next up previous print clean
Next: AMO amplitudes Up: Derivation of integral AMO Previous: Derivation of integral AMO

AMO impulse response

To derive a time-space representation of the AMO impulse response from its frequency-wavenumber representation, we evaluate the stationary-phase approximation of the inverse Fourier transform along the midpoint coordinates.

The $\rm DMO$ operator and its inverse, ${\rm DMO^{-1}}$, can be defined in the zero-offset frequency $\omega_{0}$ and the midpoint wavenumber ${\bf k}$ as
\begin{displaymath}
\EQNLABEL{dmo.eq}
\rm DMO= \int d{t}_{1}J_1e^{-i\omega_ot_1\...
 ...ft(\frac{{{\bf k}}\cdot{{\bf h}_{1}}}{\omega_ot_1}\right)}^2}}}\end{displaymath} (63)
\begin{displaymath}
\rm DMO^{-1}= \int d\omega_o J_2e^{+i\omega_ot_2\sqrt{1+{{\l...
 ...t{{\bf h}_{2}}}{\omega_ot_2}\right)}^2}}}.
\EQNLABEL{dmoinv.eq}\end{displaymath} (64)
The $\rm AMO$ operator is given by the cascades of $\rm DMO$ and ${\rm DMO^{-1}}$ and its impulse response can be written as,
\begin{displaymath}
\rm AMO= \frac{1}{4\pi^2}\int d{{\bf k}} e^{-i{{\bf k}}\cdot...
 ...}}}{\omega_ot_2}\right)}^2}}} \right)}. 
\EQNLABEL{amo_freq.eq}\end{displaymath} (65)
The derivation of the stationary-phase approximation of the integral in $d{{\bf k}}$ is similar to the one presented in Black et al. (1993b) for deriving a time-space formulation for the conventional DMO impulse response. We begin by changing the order of the integrals and rewriting amo_freq.eq as
\begin{eqnarray}
\rm AMO& =&\frac{1}{4\pi^2} \int dt_1 \int d\omega_o \int d{{\b...
 ... \Delta m}} \right]}\;. \nonumber \\ \EQNLABEL{amo_freq_change.eq}\end{eqnarray}
(66)
The phase of this integral is,
\begin{displaymath}
\Phi\equiv \omega_o(t_1\eta_1-t_2\eta_2)-{{\bf k}}\cdot{{\bf \Delta m}},
\EQNLABEL{phase_app.eq}\end{displaymath} (67)
where,
\begin{displaymath}
\eta_1=\sqrt{1+{{\left(\frac{{\bf k}.{\bf h}_{1}}{\omega_ot_...
 ...{{\bf k}.{\bf h}_{2}}{\omega_ot_2}\right)}^2}}.
\EQNLABEL{eq12}\end{displaymath} (68)
Next we make the following change of variables and let
\begin{displaymath}
\beta_1=\frac{{\bf h}_{1}.{\bf k}}{\omega_ot_1} \hspace{.5 i...
 ...ta_2=\frac{{\bf h}_{2}.{\bf k}}{\omega_ot_2}. \
\EQNLABEL{eq16}\end{displaymath} (69)
Therefore, $\eta_1$ and $\eta_2$ become
\begin{displaymath}
\eta_1=\sqrt{1+\beta_1^2}\hspace{.5 in} {\rm and} \hspace{.5 in} \eta_2=\sqrt{1+\beta_2^2}.
\EQNLABEL{eq20}\end{displaymath} (70)
The derivatives of $\eta_1$ and $\eta_2$ with respect to the in-line component of the wavenumber kx and the cross-line component ky can be written as
\begin{eqnarray}
\frac{\partial{\eta_1}}{\partial{k_x}}=\frac{h_{1x}}{w_ot_1}\fr...
 ...h_{2y}}{w_ot_1}\frac{\beta_2}{\sqrt{1+\beta_2^2}}.
\EQNLABEL{eq28}\end{eqnarray}
(71)
Making one more change of variables, we let
\begin{displaymath}
\nu_1=\frac {\beta_1} {\sqrt{1+\beta_1^2}}\hspace{.5 in} {\r...
 ... in} \nu_2=\frac{\beta_2} {\sqrt{1+\beta_2^2}}.
\EQNLABEL{eq32}\end{displaymath} (72)
Setting the derivative of the phase $\Phi$ to zero yields the system of equations:
\begin{displaymath}
\left\{ \begin{array}
{ll}
 h_{1x}\nu_1 - h_{2x}\nu_2 = \Del...
 ...h_{2y}\nu_2 = \Delta m_y
 \end{array} \right. \
\EQNLABEL{eq36}\end{displaymath} (73)
which we solve for $\nu_1$ and $\nu_2$ (i.e., $\eta_1$ and $\eta_2$) at the stationary path ${\bf k}_0$. The determinant of the system is given by
\begin{displaymath}
\Delta=h_{2x}h_{1y}-h_{1x}h_{2y} = h_{1}h_{2}\sin \Delta \theta,
\EQNLABEL{eq40}\end{displaymath} (74)
and the solutions for $\nu_1$ and $\nu_2$ are
\begin{displaymath}
\nu_{01}=\frac {\Delta m\sin (\theta_{2}-\Delta \varphi)} {h_1 \sin \Delta \theta},
\EQNLABEL{eq44}\end{displaymath} (75)
and
\begin{displaymath}
\nu_{02}=\frac {\Delta m\sin (\theta_{1}-\Delta \varphi)} {h_2 \sin \Delta \theta}.
\EQNLABEL{eq48}\end{displaymath} (76)
Now we need to evaluate the phase function $\Phi$ along the stationary path ${\bf k}_0$.By respectively multiplying the equations in eq36 by k0x and k0y and summing them together we obtain,
\begin{displaymath}
{{\bf k}_0}\cdot{{\bf \Delta m}} =
\frac{{\omega_o t_1 \beta...
 ... t_2 \beta_{02}}^2}{\sqrt{1+\beta_{02}^2}}.
\EQNLABEL{kdotx.eq}\end{displaymath} (77)
Substituting this relationship into the expression of the phase function [equation phase_app.eq] we obtain
\begin{displaymath}
\Phi_{0}= \omega_o\left(\frac{t_1}{\sqrt{1+\beta_{01}^2}}-
\...
 ...mega_o\left(\frac{t_1}{\eta_{01}}-\frac{t_2}{\eta_{02}}\right).\end{displaymath} (78)
The phase function along the stationary path is thus peaked for
\begin{displaymath}
t_2=t_1\frac{\eta_{02}}{\eta_{01}}=t_1\frac{\sqrt{1-\nu_{01}^2}}{\sqrt{1-\nu_{02}^2}}
\EQNLABEL{ratio.eq}\end{displaymath} (79)
Substituting equations eq44 and eq48 into ratio.eq we obtain amo_surf.eq of the main text:
\begin{displaymath}
{t}_{2}=
{t}_{1}\frac{h_{2}}{h_{1}}\sqrt{
\frac{h_{1}^2\sin^...
 ...^2\sin^2(\theta_1-\Delta \varphi)}}.
\EQNLABEL{amo_surf_app.eq}\end{displaymath} (80)


next up previous print clean
Next: AMO amplitudes Up: Derivation of integral AMO Previous: Derivation of integral AMO
Stanford Exploration Project
1/18/2001