next up previous print clean
Next: Evaluation of the image Up: Application to a synthetic Previous: Application to a synthetic

Evaluation of the impulse response of the transformation to DDOCIGs

The transformation to DDHOCIG of an image $I_{x_h}\left(k_z,k_{x},x_h\right)$ is defined as
\begin{displaymath}
I_0\left(k_z,k_{x},k_{h}\right) =
\int dh_0
I_0\left(k_z,k_{...
 ...{ik_{h}x_h\left(1+\frac{k_{x}^2}{k_z^2}\right)^{-\frac{1}{2}}}.\end{displaymath} (10)
The transformation to DDHOCIG of an impulse located at $\left(\bar{z},\bar{x},\bar{x_h}\right)$is thus (after inverse Fourier transforms):  
 \begin{displaymath}
\widetilde{\rm Imp}\left(z,x,h_0\right) =
\int dk_{h}
\int d...
 ...\left(\bar{z}-z\right) +
k_{x}\left(\bar{x}-x\right)
\right\}}.\end{displaymath} (11)

We now approximate by stationary phase the inner double integral. The phase of this integral is,  
 \begin{displaymath}
\Phi\equiv 
k_{h}\left[\bar{x_h}\left(1+\frac{k_{x}^2}{k_z^2...
 ...ight] +
k_z\left(\bar{z}-z\right) +
k_{x}\left(\bar{x}-x\right)\end{displaymath} (12)
The stationary path is defined by the solutions of the following system of equations:
      \begin{eqnarray}
\frac{\partial \Phi}{\partial k_z} &=& 
k_{h}\bar{x_h}
\frac{k_...
 ...}}\right)^{-\frac{3}{2}}+ \left(\bar{x}-x\right) =0 ,
\\ \nonumber\end{eqnarray} (13)
(14)
By moving both $\left(\bar{z}-z\right)$ and $\left(\bar{x}-x\right)$ on the right of equations (13) and (14), and then dividing equation (13) by equation (14), we obtain the following relationships between $\left(\bar{z}-z\right)$ and $\left(\bar{x}-x\right)$: 
 \begin{displaymath}
\frac{\bar{z}-z}{\bar{x}-x}=
-\frac{k_{x}}{k_z}.\end{displaymath} (15)
Furthermore, by multiplying equations (13) by kz and equation (14) by kx, and then substituting them appropriately in the phase function (12), we can evaluate the phase function along the stationary path as  
 \begin{displaymath}
\Phi_{\rm stat}= 
k_{h}\left[\bar{x_h}\left(1+\frac{k_{x}^2}{k_z^2}\right)^{-\frac{1}{2}}-h_0\right],\end{displaymath} (16)
that becomes, by substituting equation (15),  
 \begin{displaymath}
\Phi_{\rm stat}= 
k_{h}\left\{-\bar{x_h}\left[1+\frac{\left(...
 ...2}{\left(\bar{x}-x\right)^2}\right]^{-\frac{1}{2}}-h_0\right\}.\end{displaymath} (17)
Notice that the minus sign comes from the ${\rm sign}$ function in expression (7). By substituting expression (17) in equation (11) it is immediate to evaluate the kinematics of the impulse response as  
 \begin{displaymath}
h_0=-x_h\left[1+\frac{\left(\bar{z}-z\right)^2}{\left(\bar{x}-x\right)^2}\right]^{-\frac{1}{2}}\end{displaymath} (18)


next up previous print clean
Next: Evaluation of the image Up: Application to a synthetic Previous: Application to a synthetic
Stanford Exploration Project
11/11/2002