sergey@sep.stanford.edu

## ABSTRACTSplines in tension are smooth interpolation surfaces whose behavior in unconstrained regions is controlled by the tension parameter. I show that such surfaces can be efficiently constructed with recursive filter preconditioning and introduce a family of corresponding two-dimensional minimum-phase filters. The filters are created by spectral factorization on a helix. |

- Introduction
- Mathematical theory of splines in tension
- Finite differences and spectral factorization
- Interpolation example
- Conclusions
- REFERENCES
- About this document ...

Stanford Exploration Project

4/27/2000