Since we are using this method to image complex areas, just performing migration is not enough Prucha et al. (1999). We want to formulate the process as an inversion problem Duquet and Marfurt (1999); Nemeth et al. (1999). Unfortunately, the complexity can cause the result of the inversion to diverge. Therefore, to constrain the inversion to a reasonable result, we choose to impose regularization. This can be represented by these fitting goals:

(6) | ||

(7) |

To speed the convergence of the inversion, we can reformulate the inversion problem as a preconditioning problem with a preconditioning operator . This operator should be as close to the inverse of the regularization operator as possible so that . By mapping the multi-dimensional regularization operator to helical space and applying polynomial division, we can obtain the exact inverse so that Claerbout (1998). We also use the preconditioning transformation Fomel et al. (1997). Our equations then become:

(8) | ||

(9) |

The regularization we choose for RAD inversion is horizontal smoothing
along the reflection angle (or *p*_{hx}) axis. This is based on both
theory and practice. In theory, the regularization operator should
be related to the inverse model covariance matrix Tarantola (1986).
In practice, because the covariance matrix of a CIG created with the
correct velocity model is horizontal in nature (Figure 2)
and the reflectivity along reflection angles should vary smoothly
Richter (1941), we simply smooth horizontally along the reflection
angle axis. An operator that fulfills these requirements
is a steering filter Clapp et al. (1997). This steering
filter and its impulse response is in Figure 3.
The coefficients in the second column of the steering filter are
variable and control the vertical width of the impulse response.

Figure 2

Figure 3

We also must choose an . A large means that the regularization will be strong (we will be smoothing more) and a small means the regularization is not strong (we honor the model more). For now, we are trying to choose an that is somewhere in the middle, so that our result is slightly smoothed. We want to try to fill the null space in a reasonable way.

4/27/2000