}$, $\xthr=\qy$,
\begin{eqnarraystar}
E& = & J\quad = \quad \qz^2\;, \\  G& = & \AA \quad = \quad 1\;, \\  F& = & 0\;.
 \end{eqnarraystar}
Spherical (propagation in radius):
$\xone=\qz\,\sin{\qx}\,\cos{\qy}$, $\xtwo=\qz\,\sin{\qx}\,\sin{\qy}$, $\xthr=\qz\,\cos{\qx}$,
\begin{eqnarraystar}
E& = & \qz^2\;, \\  G& = & \qz^2\,\sin^2{\qx}\;, \\  \AA & = & 1\;, \\  J& = & \qz^2\,\sin{\qx}\;, \\  F& = & 0\;.
 \end{eqnarraystar}
Ray family (propagation along rays):
$\qx$ and $\qy$ represent parameters defining a particular ray in the family (i.e. the ray take-off angles), J is the geometrical spreading factor, related to the cross-sectional area of the ray tube (19). The coefficients E, F, G, and J are easily computed by finite-difference approximations with the Huygens wavefront tracing technique (92). If the propagation parameter $\qz$ is taken to be time along the ray, then $\AA$ equals the propagation velocity v.

next up previous print clean
Next: One-way wave-equation Up: Riemannian wavefield extrapolation Previous: Introduction
Stanford Exploration Project
11/4/2004