
Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 509–??

Short Note

A second-order fast marching eikonal solver

James Rickett and Sergey Fomel1

INTRODUCTION

The fast marching method (Sethian, 1996) is widely used for solving the eikonal equation
in Cartesian coordinates. The method’s principal advantages are: stability, computational
efficiency, and algorithmic simplicity. Within geophysics, fast marching traveltime calcula-
tions (Popovici and Sethian, 1997) may be used for 3-D depth migration or velocity analysis.

Unfortunately, first-order implementations lead to inaccuracies in computed traveltimes,
which may lead to poor image focusing for migration applications. In addition, first-order
traveltimes are not accurate enough for reliable amplitude calculations. This has lead to the
development of the fast marching method on non-Cartesian (Alkhalifah and Fomel, 1997; Sun
and Fomel, 1998), and even unstructured (Fomel, 1997) grids. These non-Cartesian formula-
tions reduce inaccuracies, while retaining the fast marching method’s characteristic stability
and efficiency. Unfortunately, the cost is the loss of algorithmic simplicity.

We implement a second-order fast marching eikonal solver, which reduces inaccuracies
while retaining stability, efficiencyandsimplicity.

FAST MARCHING AND THE EIKONAL EQUATION

Under a high frequency approximation, propagating wavefronts may be described by the
eikonal equation, (

∂t

∂x

)2

+

(
∂t

∂y

)2

+

(
∂t

∂z

)2

= s2(x, y,z), (1)

wheret is the traveltime,s is the slowness, andx, y and z represent the spatial Cartesian
coordinates.

The fast marching method solves equation (1) by directly mimicking the advancing wave-
front. Every point on the computational grid is classified into three groups: points behind the
wavefront, whose traveltimes are known and fixed; points on the wavefront, whose traveltimes

1email: james@sep.stanford.edu, sergey@sep.stanford.edu

509



510 Rickett & Fomel SEP–100

have been calculated, but are not yet fixed; and points ahead of the wavefront. The algorithm
then proceeds as follows:

1. Choose the point on the wavefront with the smallest traveltime.

2. Fix this traveltime.

3. Advance the wavefront, so that this point is behind it, and adjacent points are either on
the wavefront or behind it.

4. Update traveltimes for adjacent points on the wavefront by solving equation (1) numer-
ically.

5. Repeat until every point is behind the wavefront.

The update procedure (step 4.) requires the solution of the following quadratic equation
for t ,

max(D−x
i jk t ,0)2 +min(D+x

i jk t ,0)2 +

max(D−y
i jk t ,0)2 +min(D+y

i jk t ,0)2 +

max(D−z
i jk t ,0)2 +min(D+z

i jk t ,0)2 = si jk (2)

whereD−x
i jk is a backwardx difference operator at grid point,i jk , D+x

i jk is a forwardx operator,
and finite-difference operators iny and z are defined similarly. The roots of the quadratic
equation,at2 +bt +c = 0, can be calculated explicitly as

t =
−b±

√
b2 −4ac

2a
. (3)

Solving equation (2) amounts to accumulating coefficientsa, b andc from its non-zero terms,
and evaluatingt with equation (3).

If we choose a two-point finite-difference operator, such as

D−x
i jk t =

ti jk − t(i −1) jk

1x
(4)

then (D−x
i jk t)2

= αt2
i jk +βti jk +γ (5)

whereα =
1

1x2 , β = −2t(i −1) jkα andγ = t2
(i −1) jkα. Coefficientsa, b andc can now be calcu-

lated froma = 6l αl , b = 6l βl , andc = 6l γl −s2, where the summation index,l , refers to the
six terms in equation (2) subject to the various min/max conditions.

This two-point stencil, however, is only accurate to first-order. If instead we choose a
suitable three-point finite-difference stencil, we may expect the method to have second-order
accuracy. For example, the second-order upwind stencil,

D−x
i jk t =

3ti jk −4t(i −1) jk + t(i −2) jk

21x
(6)

gives (D−x
i jk t)2

= α′t2
i jk +β ′ti jk +γ ′ (7)



SEP–100 Second-order fast marching 511

where this time α′
=

9

41x2
,

β ′
=

−3(4t(i −1) jk − t(i −2) jk)

21x2
= −2α′t ′(i −1) jk ,

γ ′
=

(4t(i −1) jk − t(i −2) jk)2

41x2
= α′t ′2(i −1) jk ,

and t ′(i −1) jk =
1

3
(4t(i −1) jk − t(i −2) jk).

Coefficients,a, b andc can be accumulated fromα′, β ′ andγ ′ as before, and if the traveltime,
t(i −2) jk is not available, first-order values may be substituted.

ACCURACY

Figure 1 shows traveltime contour maps computed with the first and second-order fast march-
ing methods on a sparse (20× 20) grid. The large errors for waves propagating at 45◦ to the
grid are visibly reduced by the second-order formulation.

Figure 1: Traveltime contours in a constant velocity medium. The solid line shows the exact
result. The dashed line shows the first-order (left panel) and second-order (right panel) fast
marching results, calculated on a 20×20 grid. fmsec-circles[ER]

Figure 2 shows the average error as a function of grid spacing for the first and second-order
solvers. Not only is the second-order formulation more accurate at large grid spacing, but its
accuracy increases more rapidly as grid spacing decreases. Theory predicts the log− log plots
of average error against grid spacing to be a linear function with gradient of one for first-
order methods, and two for second order methods. In practice, the fast marching results come



512 Rickett & Fomel SEP–100

very close to these criteria up to the limits of machine precision. Figure 2 demonstrates the
superiority of the second-order fast marching formulation.

It is worth noting, at this point, that special treatment is required at the source location,
since the singularity in wavefront curvature will cause numerical errors to propagate into the
traveltime solution. We surround the source with a constant velocity box, within which we
calculate traveltimes by ray-tracing. Errors are inversely proportional to the radius of this box.
Therefore, if the radius of the box decrease with grid spacing, errors will increase linearly,
reducing the accuracy of the method to first-order. For full second-order accuracy, the box
size should be independent of grid spacing.

Figure 2: Average error against grid spacing for a constant velocity model. The solid line cor-
responds to the first-order eikonal solver, and the dashed line corresponds to the second-order
solver. The left panel has linear axes, whereas the right panel is a log− log plot. fmsec-error
[ER]

COMPUTATIONAL COST

The leading term in the computational cost of the fast marching algorithm comes from the
first step: choosing the point on the wavefront with the smallest traveltime. Consequently, the
cost should not depend strongly on the order of the finite-difference stencil, but rather the sort
algorithm used. Heap sorting has a cost ofO(logN), and so in principle, with this algorithm,
the fast marching method has a cost ofO(N logN).

The left panel of Figure 4 shows a plot of CPU time againstN for the same models as
Figure 2. The time shown is elapsed (wall clock) time on a 300 MHz Pentium II. For the
largest model computed here, the second-order code takes 11% longer to run than the first-
order code, and this percentage decreases asN increases.



SEP–100 Second-order fast marching 513

Figure 3: Traveltime contours calculated through the Marmousi velocity model sampled
at 4 m. Solid line shows first-order results, and dashed line shows second-order results.
fmsec-marmousi[ER]

Because logN grows slowly compared toN, the plot of CPU time againstN is dominated
by the linear term. The right panel in Figure 4 addresses this issue by showing CPU time
divided byN versusN. On this graph, the logN behaviour is clearly visible.

CONCLUSIONS

We have shown that a second-order implementation of the fast marching eikonal solver pro-
duces traveltimes with a much higher accuracy than the first-order implementation. What is
more, the additional accuracy is acheived at only a marginal increase in cost.

This second-order implementation should become the standard method for computing
first-arrival traveltimes within SEP.

REFERENCES

Alkhalifah, T., and Fomel, S., 1997, Implementing the fast marching eikonal solver: Spherical
versus cartesian coordinates: SEP–95, 149–171.

Fomel, S., 1997, A variational formulation of the fast marching eikonal solver: SEP–95, 127–
147.

Popovici, A. M., and Sethian, J. A., 1997, Three-dimensional traveltime computation using
the fast marching method: 67th Ann. Internat. Meeting, Soc. Expl. Geophys., 1778–1781.

Sethian, J. A., 1996, Level set methods: Evolving interfaces in geometry, fluid mechanics,
computer vision, and materials science: Cambridge University Press.



514 Rickett & Fomel SEP–100

Figure 4: Elapsed CPU time vs. the number of grid points,N, for first-order (solid line) and
second order (dashed line) eikonal solvers. Left panel shows CPU time vsN. Right panel
shows CPU time/N vs N. fmsec-times[CR]

Sun, Y., and Fomel, S., 1998, Fast-marching eikonal solver in the tetragonal coordinates:
SEP–97, 241–250.


