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Short Note

Plane wave prediction in 3-D

Sergey Fomel1

INTRODUCTION

The theory of plane-wave prediction in three dimensions is described by Claerbout (1993,
1997). Predicting a local plane wave withT-X filters amounts to finding a pair of two-
dimensional filters for two orthogonal planes in the 3-D space. Each of the filters predicts
locally straight lines in the corresponding plane. The system of two 2-D filters is sufficient for
predicting all but purely vertical plane waves, in which case a third 2-D filter for the remaining
orthogonal plane is needed. Schwab (1998) discusses this approach in more detail.

Using two prediction filters implies dealing with two filtering output volumes for each in-
put volume. In many applications, this situation leads to a lot of inconvenience. It happens, for
example, when one uses the prediction output as a measure of coherency in the input volume
(Claerbout, 1993; Schwab et al., 1996). Two outputs are obviously more difficult to interpret
than one, and there is no natural way of combining them into one image. Another difficulty
arises when plane-wave predictors are used for regularizing linear inverse problems (Clapp
et al., 1997). In this case, we cannot apply an efficient recursive preconditioning (Claerbout,
1998a) unless the regularization operator is square, or, in other words, only one prediction
filter is involved.

Helical filtering (Claerbout, 1998b) brings us new tools for addressing this problem. In this
paper, I show how to combine orthogonal 2-D plane predictors into a single three-dimensional
filter with similar spectral properties. The 3-D filter can then work for coherency measure-
ments or for preconditioning 3-D inverse problems. The construction employs the Wilson-
Burg method of spectral factorization, adapted for multidimensional filtering with the help of
the helix transform (Sava et al., 1998).

I use simple synthetic examples to demonstrate the applicability of plane-wave prediction
to 3-D problems.
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FACTORIZING PLANE WAVES

Let us denote the coordinates of a three-dimensional space byt , x, andy. A theoretical plane
wave is described by the equation

U (t ,x, y) = f (t − pxx − pyy) , (1)

where f is an arbitrary function, andpx and py are the plane slopes in the corresponding
direction. It is easy to verify that a plane wave of the form (1) satisfies the following system
of partial differential equations:
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The first equation in (2) describes plane waves on the{t ,x} slices. In the discrete form, it
can be represented as a convolution with a two-dimensional finite-difference filterAx. Simi-
larly, the second equation transforms into a convolution with filterAy, which acts on the{t , y}

slices. The discrete form of equations (2) involves a blocked convolution operator:(
Ax

Ay

)
U = 0 . (3)

In many applications, we are actually interested in the spectrum of the prediction filter,
which approximates the inverse spectrum of the predicted data. In other words, we deal with
the square operator

(
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y

) (
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)
= AT

x Ax +AT
y Ay . (4)

If we were able to transform this operator to the formATA, whereA is a three-dimensional
minimum-phase convolution, we could use the three-dimensional filterA in place of the in-
convenient pair ofAx andAy.

The problem of findingA from its spectrum is known as spectral factorization. It is well
understood for 1-D signals (Claerbout, 1976), but until recently it was an open problem in
the multidimensional case. Helix transform maps multidimensional filters to 1-D by applying
special boundary conditions and allows us to use the full arsenal of 1-D methods, including
spectral factorization, on multidimensional problems (Claerbout, 1998b). A problem, analo-
gous to (4), has already occurred in the factorization of the discrete two-dimensional Laplacian
operator:
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whereDx and Dy represent the partial derivative operators along thex and y dimensions,
respectively, and the two-dimensional filterH has been namedhelix derivative(Claerbout,
1999; Zhao, 1999).

If we represent the filterAx with the help of a simple first-order upwind finite-difference
scheme

Ut
x+1 −Ut

x + px

(
Ut+1

x+1 −Ut
x+1

)
= 0 , (6)

then, after the helical mapping to 1-D, it becomes a one-dimensional filter with theZ-transform

Ax(Z) = 1− px ZNt+1
+ (px −1)ZNt , (7)

whereNt is the number of samples on thet-axis. Similarly, the filterAy takes the form

Ay(Z) = 1− pyZNt Nx+1
+ (py −1)ZNt Nx . (8)

The problem is reduced to a 1-D spectrum factorization of

Ax(1/Z)Ax(Z)+Ay(1/Z)Ay(Z) = −py
1

ZNt Nx+1 + (py −1) 1
ZNt Nx −

px
1

ZNt +1 + (px −1) 1
ZNt −1 +

[
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] 1
Z +

2+ px(px −1)+ py(py −1)+
[
px(1− px)+ py(1− py)

]
Z+

(px −1)ZNt−1
− px ZNt+1

+ (py −1)ZNt Nx − pyZNt Nx+1 . (9)

After a minimum-phase factor of (9) has been found, we can use it for 3-D forward and inverse
convolution.

All examples in this paper actually use a slightly more sophisticated formula for 2-D plane-
wave predictors:

Ax(Z) = 1+
px

2
(1− px)ZNt−1

+ (p2
x −1)ZNt −

px

2
(1+ px)ZNt+1 . (10)

Formula (10) corresponds to the Lax-Wendroff finite difference scheme (Clapp et al., 1997).
It provides a valid approximation of the plane-wave differential equation for−1 ≤ px ≤ 1.

Figure 1 shows examples of plane-wave construction. The two plots in the figure are
outputs of a spike, divided recursively (on a helix) byATA, whereA is a 3-D minimum-
phase filter, obtained by Wilson-Burg factorization. The factorization was carried out in the
assumption ofNt = 20 andNx = 20; therefore, the filter hadNt Nx + 2 = 402 coefficients.
Using such a long filter may be too expensive for practical purposes. Fortunately, the Wilson-
Burg method allows us to specify the filter length and shape beforehand. By experimenting
with different filter shapes, I found that a reasonable accuracy can be achieved with a 26-point
filter, depicted in Figure 2. Plane-wave construction for a shortened filter is shown in Figure 3.
The predicted plane wave is shorter and looks more like a slanted disk. It is advantageous to
deal with short plane waves if the filter is applied for local prediction of non-stationary signals.

In the next sections, I address the problem of estimating plane-wave slopes and show some
examples of applying local plane-wave prediction in 3-D problems.



294 Fomel SEP–102

Figure 1: 3-D plane wave prediction with a 402-point filter. Left:px = 0.7, py = 0.5. Right:
px = −0.7, py = 0.5. plane-eplane[ER]

Figure 2: Schematic filter shape for
a 26-point 3-D plane prediction filter.
The dark block represents the leading
coefficient. There are 9 blocks in the
first row and 17 blocks in the second
row. plane-shape[NR]

Figure 3: 3-D plane wave prediction with a 26-point filter. Left:px = 0.7, py = 0.5. Right:
px = −0.7, py = 0.5. plane-tplane[ER]
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ESTIMATING PLANE WAVES

It may seem difficult to estimate the plane slopepx for a Lax-Wendroff filter of the form (10)
becausepx appears non-linearly in the filter coefficients. However, using the analytical form
of the filter, we can easily linearize it with respect to the plane slope and set up a simple
iterative scheme:

p(k+1)
x = p(k)

x +1p(k)
x , (11)

wherek stands for the iteration count, and1p(k)
x is found from the linearized equation(

A′
xU

)
1px = −AxU , (12)

whereA′
x is the derivative ofAx with respect topx. To avoid unstable division by zero when

solving equation (12) for1px, Adding a regularization equation

ε∇1px ≈ 0 , (13)

whereε is a small scalar regularization parameter, I solve system (12-13) in the least-square
sense to obtain a smooth slope variation1px at each iteration. In practice, iteration process
(11) quickly converges to a stable estimate ofpx.

EXAMPLES

Two simple examples in this section demonstrate an application of 3-D local plane-wave pre-
diction to the problems of discontinuity enhancement and missing data interpolation.

3-D discontinuity enhancement

Figure 4: A synthetic model, show-
ing a fault between two plane waves
of different slopes.plane-cube[ER]

Figure 4 shows a simple synthetic model of two plane waves, separated by a plane fault.
The slope estimates for the two orthogonal directions are shown in Figure 5. We can see that
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Figure 5: Plane wave slope estimates in thex and y directions (left and right plots, respec-
tively) from the synthetic two-plane model.plane-cslope[ER]

the estimation procedure correctly identified the regions of constant slope. Finally, estimating
a local 3-D plane-wave predictor by spectral factorization and convolving the resultant non-
stationary filter with the input model, we obtain the prediction residual, shown in Figure 6. In
the residual, both plane waves are effectively destroyed, and we observe a sharp image of the
fault plane. This result compares favorably with results of alternative methods, collected by
(Schwab, 1998).

Figure 6: Magnitude of the residual
after convolving the synthetic two-
plane model with a local 3-D plane
wave filter. plane-cmain[ER]

3-D missing data interpolation

Figures 7 and 8 show Claerbout’s “qdome” synthetic model (Claerbout, 1993, 1999) and its
corresponding slope estimates. In a missing data interpolation experiment, I remove 75% of
the traces in the original model, arriving at the missing data model, shown in the left plot of
Figure 9. The missing data interpolation result is shown in the right plot of Figure 9. Most of
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Figure 7: Claerbout’s “qdome” syn-
thetic model. plane-qdome[ER]

Figure 8: Plane wave slope estimates in thex and y directions (left and right plots, respec-
tively) from the “qdome” model.plane-qslope[CR]
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the original signal, except for some high-curvature areas, has been restored. Local 3-D plane-
wave predictors allow us to use the efficient interpolation technique of Fomel et al. (1997),
based on recursive filter preconditioning.

Figure 9: Left: “qdome” model with 75% of the randomly chosen traces removed. Right:
result of missing data interpolation with a 3-D local plane-wave prediction filter.plane-qmiss
[CR]

CONCLUSIONS

I have shown that a 3-D plane-wave prediction filter can be constructed from a pair of two-
dimensional filters by using helix transform and a one-dimensional spectral factorization al-
gorithm.

In all the examples, I used analytical finite-difference filters instead of more general prediction-
error filters. A similar factorization idea could be applied to 3-D prediction-error filters. How-
ever, treating non-stationarity in this case is less straightforward and requires additional care
(Crawley et al., 1998; Clapp et al., 1999).

3-D plane-wave prediction filters can find many interesting applications in data processing
and inversion. An especially promising application is solution steering in tomography-type
problems (Clapp et al., 1997; Clapp and Biondi, 1998).
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