next up previous print clean
Next: Evaluation of the image Up: Application to a synthetic Previous: Application to a synthetic

Evaluation of the impulse response of the transformation to DDOCIGs

The transformation to DDHOCIG of an image $I_{x_h}\left(k_z,k_{x},h_x\right)$ is defined as
\begin{displaymath}
I_0\left(k_z,k_{x},{\vec k_h}\right) =
\int dh_0
I_0\left(k_...
 ...ec k_h}h_x\left(1+\frac{k_{x}^2}{k_z^2}\right)^{-\frac{1}{2}}}.\end{displaymath} (74)
The transformation to DDHOCIG of an impulse located at $\left(\bar{z},\bar{x},\bar{x_h}\right)$is thus (after inverse Fourier transforms):  
 \begin{displaymath}
\widetilde{\rm Imp}\left(z,x,h_0\right) =
\int d{\vec k_h}
\...
 ...\left(\bar{z}-z\right) +
k_{x}\left(\bar{x}-x\right)
\right\}}.\end{displaymath} (75)

We now approximate by stationary phase the inner double integral. The phase of this integral is,  
 \begin{displaymath}
\Phi\equiv 
{\vec k_h}\left[\bar{x_h}\left(1+\frac{k_{x}^2}{...
 ...ight] +
k_z\left(\bar{z}-z\right) +
k_{x}\left(\bar{x}-x\right)\end{displaymath} (76)
The stationary path is defined by the solutions of the following system of equations:
      \begin{eqnarray}
\frac{\partial \Phi}{\partial k_z} &=& 
{\vec k_h}\bar{x_h}
\fr...
 ...}}\right)^{-\frac{3}{2}}+ \left(\bar{x}-x\right) =0 ,
\ \nonumber\end{eqnarray} (77)
(78)
By moving both $\left(\bar{z}-z\right)$ and $\left(\bar{x}-x\right)$ on the right of equations ([*]) and ([*]), and then dividing equation ([*]) by equation ([*]), we obtain the following relationships between $\left(\bar{z}-z\right)$ and $\left(\bar{x}-x\right)$: 
 \begin{displaymath}
\frac{\bar{z}-z}{\bar{x}-x}=
-\frac{k_{x}}{k_z}.\end{displaymath} (79)
Furthermore, by multiplying equations ([*]) by kz and equation ([*]) by kx, and then substituting them appropriately in the phase function ([*]), we can evaluate the phase function along the stationary path as  
 \begin{displaymath}
\Phi_{\rm stat}= 
{\vec k_h}\left[\bar{x_h}\left(1+\frac{k_{x}^2}{k_z^2}\right)^{-\frac{1}{2}}-h_0\right],\end{displaymath} (80)
that becomes, by substituting equation ([*]),  
 \begin{displaymath}
\Phi_{\rm stat}= 
{\vec k_h}\left\{-\bar{x_h}\left[1+\frac{\...
 ...2}{\left(\bar{x}-x\right)^2}\right]^{-\frac{1}{2}}-h_0\right\}.\end{displaymath} (81)
Notice that the minus sign comes from the ${\rm sign}$ function in expression ([*]). By substituting expression ([*]) in equation ([*]) it is immediate to evaluate the kinematics of the impulse response as  
 \begin{displaymath}
h_0=-h_x\left[1+\frac{\left(\bar{z}-z\right)^2}{\left(\bar{x}-x\right)^2}\right]^{-\frac{1}{2}}\end{displaymath} (82)


next up previous print clean
Next: Evaluation of the image Up: Application to a synthetic Previous: Application to a synthetic
Stanford Exploration Project
11/11/2002