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Short Note

On the general theory of data interpolation

Sergey Fomel1

INTRODUCTION

Data interpolation is one of the most important tasks in geophysical data processing. Its im-
portance is increasing with the development of 3-D seismics, since most of the modern 3-D
acquisition geometries carry non-uniform spatial distribution of seismic records. Without a
careful interpolation, acquisition irregularities may lead to unwanted artifacts at the imaging
step (Gardner and Canning, 1994; Chemingui and Biondi, 1996).

The interpolation problem in geophysics implies interpolating irregularly sampled data
to a regular grid. In general, this problem requires a regularized inversion scheme, such as
the method of inversion to zero offset (Ronen et al., 1991, 1995). Theoretically, it is easier
to consider a different (in a sense, the opposite) problem: to find a continuous interpolation
function for the data, given on a regular grid. The latter problem has been a traditional subject
in computational mathematics. Though its solution is not directly applicable to the handling
of irregular acquisition geometries, it can give us some insights into the possible ways of
approaching geophysical interpolation.

In this paper, I present a simple mathematical theory of interpolationfroma regular grid. I
derive the main formulas from a very general idea of function bases. In conclusion, I discuss
possible applications of the general theory in geophysics and, in particular, its relation to
azimuth moveout (Biondi et al., 1996).

PROBLEM FORMULATION

Mathematical interpolation theory considers a functionf , defined on a regular gridN. The
problem is to findf in a continuum, which includesN. I am not defining the dimensionality
of N and f here because it is not essential for the derivations. Most of the examples in this
paper use one-dimensional functions, but the general theory applies equally well to a higher
number of dimensions. Furthermore, I am not specifying the exact meaning of "regular grid",
since it will become clear from the further analysis. The functionf is assumed to belong to a
Hilbert space with a defined dot product.
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If we restrict our consideration to a linear case, the desired solution will take the following
general form

f (x) =

∑
n∈N

W(x,n) f (n) , (1)

wherex is a point from the continuum, andW(x,n) is a linear weight. If the gridN itself is
considered as continuous, the sum in formula (1) transforms to an integral indn. Two general
properties of the linear weighting functionW(x,n) are evident from formula (1).

Property 1

W(n,n) = 1 . (2)

Equality (2) is necessary to assure that the interpolation of a single spike at some pointn does
not change the valuef (n) at the spike.

Property 2 ∑
n∈N

W(x,n) = 1 . (3)

This property is the normalization condition. Formula (3) assures that interpolation of a con-
stant functionf (n) remains constant.

One classic example of the interpolation weightW(x,n) is the Lagrange polynomial,
which has the form

W(x,n) =

∏
i 6=n

(x − i )

(n− i )
. (4)

The Lagrange interpolation provides a unique polynomial, which goes exactly through the
data pointsf (n). The known numerical instabilities of Lagrange’s interpolation have been
overcome by various types of spline interpolation (de Boor, 1978). It is curious to note that
the interpolation and finite-difference filters, developed by Karrenbach (1995) from a gen-
eral approach of self-similar operators, reduce to a localized form of Lagrange polynomials.
The local 1-point Lagrange interpolation is equivalent to the nearest-neighbor interpolation,
defined by the formula

W(x,n) =

{
1, for n−1/2 ≤ x < n+1/2
0, otherwise

(5)

Likewise, the local 2-point Lagrange interpolation is equivalent to the linear interpolation,
defined by the formula

W(x,n) =

{
1−|x −n|, for n−1 ≤ x < n+1
0, otherwise

(6)

The Lagrange interpolators of higher order correspond to more complicated polynomials.
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Function basis

To obtain the solution (1), let us assume the existence of a function basic{ψk(x)}, k ∈ K , such
that the functionf (x) can be represented by a linear combination of the basis functions, as
follows:

f (x) =

∑
k∈K

ckψk(x) . (7)

The linear coefficientsck can be found by multiplying both sides of equation (7) by one of the
basis functions (e.g.ψj (x)). Inverting the equality(

ψj (x), f (x)
)
=

∑
k∈K

ck9jk , (8)

where the parentheses denote the dot product, and

9jk =
(
ψj (x),ψk(x)

)
, (9)

gives us the following explicit expression for the coefficientsck:

ck =

∑
j ∈K

9−1
k j

(
ψj (x), f (x)

)
. (10)

Here9−1
k j refers to thek j component of the matrix, inverse to9. The matrix9 is invertible as

long as the basis set of functions is linearly independent. In the special case of an orthonormal
basis,9 reduces to the identity matrix:

9jk =9−1
k j = δjk .

Equation (10) is a least-square estimate of the coefficientsck. For a given set of basis
functions, it approximates the functionf in formula (1) in the least-square sense.

SOLUTION

The usual (although not unique) mathematical definition of the continuous dot product is

( f1, f2) =

∫
f̄1(x) f2(x)dx , (11)

where the bar overf1 stands for complex conjugate (in the case of complex-valued functions.)
Applying definition (11) to the dot product in formula (10) and approximating the integral by
a finite sum on the regular gridN, we arrive at the approximate equality

(ψj (x), f (x)) =

∫
ψ̄j (x) f (x)dx ≈

∑
n∈N

ψ̄j (n) f (n) . (12)
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We can consider equation (12) not only as a useful approximation, but also as an implicit
definitionof the regular grid. The grid regularity means that approximation (12) is possible.
According to this definition, the more regular the grid is, the more accurate is the approxima-
tion.

Substituting equality (12) into formulas (10) and (7) gives us a solution to the interpolation
problem. The solution takes the form of equation (1) with

W(x,n) =

∑
k∈K

∑
j ∈K

9−1
k j ψk(x)ψ̄j (n) . (13)

We have found a constructive way of creating the linear interpolation operator from a specified
set of basis functions.

It is important to note that the adjoint of the linear operator in formula (1) is the continuous
dot product of functionsW(x,n) and f (x). This simple observation follows from the definition
of the adjoint operator and the simple equality(

f1(x),
∑
n∈N

W(x,n) f2(n)

)
=

∑
n∈N

f2(n) ( f1(x),W(x,n)) =

((W(x,n), f1(x)) , f2(n)) , (14)

where we have assumed that the discrete dot product is defined by the sum

( f1(n), f2(n)) =

∑
n∈N

f̄1(n) f2(n) . (15)

Applying the adjoint interpolation operator to the functionf , defined with the help of formula
(13), and employing formulas (7) and (10), we discover that

(W(x,n), f (x)) =

∑
k∈K

∑
j ∈K

9−1
k j ψ̄j (n) (ψk(x), f (x)) =

∑
j ∈K

ψ̄j (n)
∑
k∈K

9−1
jk (ψk(x), f (x)) =

∑
j ∈K

cjψj (n) = f (n) . (16)

This remarkable result shows that although the forward linear interpolation is based on ap-
proximation (12), the adjoint interpolation produces an exact value off (n)! The approximate
nature of equation (13) reflects the fundamental difference between adjoint and inverse lin-
ear operators (Claerbout, 1992). When adjoint interpolation is applied to a constant function
f (x) ≡ 1, it is natural to require the constant outputf (n) = 1. This requirement leads to yet
another general property of the interpolation functionsW(x,n):

Property 3 ∫
W(x,n)dx = 1 . (17)
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INTERPOLATION WITH FOURIER BASIS

To illustrate the general theory with familiar examples, I consider in this section the most
famous example of an orthonormal function basis, the Fourier basis of trigonometric functions.
What kind of linear interpolation does this basis lead to?

Continuous Fourier basis

For the continuous Fourier transform, the set of basis functions is defined by

ψω(x) =
1

√
2π

eiωx , (18)

whereω is the continuous frequency. For a 1-point sampling interval, the frequency is limited
by the Nyquist condition:|ω| ≤ π . In this case, the interpolation functionW can be computed
from formula (13) to be

W(x,n) =
1

2π

∫ π

−π

eiω(x−n)dω =
sin[π (x −n)]

π (x −n)
. (19)

The interpolation function (19) is well-known as the Shannon sinc interpolator. A known prob-
lem with its practical implementation is the slow decay with (x −n). This problem is solved
in practice with heuristic tapering (Hale, 1980), such as Harlan’s triangle tapering (Harlan,
1982). While the functionW from equation (19) automatically satisfies properties (3) and
(17), where bothx andn range from−∞ to ∞, its tapered version may require additional
normalization.

Discrete Fourier basis

Assuming that the range of the variablex is limited in the interval from−N to N, the discrete
Fourier basis (Fast Fourier Transform) employs a set of orthonormal periodic functions

ψk(x) =
1

√
2N

eiπ k
N x , (20)

where the discrete frequency indexk also ranges, according to the Nyquist sampling criterion,
from −N to N. The interpolation function is computed from formula (13) to be

W(x,n) =
1

2N

N−1∑
k=−N

eiπ k
N (x−n)

=
1

2N
e−iπ (x−n)

[
1+eiπ x−n

N +·· ·+eiπ 2N−1
N (x−n)

]
=

1

2N
e−iπ (x−n) e

2iπ (x−n)
−1

eiπ x−n
N −1

=
1

2N
e−iπ x−n

2N
eiπ (x−n)

−e−iπ (x−n)

eiπ x−n
2N −e−iπ x−n

2N

=

e−iπ x−n
2N

sin[π (x −n)]

2N sin
[
π (x −n)/2N

] . (21)
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An interpolation function, equivalent to (21), has been found by Muir (Popovici et al., 1993;
Lin et al., 1993). It can be considered as a tapered version of the sinc interpolator (19) with
the smooth tapering function

π (x −n)/2N

tan
[
π (x −n)/2N

] .

Unlike triangle-tapered sinc interpolator, Muir’s interpolator (21) satisfies not only the obvious
property (2), but also properties (3) and (17), where the interpolation functionW(x,n) should
be set to zero forx outside the range fromn− N to n+ N. The form of this function is shown
in Figure 1.
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Figure 1: The left plots show the sinc interpolation function. Note the slow decay inx. The
middle shows the effective tapering function of Muir’s interpolation; the right is Muir’s inter-
polator. The top is forN = 2 (5-point interpolation); the bottom,N = 6 (13-point interpola-
tion). genint-ma-sinc[CR]

The development of the mathematical wavelet theory (Daubechies, 1992) has opened the
door to a whole universe of orthonormal function bases, different from the Fourier basis. The
wavelet theory should find many useful applications in geophysical data interpolation, but
exploring this interesting opportunity goes beyond the scope of this paper.

The next section carries the analysis to the continuum and compares the mathematical
interpolation theory with seismic imaging operators.

CONTINUOUS CASE AND SEISMIC IMAGING

Of course, the linear theory is not limited to discrete grids. It is interesting to consider the
continuous case, because of its connection to the linear integral operators commonly used in
seismic imaging. Indeed, in the continuous case, linear decomposition (7) takes the form of
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the nonstationary convolution integral

f (y) =

∫
m(x)G(y;x)dx , (22)

wherex is a continuous analog of the discrete coefficientk in (7), the continuous function
m(x) is analogous to the coefficientck, andG(y;x) is analogous to one of the basis functions
ψk(x). The linear integral operator in (22) has a mathematical form similar to the form of
well-known integral imaging operators, such as Kirchhoff migration or “Kirchhoff” DMO.
FunctionG(y;x) in this case represents the Green function (impulse response) of the imaging
operator. Linear decomposition of the data into basis functions means decomposing it into the
combination of impulse responses (“hyperbolas”.)

In the continuous case, formula (13) transforms to

W(y,n) =

∫ ∫
9−1(x1,x2)G(y;x1)Ḡ(n;x2)dx1dx2 , (23)

where9−1(x1,x2) refers to the inverse of the “matrix” operator

9(x1,x2) =

∫
G(y;x1)Ḡ(y;x2)dy . (24)

When the linear operator, defined by formula (22), isunitary,

9−1(x1,x2) = δ(x1 − x2) , (25)

and formula (23) simplifies to the single integral

W(y,n) =

∫
G(y;x)Ḡ(n;x)dx . (26)

With respect to seismic imaging operators, one can recognize in the interpolation operator (26)
the generic form of azimuth moveout (Biondi et al., 1996), which is derived either as a cascade
of adjoint (Ḡ(n; y)) and forward (G(x; y)) DMO or as a cascade of migration (Ḡ(n; y)) and
modeling (G(x; y)) (Fomel and Biondi, 1995). In the first case, the intermediate variabley
corresponds to the space of zero-offset data cube. In the second case, it corresponds to a point
in the subsurface.

Asymptotic pseudo-unitary operators as orthonormal bases

It is interesting to note that a wide class of integral operators, routinely used in seismic data
processing, have the form of operator (22) with the “Green” function

G(t ,y;z,x) =

∣∣∣∣ ∂∂t

∣∣∣∣m/2 A(x; t ,y)δ (z− θ (x; t ,y)) . (27)

where we have split the variablex into the one-dimensional componentz (typically depth or
time) and them-dimensional componentx (typically a lateral coordinate withm equal 1 or 2.)
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Similarly, the variabley is split into t andy. The functionθ represents thesummation path,
which captures the kinematic properties of the operator, andA is the amplitude function.

Impulse response (27) is typical for different forms of Kirchhoff migration and datuming as
well as for velocity transform, integral offset continuation, DMO, and AMO. Integral operators
of that class rarely satisfy the unitarity condition, with Radon transform (slant stack) being a
notable exception. In an earlier paper (Fomel, 1996), I have shown that it is possible to define
the amplitude functionA for each kinematic pathθ so that the operator becomesasymptotic
pseudo-unitary. This means that the adjoint operator coincides with the inverse in the high-
frequency (stationary-phase) approximation. Consequently, equation (25) is satisfied to the
same asymptotic order.

Using asymptotic pseudo-unitary operators, we can apply formula (26) to find an explicit
analytic form of the interpolation functionW, as follows:

W(t ,y; tn,yn) =

∫ ∫
G(t ,y;z,x)G(tn,yn;z,x)dz dx =∣∣∣∣ ∂∂t

∣∣∣∣m/2 ∣∣∣∣ ∂∂tn

∣∣∣∣m/2∫ A(x; t ,y) A(x; tn,yn)δ (θ (x; t ,y)− θ (x; tn,yn)) dx . (28)

Here the amplitude functionA is defined according to the general theory of asymptotic pseudo-
inverse operators as

A =
1

(2π )m/2

∣∣F F̂
∣∣1/4 ∣∣∣∣∂θ∂t

∣∣∣∣(m+2)/4

, (29)

where

F =
∂θ

∂t

∂2θ

∂x∂y
−
∂θ

∂y
∂2θ

∂x∂t
, (30)

F̂ =
∂θ̂

∂z

∂2θ̂

∂x∂y
−
∂θ̂

∂x
∂2θ̂

∂y∂z
, (31)

and θ̂ (x; t ,y) is the dual summation path, obtained by solving equationz = θ (x; t , y) for t
(assuming that an explicit solution is possible).

For a simple example, let us consider the case of zero-offset time migration with a constant
velocityv. The summation pathθ in this case is an ellipse

θ (x; t ,y) =

√
t2 −

(x−y)2

v2
, (32)

and the dual summation patĥθ is a hyperbola

θ̂ (y;z,x) =

√
z2 +

(x−y)2

v2
. (33)

The corresponding pseudo-unitary amplitude function is found from formula (29) to be (Fomel,
1996)

A =
1

(2π )m/2

√
t/z

vmzm/2
. (34)
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Substituting formula (34) into (28), we derive the corresponding interpolation function

W(t ,y; tn,yn) =
1

(2π )m

∣∣∣∣ ∂∂t

∣∣∣∣m/2 ∣∣∣∣ ∂∂tn

∣∣∣∣m/2∫ √
t tn

v2mzm+1
δ(z− zn)dx , (35)

wherez= θ (x; t ,y), andzn = θ (x; tn,yn). Form = 1 (the two-dimensional case), we can apply
the known properties of the delta function to simplify formula (35) further to the form

W =
v

π

∣∣∣∣ ∂∂t

∣∣∣∣1/2 ∣∣∣∣ ∂∂tn

∣∣∣∣1/2 √
t tn√[

(y−yn)2 −v2(t − tn)2
][
v2(t + tn)2 − (y−yn)2

] . (36)

The result is an interpolator for zero-offset seismic sections. Like the sinc interpolator in
formula (19) that is based on decomposing the signal into sinusoids, interpolation (36) is
based on decomposing the zero-offset section into hyperbolas.

DISCUSSION

A simple linear interpolation theory can be derived from the sole principle of function bases.
The choice of a function basis for the interpolated data uniquely defines a linear interpolation
operator.

In application to seismic data interpolation, the basis set of functions can be given by
the Green functions of an imaging operator, such as prestack migration or DMO. The linear
interpolation operator in this case is intimately related to the general formulation of azimuth
moveout (AMO). Some of the conclusions that the general theory can supply for AMO are

• In interpolation problems, the accuracy of operators (e.g. taking into account anisotropy,
velocity variations, etc.) is of minor importance as long as the operator provides a
complete basis set for describing the data.

• Formula (26) stresses the importance of using unitary operators (orthonormal bases)
to construct linear interpolation. It suggests that unitary operators are even more im-
portant in interpolation problems than “true-amplitude” operators. Though applying
non-orthogonal bases in interpolation problems is theoretically possible, it requires an
intrinsic inversion of the matrix operator9, defined in formulas (9) or (24). Such an in-
version is rarely feasible in practice. The theory of asymptotic pseudo-unitary operators
(Fomel, 1996) supplies a useful tool for constructing asymptotically orthonormal bases.

• It is also important to seek the most compact set of basis functions, e.g., the fewest
number of frequencies in the spectrum. The Green functions may correspond to the
solutions of a partial differential equation. The frequencies, actually present in the data,
may correspond to the zeroes of the prediction-error filter. More challenging research
needs to be done in relating differential equations, prediction filters, and function bases.
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How is the mathematical theory of interpolation related to the problem of interpolating
irregularly sampled data? The theory provides a linear interpolation operatorW, defined in
formula (1) and evaluated in formula (13). What we actually need to consider is a linear
equation

f i = SWfn , (37)

wherefn represents the desired regularly sampled output,f i denotes the recorded irregularly
spaced data, andS is the samplingoperator. Estimatingfn from (37) requires the art and
science of linear inversion, which includes such tools as regularization and preconditioning.
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APPENDIX A

A GENERIC INTERPOLATION PROGRAM

Module interp1 on page 113 implements a generic 1-D interpolation program. Analogous
modules also exist for the 2-D and 3-D cases. The module includes the initialization (construc-
tor) subroutineinterp1_init , which takes an arraycoord to define the data coordinates and
the SEPlib-style valueso1, d1, andn1 to define the model grid. Additionally, it accepts an
external functioninterp to compute the interpolation filterW(x,n). The size of the filter
is defined by the integer parameternfilt . An example of a function with the interface of
interp is lagrange on the following page, which implements the local Lagrange interpo-
lation2. The initialization program allocates and computes threeprivate arrays: the integer
arrayx that defines the mapping from the data coordinates to the model grid, the logical array
mthat masks the data values outside the grid, and the real-value arrayw that stores coefficients
of the interpolation filter. Computing these arrays outside the actual interpolation program
interp1_op not only complies with the object-oriented design of linear operators (Fomel
and Claerbout, 1996), but also significantly improves the efficiency when the interpolation
operator is applied more than once (e.g., in iterative least-square optimization.) The arrays are
deallocated by the “destructor” programinterp1_close .

To illustrate the forward interpolation operator, I chose a regularly sampled chirp function
exp−t2/σ 2cosωt as the input model (Figure A-1). Figures A-2, A-3, and A-4 show the result
of forward interpolation with different interpolators.

2The implementation is not as efficient as it could be, but sufficiently fast for testing purposes.
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function lagrange (x, w) result (stat)
integer :: stat
real, intent (in) :: x
real, dimension (:) :: w

integer :: i, j, nf
real :: f, xi

nf = size (w)
do i = 1, nf

f = 1.
xi = x + 1. - i
do j = 1, nf

if (i /= j) f = f * (1. + xi / (i - j))
end do
w (i) = f

end do
stat = 0

end function lagrange
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module interp1
use adj_mod
integer, private :: nd, nf
integer, dimension (:), allocatable, private :: x
logical, dimension (:), allocatable, private :: m
real, dimension (:,:), allocatable, private :: w

contains
subroutine interp1_init (coord, o1, d1, n1, interp, nfilt)

real, dimension (:), intent (in) :: coord
real, intent (in) :: o1, d1
integer, intent (in) :: n1, nfilt
interface

integer function interp (x, w)
real, intent (in) :: x
real, dimension (:) :: w

end function interp
end interface
integer :: id, ix, stat
real :: rx

nd = size (coord) ; nf = nfilt
if (.not. allocated (x)) allocate (x (nd), m (nd), w (nf,nd))
do id = 1, nd ; rx = (coord (id) - o1)/d1 ; ix = rx

rx = rx - ix ; x (id) = ix + 1 - 0.5*nf
m (id) = .true. ; w (:, id) = 0.
if ((x (id) + 1 >= 1) .and. (x (id) + nf <= n1)) then

m (id) = .false. ; stat = interp (rx, w (:,id))
end if

end do
end subroutine interp1_init

function interp1_op (adj, add, mod, ord) result (stat)
integer :: stat
logical, intent (in) :: adj, add
real, dimension (:) :: mod, ord
integer :: id, i1, i2

call adjnull (adj, add, mod, ord)
do id = 1, nd ; if (m (id)) cycle

i1 = x (id) + 1 ; i2 = x (id) + nf
if (adj) then

mod (i1:i2) = mod (i1:i2) + w (:,id) * ord (id)
else

ord (id) = sum (mod (i1:i2) * w (:,id)) + ord (id)
end if

end do
stat = 0

end function interp1_op

subroutine interp1_close ()
deallocate (x, m, w)

end subroutine interp1_close
end module interp1
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Figure A-1: The input is a regularly
sampled chirp function.genint-alias
[ER]

Figure A-2: Left is the result of forward nearest-neighbor interpolation; right, linear interpo-
lation. genint-bin [ER]

Figure A-3: Result of forward Lagrange interpolation. Left is the 4-point interpolator; right,
10-point. Increasing the number of coefficients may lead to instabilities.genint-lgg [ER]
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Figure A-4: Result of forward Muir interpolation. Left is the 4-point interpolator; right, 10-
point. genint-sinc [ER]



116 SEP–94


