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The time and space formulation
of azimuth moveout

Sergey Fomel and Biondo L. Biondi1

ABSTRACT

Azimuth moveout (AMO) transforms 3-D prestack seismic data from one common az-
imuth and offset to different azimuths and offsets. AMO in the time-space domain is
represented by a three-dimensional integral operator. The operator components are the
summation path, the weighting function, and the aperture. To determine the summation
path and the weighting function, we derive the AMO operator by cascading dip moveout
(DMO) and inverse DMO for different azimuths in the time-space domain. To evaluate
the aperture, we apply a geometric approach, defining AMO as the result of cascading
prestack migration (inversion) and modeling. The aperture limitations provide a con-
sistent description of AMO for small azimuth rotations (including zero) and justify the
economic efficiency of the method.

INTRODUCTION

Azimuth moveout (AMO) is by definition an operator that transforms common-azimuth common-
offset seismic reflection data to different azimuths and offsets2. A constructive approach
to AMO was proposed by Biondi and Chemingui (1994). According to this approach, an
AMO operator is built by cascading the dip moveout (DMO) operator that transforms the in-
put common-azimuth data to zero offset, and the inverse DMO that transforms the zero-offset
data to a new offset and azimuth. Evaluating the cascade of the frequency-domain DMO
and inverse DMO operators by means of the stationary phase technique produces the integral
(Kirchhoff-type) 3-D AMO operator in the time-space domain.

The first part of this paper applies an analogous idea to construct the AMO operator from
the time-space domain DMO and achieves the same result in a simpler way. Cascading DMO
and inverse DMO allows us to evaluate the AMO operator’s summation path and the cor-
responding weighting function. However, it is not sufficient for evaluating the third major
component of the integral operator, that is, its aperture (range of integration). To solve this
problem, we apply an alternative approach, that defines AMO as a cascade of 3-D migration
(inversion) for particular common-azimuth and common-offset data and 3-D modeling for a
different azimuth and offset. This definition resembles the viewpoint on DMO developed by

1email: sergey@sep.stanford.edu, biondo@sep.stanford.edu
2Here azimuth corresponds to the direction of a source-receiver pair, and offset is the distance between

the source and the receiver.
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Deregowski and Rocca (1981). As with the DMO case, the migration and modeling approach
reveals the physics of the AMO aperture and limits its boundaries. It is the aperture limitation
that allows us to overcome the paradoxical inconsistency between 2-D and 3-D AMO opera-
tors discussed by Biondi and Chemingui (1994). If the aperture is chosen properly, the AMO
operator converges to the 2-D offset continuation limit as the azimuth rotation approaches zero.
This remarkable fact supports the proof of economical efficiency of AMO in comparison with
the prestack migration operator, which is known to have an unlimited aperture.

CASCADING DMO AND INVERSE DMO IN TIME-SPACE DOMAIN

In this section, we present a new version of the AMO derivation. Since the entire derivation
is performed in the time-space domain, it is more straightforward than the stationary phase
technique developed for the same purpose by Biondi and Chemingui (1994).

Let P1 (x1,t1;h1) be the input of an AMO operator (common-azimuth and common-offset
seismic reflection data after normal moveout correction) andP2 (x2,t2;h2) be the output. Here
xi (i = 1,2) are midpoint locations on the surface:xi = {xi , yi }, andhi are half-offset vectors.
The 3-D AMO operator has the following general form:

P2 (x2,t2;h2) = Dt2

∫ ∫
w12(x1;x2,h2,t2) P1 (x1,t2θ12(x1;x2,h2) ; h1) dx1 , (1)

whereD is the differentiation operator
(
Dt ≡

d
dt

)
, t2θ12 is the summation path, andw12 is the

weighting function. In this section we will evaluateθ12 andw12 using the cascade of integral
3-D DMO and inverse DMO operators in the time-space domain. The idea of this derivation
originated in Biondi and Chemingui’s paper (1994), where it was applied with the frequency-
domain DMO and inverse DMO operators. In the next section, we apply a new geometric
approach to evaluate the AMO aperture (range of integration in (1)).

To derive (1) in the time-space domain, an integral (Kirchoff-type) DMO operator of the
form

P0 (x0,t0;0) = D1/2
−t0

∫
w10(x1;x0,h1,t0) P1 (x1,t0θ10(x1;x0,h1) ;h1) dx̂1 (2)

is cascaded with an inverse DMO of the form

P2 (x2,t2;h2) = D1/2
t2

∫
w02(x0;x2,h2,t2) P0 (x0,t2θ02(x0;x2,h2) ;0) dx̂0 , (3)

whereD1/2
t stands for the operator of half-order differentiation (equivalent to (i ω)1/2 multipli-

cation in Fourier domain),t0θ10 andt2θ02 are the summation paths of the DMO and inverse
DMO operators (Deregowski and Rocca, 1981):

θ10(x1;x0,h1) =

(
1−

(x1 −x0)2

h2
1

)−1/2

, (4)

θ02(x0;x2,h2) =

(
1−

(x0 −x2)2

h2
2

)1/2

, (5)
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w10 andw02 are the corresponding weighting functions (amplitudes of impulse responses),
x̂1 is the component ofx1 along theh1 azimuth, andx̂0 is the component ofx0 along the
h2 azimuth. Integral operators (2) and (3) correspond to the high-frequency asymptotic (the
geometrical seismic) description of the wave field. As shown by Stovas and Fomel (1993),
operator (3) has an asymptotically equivalent form

P2 (x2,t2;h2) =

∫
w̃02(x0;x2,h2,t2) D1/2

−t0 P0 (x0,t2θ02(x0;x2,h2) ;0) dx̂0 , (6)

wherew̃02 = w02
√

θ02.

Both DMO and inverse DMO operate on 3-D seismic data as 2-D operators, since their
apertures are defined on a line. This implies that for a given input midpointx1, the corre-
sponding location ofx0 must belong to the line going throughx1, with the azimuth defined by
the input offseth1. Similarly, x0 must be on the line going throughx2 with the azimuth ofh2

(Figure 1). These theoretical facts lead us to the following conclusion:

For a given pair of input and output midpointsx1 andx2 of the AMO operator, the
corresponding midpointx0 on the intermediate zero-offset gather is determined
by the intersection of two lines drawn throughx1 andx2 in the offset directions.

Applying the geometric connection among the three midpoints, we can find the cascade of the
DMO and inverse DMO operators in one step. For this purpose, it is convenient to choose an
orthogonal coordinate system{x, y} on the surface in such a way that the direction of thex
axis corresponds to the input azimuth (Figure 1). In this case the connection between the three
midpoints is given by

y0 = y1 ; x0 = x2 − (y2 − y1)cotϕ , (7)

dx̂1 = dx1 ; dx̂0 = dy1cscϕ . (8)

Substituting (2) into (6) and taking into account (8) produces the 3-D integral AMO oper-
ator (1), where

θ12(x1;x2,h2) = θ02(x0;x2,h2) θ10(x1;x0,h1) =

∣∣∣∣h1

h2

∣∣∣∣
√

h2
2 − (x2 −x0)2

h2
1 − (x1 −x0)2 =

=

∣∣∣∣h1

h2

∣∣∣∣
√

h2
2 sinϕ2 − (y2 − y1)2

h2
1 sinϕ2 − ((x2 − x1) sinϕ − (y2 − y1) cosϕ)2 , (9)

w12(x1;x2,h2,t2) =

= w02(x0;x2,h2,t2) w10(x1;x0,h1,t2θ02(x0;x2,h2))
cscϕ

√
θ02(x0;x2,h2)

, (10)
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Figure 1: Geometric relationships between input and output midpoint locations in AMO.
txamo-amox12[NR]

dx1 = dx1dy1. Equationt1 = t2θ12(x1;x2,h2) is the same as equation (4) in (Biondi and
Chemingui, 1994) except for a different notation. The weighting function of the derived AMO
operator(w12) depends on the weighting functions of DMO and inverse DMO that are in-
volved in the construction. In Appendix A, we apply equation (10) to two popular versions
of the DMO weighting functions that correspond to Hale’s (1984) and Zhang’s (1988) DMO
operators.

Deriving formula (9), we have to assume that the input and output offset azimuths are
different (ϕ 6= 0). In the case of equal azimuths, AMO reduces to 2-D offset continuation
(OC). The location ofx0 in this case is not constrained by the input and output midpoints and
can take different values on the line. Therefore the superposition of DMO and inverse DMO
for offset continuation is a convolution on that line. To find the summation path of the OC
operator, we should consider the envelope of the family of traveltime curves (wherex0 is the
parameter of a curve in the family):

t1 = t2θ12(x1;x2,h2) = t2

∣∣∣∣h1

h2

∣∣∣∣
√

h2
2 − (x2 − x0)2

h2
1 − (x1 − x0)2 . (11)

Solving the envelope condition

∂θ12

∂x0
= 0 (12)

with respect tox0 produces

x0 =
(1x)2

+h2
2 −h2

1 +sign
(
h2

1 −h2
2

) √(
(1x)2

−h2
1 −h2

2

)2
−4h2

1h2
2

2 (1x)
, (13)
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where1x = x1 − x2. Substituting (13) into (11), we get the explicit expression of the OC
summation path:

t1 =

t2
|h2|

√
U + V

2
for h2 > h1 ,

t2 |h1|

√
2

U + V
for h2 < h1 , (14)

whereU = h2
1+h2

2−(1x)2, andV =

√
U2 −4h2

1h2
2. Equation (14) corresponds to formula (6)

in (Biondi and Chemingui, 1994) (with a typo corrected). The same expression was obtained
in a different way by Stovas and Fomel (1993). The apparent difference between the 2-D and
3-D solutions introduces the problem of finding a consistent description valid for both cases.
Such a description is especially important for practical applications dealing with small angles
of azimuth rotation, e.g. cable feather correction in marine seismics. The next section develops
a way of solving this problem, which refers to the kinematic theory of AMO and follows the
ideas that Deregowski and Rocca (1981) applied to DMO-type operators.

AMO APERTURE: CASCADING MIGRATION AND MODELING

The impulse response of the AMO operators corresponds to a spike on the initial constant-
offset constant-azimuth gather. Such a spike can physically occur in the case of a focusing
ellipsoidal reflector whose focuses are coincident with the initial source and receiver locations
(the impulse response of prestack common-offset migration). Therefore, the impulse response
of AMO corresponds kinematically to a reflection from this ellipsoid. These considerations
allow us to define AMO as the cascade of the 3-D common-offset common-azimuth migration
and the 3-D modeling for a different azimuth and offset. An analogous point of view was
developed for the 2-D case by Deregowski and Rocca (1981).

Let’s consider the general symmetric ellipsoid equation

z(x, y) =

√
R2 −β (x − x1)2

− (y− y1)2 , (15)

wherez stands for the depth coordinate,R is the small semi-axis of the ellipsoid, andβ is
a nondimensional parameter describing the stretching of the ellipse (β < 1). Deregowski
and Rocca (1981) derived the following connections between the geometric properties of the
reflector and the coordinates of the corresponding spike in the data:

R =
v t1
2

; β =
t2
1

t2
1 +

4h1
2

v2

, (16)

wherev is the wave velocity. The center of the ellipsoid is at the initial midpointx1.

This section addresses the kinematic problem of reflection from the ellipsoid defined by
(15). In particular, we are looking for the answer to the following question:For a given elliptic
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reflector defined by the input midpoint, offset, and time coordinates, what points on the surface
can form a source-receiver pair valid for a reflection?If a point in the output midpoint-offset
space cannot be related to a reflection pattern, we should exclude it from the AMO impulse
response defined in (1).

Fermat’s principle provides a general method of solving the kinematic reflection problems.
Consider a formal expression for the two-point reflection traveltime

t =

√
(s− ξ )2 + z2(ξx,ξy)

v
+

√
(r − ξ )2 + z2(ξx,ξy)

v
, (17)

whereξ =
{
ξx,ξy

}
is the vertical projection of the reflection point to the surface,s=

{
sx,sy

}
=

x2 −h2 is the source location, andr =
{
rx,r y

}
= x2 +h2 is the receiver location. According

to Fermat’s principle, the reflection ray path between two fixed points must correspond to the
extremum value of the traveltime. Hence, in the vicinity of a reflected ray,

∂t

∂ξx
= 0 ;

∂t

∂ξy
= 0 . (18)

Solving the system of equations (18) forξx andξy allows us to find the reflection ray path for
a given source-receiver pair on the surface. The solution is derived in Appendix B to be

ξx =
x0 −β x1

1−β
, (19)

ξy = y1 + (x0 − ξx) cotϕ −
(y2 − y1)

[
(x0 − ξx)2

−β (x1 − ξx)2
+ R2

]
h2

2sin2ϕ − (y2 − y1)2 , (20)

wherex0 has the same meaning as in the preceding section and is defined by (7).

Since the reflection point is contained inside the ellipsoid, its projection obeys the evident
inequality (

ξy − y1
)2

≤ R2
−β (ξx − x1)2 . (21)

It is inequality (21) that defines the aperture of the AMO operator.

The AMO operator’s contours for different azimuth rotation angles are shown in Figure
2. Comparing the results for the case of an unrealistically low velocity (the top two plots
in Figure 2) and the case of a realistic velocity (the bottom two plots) clearly demonstrates
the gain in the reduction of the aperture size achieved by the aperture limitation. The gain
is especially spectacular for small azimuths. When the azimuth rotation approaches zero, the
area of the 3-D aperture monotonously shrinks to a line, and the limit of the traveltime of the
AMO impulse response (the inverse of (9)) approaches the offset continuation operator (14)
(Figures 3). This means that taking into account the aperture limitations of AMO provides a
consistent description valid for small azimuth rotations including zero (the offset continuation
case). Obviously, the cost of an integral operator is proportional to its size. The size of the
offset continuation operator cannot extend the difference between the offsets||h1|− |h2||. If
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Figure 2: The AMO impulse response traveltime. Parameters:|h1| = 1000 m,|h2| = 750 m,
t1 = 1 sec. The top plots illustrate the case of an unrealistically low velocity (v = 10 m/s); on
the bottom,v = 2000 m/s. On the left side the azimuth rotationϕ = 30◦; on the right,ϕ = 3◦

txamo-amoapp[ER]
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we applied DMO and inverse DMO explicitly, the total size of the two operators would be
about |h1|+ |h2|, which is substantially greater. This fact proves that in the case of small
azimuth rotations the AMO price is less than those of not only 3-D prestack migration, but
also 3-D DMO and inverse DMO combined (Canning and Gardner, 1992). Figure 4 shows the
saddle shape of the AMO operator impulse response in a 3-D AVS display.

Figure 3: Traveltime curves of the
impulse responses. The dashed lines
indicate the AMO impulse response
with an azimuth rotation of 3 degrees
(projection on thex plane); the solid
lines, the 2-D offset continuation
impulse response. txamo-amocom
[CR]
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Figure 4: AMO impulse response traveltime in three dimensions (the AVS display). Param-
eters: |h1| = 1000 m,|h2| = 750 m, t1 = 1 sec,v = 2000 m/s,ϕ = 30◦. txamo-amoavs
[NR]
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CONCLUSIONS

We have applied two different theoretical approaches to AMO to find a complete definition
of the integral operator (1). Biondi and Chemingui (1994) proposed cascading the DMO
and inverse DMO operators to define AMO in the frequency domain. The same approach is
repeated here in a simpler way by transferring the analysis to the natural time-space domain.
A new contribution to the evaluation of the AMO operator follows from applying a different
approach, which extends the geometric theory of DMO (Deregowski and Rocca, 1981) to
the AMO case. Cascading prestack migration and modeling allows us to evaluate the AMO
operator aperture. The compactness of the AMO aperture indicates that the integral operator
can be performed at a low cost and therefore promises economic benefits for its practical
implementation.
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APPENDIX A

AMO AMPLITUDE

The weighting function of the AMO operator can be determined from cascading the DMO and
inverse DMO operators by means of equation (10). In the case of Hale’s DMO (Hale, 1984)
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and its adjoint (Ronen, 1987),

w10(x1;x0,h1,t0) =

√
t0

2π

|h1|

h2
2 − (x1 −x0)2 , (A-1)

w02(x0;x2,h2,t2) =

√
t2

2π

|h2|

h2
2 − (x0 −x2)2 . (A-2)

As follows from (A-1),(A-2), and (10),

w12(x1;x2,h2,t2) =
t2

2π
×

×
|h1| |h2| sinϕ(

h2
1 sinϕ2 − ((x2 − x1) sinϕ − (y2 − y1) cosϕ)2

) (
h2

2 sinϕ2 − (y2 − y1)2
) . (A-3)

In the case of the so-calledtrue-amplitudeDMO (Black et al., 1993) and its asymptotic inverse,

w10(x1;x0,h1,t0) =

√
t0

2π

h2
1 + (x1 −x0)2

|h1|
(
h2

1 − (x1 −x0)2) , (A-4)

w02(x0;x2,h2,t2) =

√
t2

2π

|h2|

h2
2 − (x0 −x2)2 . (A-5)

Inserting (A-4) and (A-5) into (10) yields

w12(x1;x2,h2,t2) =
t2

2π

∣∣∣∣h2

h1

∣∣∣∣×

×
h2

1 sinϕ2
+ ((x2 − x1) sinϕ − (y2 − y1) cosϕ)2(

h2
1 sinϕ2 − ((x2 − x1) sinϕ − (y2 − y1) cosϕ)2

) (
h2

2 sinϕ2 − (y2 − y1)2
) . (A-6)

APPENDIX B

DERIVING THE AMO APERTURE

This appendix describes the derivation of the main formulas for the aperture evaluation that
follow from the Fermat principle (18). In order to avoid the algebraic complications of (18),
we simplify the problem by taking into account the cylindrical symmetry of the ellipsoidal
reflector (15).



SEP–84 t-x AMO 323

Figure B-1: Reflection from the el-
lipsoid of a prestack migration im-
pulse response (a scheme). Top: Map
view. Bottom: Section of the ellip-
soid with the plane drawn through the
central line and the reflection point.
txamo-amosym[NR]
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Consider a plane drawn through the reflection point and the central line of the ellipsoid (the
axis of the cylindrical symmetry). This plane has to contain the central (normally reflected)
ray from the reflector. This conclusion follows from the fact that all the normal reflections
emerge at the central line because of the cylindrical symmetry, as shown in Figure B-1. The
intersection of the 3-D reflector and the plane is the 2-D ellipse

ẑ(x) =

√
R2 −β (x − x1)2 . (B-1)

The connection between the emergence point of the normal rayx0 and thex coordinate of the
reflection pointξx can be derived from the relationship evident in Figure B-1, as follows:

x0 = ξx − ẑ(ξx) tanα = ξx + ẑ(ξx) ẑ′ (ξx) = ξx (1−β)+β x1 . (B-2)

Equation (B-2) allows us to evaluateξx in terms ofx0 and get (19). The emergence point of
the normal rayx0 corresponds to the midpoint on an imaginary zero-offset section ( with a
coincident source and receiver). Therefore, the location of this point is determined for given
input and output midpoints in accordance with expression (7).

Obviously, the reflection point has to be inside the ellipse (B-1). Therefore, its projection
obeys the inequality

|ξx − x1| ≤
R

√
β

. (B-3)

As follows from (B-3), (B-2), and (16),

|x0 − x1| ≤
R(1−β)

√
β

=
h2

1√
v2 t2

1
2 +h2

1

. (B-4)

Inequality (B-4) is the known aperture limitation of the DMO operator (2) found by Dere-
gowski and Rocca (1981). The equality in (B-4) is achieved when the reflection point is on
the surface, where the reflector dip increases to 90 degrees.
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Now the only unknown left in our problem is they-coordinate of the reflection pointξy.
To find this unknown, we substitute (19) into (17), choosing the convenient parameterization

s= x0 +hs ; r = x0 +hr , (B-5)

wherehr −hs = 2h2, andhr +hs = 2 (x1 −x0) (Figure B-1). The two-point traveltime func-
tion in (17) transforms to the form

t =

√
(x0 − ξx)2

−β (x1 − ξx)2
+ R2 +h2

s +2h2
s · (x0 − ξ )

v
+

+

√
(x0 − ξx)2

−β (x1 − ξx)2
+ R2 +h2

r +2h2
r · (x0 − ξ )

v
. (B-6)

Applying the second equation from (18), we get a simple linear equation forξy, which has the
explicit solution (20). From (19) and (20) one can find the reflection point location for given
midpoint and offset. To find the limits of possible output midpoint locations, we constrain the
reflection point to be inside the ellipsoid (15) similarly to the way we did in two dimensions
when deriving (B-4). First, let’s consider the case ofy2 = y1 (the output midpointx2 is on the
line drawn throughx1 in the direction of the input azimuth). In this case, combining expression
(20) and inequality (21) produces

|x0 − x1| ≤
R(1−β)√

β +β2 cot2ϕ
. (B-7)

For any azimuth rotation angleϕ less than 90 degrees, the limitation (B-7) is smaller than
that of the DMO operator (B-4). The difference increases with the decrease of the azimuth
rotation, since the AMO aperture section on the liney2 = y1 monotonously shrinks to a point
x2 = x0 = x1 whenϕ approaches zero. To extend this conclusion to the whole 3-D aperture, we
can find the contour of the aperture by putting the reflection point at the edge of the ellipsoid
(15), as follows: (

ξy − y1
)2

= R2
−β (ξx − x1)2 (B-8)

and solving (20) fory2. The aperture contour can then be defined by the system of parametric
expressions

y2 (ξx) = y1 +d (ξx) sinϕ , (B-9)

x2 (ξx) = ξx (1−β)+β x1 +d (ξx) cosϕ , (B-10)

where

d (ξx) =

d2
y +d2

x −

√(
d2

y +d2
x

)2
+4h2

2

(
dy sinϕ +dx cosϕ

)2
2
(
dy sinϕ +dx cosϕ

) , (B-11)

dx (ξx) = ξx − x0 = β (ξx − x1), anddy (ξx) = ξy − y1 is defined by (B-8).


