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Iterative methods of optimization with application to crosswell
tomography

James G. Berryman and Sergey Fomel1

ABSTRACT

We review the theory of iterative optimization, revealing the common origin of different
optimization methods and reformulating the pseudoinverse, model resolution, and data
resolution operators in terms of effective iterative estimates. Examples from crosswell
tomography illustrate the theory and suggest efficient methods of its implementation.

INTRODUCTION

Iterative methods of linear unconstrained optimization, such as the method of conjugate gra-
dients (Hestenes and Stiefel, 1952), Lanczos (1950), LSQR (Paige and Saunders, 1982), GM-
RES (Saad and Schultz, 1986), and some others, have proven to be important tools in geophys-
ical applications. For a given forward modeling operator, predicting the existing data from an
unknown model, iterative methods approach the model, which minimizes the squared residual
error of prediction. In linear problems, the global minimum does exist. However, finding it
requires, in general, the number of iterative steps equal to the number of unknown model pa-
rameters. In large-scale problems, typical in geophysical applications, the computational cost
makes complete solution practically infeasible. Nevertheless, iterative methods allow us to get
a reasonableestimateof the solution in a reasonable number of iterations.

When solving the inverse problem is replaced byestimatingthe solution, the inversion
theory needs to be reformulated. Methods and formulations, designed for the complete solu-
tions, are no longer applicable in the case of iterative estimates. This conclusion applies to
such objects as pseudoinverse operator, model resolution, and data resolution, conventionally
associated with SVD decomposition, which becomes infeasible in many large-scale problems.

In this paper, we review different methods of iterative optimization, primarily the method
of conjugate directions and the LSQR method. We prove that these methods have a common
origin in the general principle of the iterative residual minimization. The general principle
leads to remarkable orthogonalization properties for particular sets of vectors in the model
and data subspaces. Whenever possible, the orthogonality conditions should be enforced in
numerical implementations as a warranty of stable iterative behavior.

1email: berryman@sep.stanford.edu, sergey@sep.stanford.edu
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54 Berryman & Fomel SEP–93

We show how to define the effective pseudoinverse operator, model and data resolution for
iterative methods. Since the exact solution is not available, those definitions apply to effective
iterative estimates of the corresponding operators, which were strictly defined in the inversion
theory.

Finally, we illustrate the theory with simple examples from crosswell traveltime tomogra-
phy.

CONJUGATE DIRECTIONS AND CONJUGATE GRADIENTS

We will use a notation consistent with earlier work of Berryman (1994) on crosswell seismic
tomography in which the linear inversion problem to be solved takes the form

Ms = t, (1)

where we assume that the data vectort and the linear forward modeling operatorM are given
and that the model vectors is being sought.

In crosswell tomography example,sT
= (s1,s2, . . . ,sn) is ann-vector of wave slownesses

associated in either two- or three-dimensions with cells of constant slowness,M is a matrix of
ray-path lengths such thatMi j is the length of thei -th ray path through thej -th cell, andtT

=

(t1,t2, . . . ,tm) is anm-vector of the traveltimes associated with the ray paths between specified
and numbered pairs of sources and receivers. The assumption that the ray-path matrixM is
known corresponds to assuming that the full inverse problem is being solved in an iterative
fashion — in which case the ray-path matrix in question is just the one in use in the latest
iteration. We generally assume in addition that the problem is overdetermined so thatm > n,
i.e., the number of data exceed the dimension of the model space.

Linear iteration

We want to solve the problem (1) in an iterative fashion, so we assume that the updates to the
solution take the general form

sn = sn−1 +αnpn−1, (2)

wheresn−1 is the preceding estimate ofs, sn is the new estimate ofs, pn−1 is some direction
to be specified in the model space, andαn is an optimization parameter (or direction weight
factor). Defining the residual data error asrn ≡ t −Msn, we find the general relation that

rn = rn−1 −αnMpn−1. (3)

One useful way to proceed is to choose the optimization parameterαn so that the residual
vector is decreased and preferably minimized at each step of the iteration scheme. Using the
standard inner product notation (·,·) and considering

||rn||
2
= ||rn−1||

2
−2αn(rn−1,Mpn−1)+α2

n||Mpn−1||
2, (4)
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we find easily that the optimum choice ofαn using this criterion is

αn =
(rn−1,Mpn−1)

||Mpn−1||
2

. (5)

This formula has the significance that, whenever the residualrn−1 has a component along the
directionMpn−1, αn is chosen to scaleMpn−1 so that this component exactly cancels and
therefore removes the contribution torn made byMpn−1. This result implies therefore that, if
(rn−1,Mpn−1) 6= 0, then with this choice ofαn we have

(rn,Mpn−1) = (M T rn,pn−1) = 0. (6)

We used the adjoint property of the inner product in (6) to show thatpn−1 is orthogonal to
the gradient vectorgn ≡ M T rn, so-called because it is the gradient obtained by taking the
derivative with respect tosT

n of the squared residual error functional associated with (1).

Thus, at each step of this iterative sequence a vector proportional to some vectorpn is
added to the solution, while a vector proportional toMpn is subtracted from the residual.
According to formulas (4) and (5), the squared norm of the residual decreases at each iteration
as

||rn||
2
= ||rn−1||

2
−

(rn−1,Mpn−1)2

||Mpn−1||
2

(7)

The sequence of directions will be most efficient if the vectors used in decimating the residual
are orthogonal,i.e., if

(Mpn,Mp j ) = 0 for j = 1,2,. . . ,n−1. (8)

In this case, as follows by induction from formula (6), the residual vector is also orthogonal to
all those vectors:

(rn,Mp j ) = 0 for j = 1,2,. . . ,n−1. (9)

Using again the adjoint relation for the inner product, we find that

(M T rn,pj ) = (gn,pj ) = 0 for j = 1,2,. . . ,n−1. (10)

and

(pn,M TMp j ) = 0 for j = 1,2,. . . ,n−1, (11)

which is a statement of conjugacy for the vectorspn. Conjugacy is just a generalization of
orthogonality in which the vectors are orthogonal relative the nonstandard inner product (·,A·)
– with A being a symmetric, positive semidefinite matrix (operator) – instead of the standard
inner product given by (·,·) with A replaced by the identity.

We conclude that conjugacy is a desirable property of the set of direction vectorspn, so our
next necessary step in order to obtain a definite iterative process is to construct a convenient
sequence of vectors that have this property. One set of model vectors that will be available in
this iteration sequence is the set of gradient vectors themselves, wheregn = M T rn. We show
next why this set plays an important role in constructing the desired sequence.
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Why not orthogonal residuals?

Since the direction vectors have not yet been specified, we still have some degree of freedom
that we may use to help choose an optimum method. We might suppose that it could be
possible to choose the residuals themselves in a way so that they are orthogonal from one step
to the next. But, we soon find this is wrong for, if we were to try this, we would find that the
condition

(rn,rn−1) = 0 (12)

implies that

αn =
(rn−1,rn−1)

(rn−1,Mpn−1)
=

(rn−1,Mpn−1)

||Mpn−1||
2

. (13)

But, this condition (13) is actuallyimpossiblebecause the Cauchy-Schwartz inequality for
vectors states that

(rn−1,Mpn−1)2
≤ ||rn−1||

2
||Mpn−1||

2, (14)

where the equality in (14) occurs only when the two vectors are proportional which will virtu-
ally never be true for such an iteration scheme.

Since orthogonality of the residuals is impossible, the next best condition we might try to
impose is conjugacy of the residual vectors. This condition can be stated as

(M T rn,M T r j ) = (rn,MM T r j ) = 0 for j = 1,2,. . . ,n−1. (15)

Thus, if this condition is met, the residuals will be orthogonal relative to the inner product
(·,MM T

·). The set of conditions (15) is not in conflict with (5) so we assume it holds and
construct the directionspn that satisfy both (11) and (15).

Conjugate directions

To construct a set of directionspn which satisfy the conjugacy criterion (8), we can start from
an arbitrary set of model-space vectorscn and apply an orthogonalization process to their
projections in the data space. An iterative orthogonalization is defined by recursion

pn = cn −

n−1∑
j =1

β( j )
n pj , (16)

where the following choice of the scalar coefficientsβ
( j )
n assures condition (8):

β( j )
n =

(Mcn,Mp j )

||Mp j ||
2

. (17)
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According to the fact that the residual vectorrn is orthogonal to all the previous steps in the
data space (equation (9)), the coefficientαn simplifies to

αn =
(rn−1,Mcn−1)

||Mpn−1||
2

. (18)

Formulas (16–18) define the method of conjugate directions (Fomel, 1996) also known as
the preconditioned Krylov subspace method (Kleinman and van den Berg, 1991) and under
several other names.

A particular choice of the initial directionscn = gn = M T rn transforms the method of
conjugate directions into the method of conjugate gradients and introduces remarkable simpli-
fications.

Conjugate gradients

First, we notice that the scaling coefficientαn simplifies with the choicecn = gn to the form

αn =
(rn−1,Mgn−1)

||Mpn−1||
2

=
(M Trn−1,gn−1)

||Mpn−1||
2

=
||gn−1||

2

||Mpn−1||
2
, (19)

and the residual decrease (7) becomes

||rn||
2
= ||rn−1||

2
−

||gn−1||
2

||Mpn−1||
2

(20)

According to formula (20), the residual norm is guaranteed to decrease monotonically at each
iteration as long as the gradient is different from zero.

Second, applying formula (10), we notice the equality

(gn,gj ) = (gn,pj )+
j −1∑
i =1

β
(i )
j (gn,pi ) = 0 for j = 1,2,. . . ,n−1 , (21)

which is precisely equivalent to the conjugacy of the residual vectors, suggested earlier by (15).
Equation (21) states that the residuals from successive conjugate-gradient iterations form an
orthogonal basis in the space of the models. This fact assures that the global minimum in an
n-dimensional space can be found, in precise arithmetic, in exactlyn iterations. We can see
that the validity of this remarkable fact is based entirely upon the orthogonality condition (21).

With cn = gn, we can rewrite equation (17) in the form

β( j )
n =

(Mgn,Mp j )

||Mp j ||
2

=
(Mgn,r j +1 − r j )

αj +1 ||Mp j ||
2

=
(gn,gj +1 −gj )

αj +1 ||Mp j ||
2

. (22)

It follows immediately from formula (22) and the orthogonality condition that

β( j )
n = 0 for j = 1,2,. . . ,n−2 , (23)
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and

β(n−1)
n =

||gn||
2

αn ||Mpn−1||
2

=
||gn||

2

||gn−1||
2
. (24)

The latter equality follows from formula (19). Thus, the next direction of the conjugate-
gradient iteration is completely defined by a linear combination of the current gradient and the
previous direction:

pn = gn −β(n−1)
n pn−1. (25)

Equations (19), (24), and (25) provide a complete definition of the classic conjugate-gradient
algorithm (Hestenes and Stiefel, 1952; Fletcher and Reeves, 1964).

Summarizing our derivation, we conclude that the success of the conjugate-direction method
is supported by the orthogonality condition (8). The success of the conjugate-gradient method
requires, in addition, the conjugacy condition (15), which can be expressed in the model-space
as the orthogonality of the gradients (21).

The next section shows how the orthogonal sets of vectors in the data and model spaces
translate into the effective resolution operators.

RESOLUTION OPERATORS FOR BOTH MODEL AND DATA

Pseudoinverse estimate

From (2), it follows easily that the model estimate at then-th iteration must be of the form

sn =

n−1∑
i =1

αi +1pi , (26)

where we assume for simplicity thats1 = 0. Then substituting (5) — or more directly the first
ratio in (19) — for theαi ’s shows that then-th iterate is given explicitly by

sn =

n−1∑
j =1

pj pT
j

(pj ,M TMp j )
gj =

n−1∑
j =1

pj pT
j

(pj ,M TMp j )
M T t (27)

for this scheme. The resulting approximate inverse operator is therefore

(
M TM

)†
'

n−1∑
j =1

pj pT
j

(pj ,M TMp j )
, (28)

which form we now want to study. We use the dagger notation to indicate that the expression
in (28) is approximating a pseudoinverse, because it may happen that the normal matrix is
singular in which case the standard inverse does not exist.
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First, note that although (28) might appear to be in the form of a singular value decompo-
sition, it definitely is not. Thepn’s are not orthogonal and the denominators of these terms are
not eigenvalues. If we define the matrix composed of direction vectors at then-th iteration to
be

Pn =
(

p1 p2 · · · pn
)
, (29)

then the approximate inverse operator can be rewritten as(
M TM

)†
' PnDP

−1PT
n , (30)

where the matrixDP is a diagonal matrix whose diagonal elements are given byDj j = (pj ,M TMp j ).
In fact the entire matrix is given directly by

DP ≡ PT
n M TMPn, (31)

because of the conjugacy of thep’s composingPn. Now equation (25) shows that

PnBn = Gn, (32)

where

Gn =
(

g1 g2 · · · gn
)
, (33)

and the matrixBn is bidiagonal with units along the main diagonal andβ ’s along the upper
diagonal:

Bn =


1 β

(1)
2 0 · · · 0

0 1 β
(2)
3 · · · · · ·

0 0 · · · · · · 0
· · · · · · · · · 1 β

(n−1)
n

0 · · · 0 0 1

 (34)

Multiplying (32) on the right by the inverse ofBn and then substituting into (30), we find that(
M TM

)†
' GnB−1

n DP
−1(

BT
n

)−1
GT

n . (35)

Thus, the approximate inverse is seen to have the general form(
M TM

)†
' GnT−1

n GT
n , (36)

whereTn is the tridiagonal matrix

Tn = BT
n DPBn. (37)

This result highlights the similarities between the CG method and that of other iterative meth-
ods such as Lanczos (1950) and LSQR (Paige and Saunders, 1982), also producing tridiagonal
respresentations of the matrix to be inverted.
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Model resolution estimate

Although the tridiagonal form found in (37) is interesting in its own right, the more important
result contained in (36) is the fact that this analysis has resulted in a decomposition in terms of
orthogonal (rather than merely conjugate) vectors. This result allows us to obtain the resolution
matrix quickly for the model space from this form. In particular, if we define the diagonal
matrix

DG = GT
n Gn, (38)

we see that

M TM ' GnDG
−1TnDG

−1GT
n , (39)

and therefore, since

Rmodel≡
(
M TM

)†
M TM = M TM

(
M TM

)†
, (40)

we find easily that

Rmodel= GnDG
−1GT

n =

n∑
i =1

gi gT
i

(gi ,gi )
. (41)

Data resolution estimate

The data resolution is known to be related to the operator

Rdata = M
(
M TM

)†
M T . (42)

Substituting (28) for the pseudoinverse and then defining

qi ≡ Mp i , (43)

we find that the resolution operator for the data space is

Rdata =

n∑
i =1

qi qT
i

(qi ,qi )
, (44)

a form completely analogous to that in (41).

IMPORTANCE OF MAINTAINING ORTHOGONALITY

As we have been discussing, suppose we want to invert a square,n× n symmetric matrixA
and we want to do so using some iterative method like Lanczos (1950), LSQR (Paige and
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Saunders, 1982), conjugate gradients (Hestenes and Stiefel, 1952), etc. Then the iterative
algorithm (especially for Lanczos and LSQR) generally may be expressed in the form

AZ k = ZkTk + Nk+1zk+1eT
k (45)

for k ≤ r wherer is the rank of the matrixA and the matrixZk, given by

Zk =
(

z1 z2 . . . zk
)
, (46)

is composed of the column vectorszi for i = 1,. . . ,k that have been generated so far in the
iterative process. The other terms in (45) are the unit vectorek, with its single component in
thekth position, and a norming constantNk+1. The formula (45) withT being a tridiagonal
matrix is just exactly the iterative scheme of Lanczos.

Now the model resolution matrixRmodel for the iterative scheme at thekth iteration is
given by

Rk = ZkZT
k . (47)

However, care must be taken to make sure that thezi ’s are orthogonal as they are expected to
be in this scheme. The tridiagonalization process produces a sequence of orthogonal vectors
in principle, but in practice the orthogonality may break down after several iterations when the
calculations are performed at finite precision. To demonstrate how the lack of orthogonality
affects the process consider the following facts. Let the eigenvalues of the matrixA be ordered
so thatλ2

i 6= 0 for i = 1,. . . ,r andλ2
i = 0 for i = r + 1,. . . ,n. (We write the eigenvalues as

squares becauseA often takes the form of a normal matrixA = M TM , in which case the
eigenvalues ofM are theλi s.) Then the trace of the matrix is just

TrA =

r∑
i =1

λ2
i . (48)

The model resolutionRk is a projection operator onto ak-dimensional Krylov subspace (the
one explored so far by the iterative method) of then-dimensional space that is both the range
and domain ofA. Taking the trace ofRkA shows that

Tr
[
ZkZT

k A
]
= Tr

[
ZT

k AZ k
]
=

k∑
i =1

zT
i Azi . (49)

Let vi for i = 1,. . . ,r be the normalized eigenvectors associated with the eigenvaluesλ2
i .

Then, assuming only thatz1 has no components in the null-space ofA, each of the iteration
vectorszi can be expanded in terms of these eigenvectors with the result that

zi =

r∑
j =1

ζi j vj . (50)

Similarly, the eigenvectors can be expanded in terms of the full set of normalized iteration
vectorszi according to

vj =

r∑
i =1

ζi j zi , (51)
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where the same set of coefficientsζi j is used in both expansions and these coefficients must
satisfy

r∑
i =1

ζ 2
i j = 1 =

r∑
j =1

ζ 2
i j (52)

in order for both sets of vectors to be normalized to unity.

Substituting (50) into (49), we find easily that

Tr
[
ZkZT

k A
]
=

r∑
j =1

λ2
j

[
k∑

i =1

ζ 2
i j

]
≤

r∑
j =1

λ2
j . (53)

The inequality follows, since the coefficientsζi j are all real, and therefore

k∑
j =1

ζ 2
i j ≤

r∑
j =1

ζ 2
i j ≡ 1. (54)

Thus, we can expect that as long as the vectors returned by the iterative scheme are orthogonal,
the effective trace of the operatorT must remain smaller than that of the original operatorA. If
this constraint is violated, then we know that the set ofzi ’s generated so far are not orthogonal
and furthermore that this lack of orthogonality is having serious negative consequences on our
ability to compute the resolution operator correctly.

This fact leads to a test for orthogonality that is very easy to implement when our operator
is a matrix with known elements. We will make use of this test in the next section.

CROSSWELL TOMOGRAPHY APPLICATION

Figures 1-4 provide some numerical examples comparing and contrasting the results obtained
using standard SVD resolution calculations with the LSQR (Paige and Saunders, 1982) reso-
lution calculations described in an earlier paper (Berryman, 1994). We consider a 4×4 model
using strictly crosswell data, so there are 16 source/receiver pairs as well as 16 cells in 2D.
Model slowness values are shown in the upper block of each figure, while diagonal resolution
values are shown in the lower block. The first two examples (Figures 1 and 2) show results for
the actual model used to compute the traveltime data [see Berryman (1990) for a description
of the code used to generate both the forward and inverse solutions]. The second two exam-
ples (Figures 3 and 4) show results obtained after 15 iterations of the reconstruction code of
Berryman (1990). The LSQR resolution examples (Figures 2 and 4) were computed using ten
iterations of the LSQR algorithm, so the maximum size of the resolved model vector space has
dimension ten. To aid in the comparison, the SVD resolution examples use only the 10 eigen-
vectors associated with the 10 largest eigenvalues of the ray-path matrix. We find the results
are in qualitatively good agreement. Better quantitative agreement is not anticipated because
the 10-dimensional vector spaces spanned by these two approximations, although having large
regions of overlap, will nevertheless almost always differ to some degree.
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Figure 1: Target model slowness (a) and resolution (b) for truncated SVD using 10 largest
eigenvalues.resol-casea[NR]
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Figure 2: Target model slowness (a) and resolution (b) for LSQR after 10 iteratons.
resol-caseb[NR]
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Figure 3: Slowness (a) and resolution (b) for truncated SVD using 10 largest eigenvalues.
resol-casec[NR]
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Figure 4: Reconstructed slowness (a) and resolution (b) for LSQR after 10 iterations.
resol-cased[NR]
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Tests of orthogonalization

For the LSQR algorithm, it is easy to check the trace of the effective operator since it is just
the sum of the squares of the elements in the resulting bidiagonal matrix. To test the ideas of
the preceding section, we first perform an LSQR inversion while imposing full reorthogonal-
ization (Arnoldi, 1951) at each step. Doing so, we obtain Figure 5, showing that the effective
operator trace converges monotonically to the true trace from below as expected.

In contrast, Figure 6 shows that without reorthogonalization the trace of the effective op-
erator has already exceeded the upper bound — thus demonstrating that the eighth direction
vector found by LSQR has at least some component parallel to one of the earlier vectors
and also along some eigenvector with large eigenvalue. Observing the later behavior of this
curve, regions of small slopes may correspond to allowable (orthogonal) direction vectors, but
the regions of large slope must be resampling the regions of the vector space with the largest
eigenvalues. This observation shows that the rebirth of nonorthogonal vectors does not happen
just at the eighth iteration, but is a recurring problem.

These two examples show clearly that full reorthogonalization works very well and that
failure to do any reorthogonalization can lead to serious problems with the set of direction
vectors generated by such schemes. To make progress, we want to know whether full re-
orthogonalization is required, or whether some type of partial reothogonalization (which will
presumably be cheaper) might be equally or almost as effective as full reorthogonalization. We
want to explore the tradeoffs between cost of the partial reorthogonalization and the benefits
to be derived from it. Figures 7–11 explore these issues.

Figures 7–9 refer to the same model considered in Figures 1-6. Figure 7 shows that or-
thogonalizing against the first 1, 2, or 3 vectors improves the results progressively, the more
vectors are used for the reorthogonalization. Figure 8 shows that reorthogonalization against
the 1, 2, or 3 most recently generated vectors does not work as well as the previous Figure.
Reorthogonalizing against both 1, 2, or 3 early and late vectors gives virtually identical results
in Figure 9 as those results observed in Figure 7.

Figures 10 and 11 refer to a model of 16× 8 cells similar to that considered earlier by
Berryman (1990). Figure 10 shows that reorthogonalizing against only the first and last vectors
generated in the iteration sequence is quite ineffective at reducing the nonorthogonal vectors
generated. Figure 11 shows that reorthogonalizing against the first 35 vectors produces a major
improvement, without significant orthogonalization problems out to 90 iterations, instead of
less than 35 iterations before problems arise with only one vector reothogonalization.

We conclude that reorthogonalization is effective and the partial reorthogonalization is
most effective when the vectors chosen for the reorthogonalization set are those from the early
part of the iteration sequence. The reason that these vectors are best to use is presumably
because they correspond to directions that have components parallel to directions in the space
that are eigenvectors of the operator being inverted with largest eigenvalues. These vectors
like to be reborn in this process and reorthogonalization is an effective means of preventing
multiply copies of the same dominant vectors from recurring in the iteration sequence.
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Figure 8: LSQR with partial reorthogonalization – last one, two, or three.resol-sum301[NR]
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Figure 11: LSQR with partial reorthogonalization – using first or first 35 vectors.
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CONCLUSIONS

The methods of computing resolution matrices that have been illustrated here may be easily
generalized to a variety of other iterative and approximate inversion methods. We have ex-
plored partial reorthogonalization methods for iterative methods and have found that using a
subset of the early vectors generated in the iteration sequence is most effective at reducing un-
wanted occurrences of nonorthogonal vectors in the later parts of the iteration sequence. These
early vectors correspond to directions that have components along the eigenvectors with the
largest eigenvalues, and these are precisely the vectors we most need to exclude from the later
iterations. Such recurrences may not adversely affect the inversion itself, but do make the
computation of the resolution matrices (operators) much more complicated than if the orthog-
onalization is enforced.
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