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Exploring three-dimensional implicit wavefield extrapolation
with the helix transform

Sergey Fomel and Jon F. Claerbout1

ABSTRACT

Implicit extrapolation is an efficient and unconditionally stable method of wavefield con-
tinuation. Unfortunately, implicit wave extrapolation in three dimensions requires an ex-
pensive solution of a large system of linear equations. However, by mapping the com-
putational domain into one dimension via the helix transform, we show that the matrix
inversion problem can be recast in terms of an efficient recursive filtering. Apart from
the boundary conditions, the solution is exact in the case of constant coefficients (that
is, a laterally homogeneous velocity.) We illustrate this fact with an example of three-
dimensional velocity continuation and discuss possible ways of attacking the problem of
lateral variations.

INTRODUCTION

Implicit finite-difference wavefield extrapolation played an exceptionally important role in
the early development of seismic migration methods. Using limited-degree approximations
to the one-way wave equation, implicit schemes have provided efficient and uncondition-
ally stable numerical wave extrapolation operators (Godfrey et al., 1979; Claerbout, 1985).
Unfortunately, the advantages ofimplicit methods were lost with the development of three-
dimensional seismic exploration. While the cost of 2-D implicit extrapolation is linearly pro-
portional to the mesh size, the same approach, applied in the 3-D case, leads to a nonlinear
computational complexity. Primarily for this reason, implicit extrapolators were replaced in
practice byexplicit ones, capable of maintaining linear complexity in all dimensions. A num-
ber of computational tricks (Hale, 1991b) allow the commonly used explicit schemes to be-
have stably in practical cases. However, their stability is not unconditional and may break in
unusual situations (Etgen, 1994).

In this paper, we present an approach to three-dimensional extrapolation, based on the he-
lix transform of multidimensional filters to one dimension (Claerbout, 1997b). The traditional
approach involves an inversion of a banded matrix (tridiagonal in the 2-D case and blocked-
tridiagonal in the 3-D case). With the help of the helix transform, we can recast this problem
in terms of inverse recursive filtering. The coefficients of two-dimensional filters on a helix
are obtained by one-dimensional spectral factorization methods. As a result, the complexity of
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three-dimensional implicit extrapolation is reduced to a linear function of the computational
mesh size. This approach doesn’t provide an exact solution in the presence of lateral velocity
variations. Nevertheless, it can be used for preconditioning iterative methods, such as those
described by Nichols (1991). In this paper, we demonstrate the feasibility of 3-D implicit
extrapolation on the example of laterally invariant velocity continuation and, in the final part,
discuss possible strategies for solving the problem of lateral variations.

The main application of finite-difference wave extrapolation ispost-stackdepth migration.
An application of similar methods forprestackcommon-shot migration is constrained by the
limited aperture of commonly used seismic acquisition patterns. Recently developed acquisi-
tion methods, such as the vertical cable technique (Krail, 1993), open up new possibilities for
3-D wave extrapolation applications. An alternative approach is common-azimuth migration
(Biondi and Palacharla, 1994; Biondi, 1996). Other interesting applications include finite-
difference data extrapolation in offset (Fomel, 1995), migration velocity (Fomel, 1996a), and
anisotropy (Alkhalifah and Fomel, 1997).

IMPLICIT VERSUS EXPLICIT EXTRAPOLATION

The difference between implicit and explicit extrapolation is best understood through an exam-
ple. Following Claerbout (1985), let us consider, for instance, the diffusion (heat conduction)
equation of the form

∂T

∂t
= a(x)

∂2T

∂x2
. (1)

Here t denotes time,x is the space coordinate,T(x,t) is the temperature, anda is the heat
conductivity coefficient. Equation (1) forms a well-posed boundary-value problem if supplied
with the initial condition

T |t=0 = T0(x) (2)

and the appropriate boundary conditions. Our task is to build a digital filter, which transforms
a gridded temperatureT from one time level to another.

It helps to note that when the conductivity coefficienta is constant and the space domain
of the problem is infinite (or periodic) inx, the problem can be solved in the wavenumber
domain. Indeed, after the Fourier transform over the variablex, equation (1) transforms to the
ordinary differential equation

dT̂

dt
= −ak2 T̂ , (3)

which has the explicit analytical solution

T̂(k,t) = T̂0(k)e−ak2t , (4)
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whereT̂ denotes the Fourier transform ofT , andk stands for the wavenumber. Therefore, the
desired filter in the wavenumber domain has the form

H (k) = e−ak2
, (5)

where for simplicity the coefficienta is normalized for the time step4t equal to 1.

Returning now to the time-and-space domain, we can approach the filter construction prob-
lem by approximating the space-domain response of filter (5) in terms of the differential oper-
ators ∂2

∂x2 = −k2, which can be approximated by finite differences. Anexplicitapproach would
amount to constructing a series expansion of the form

Hex(k) ≈ a0 +a1k2
+a2k4

+ . . . , (6)

and selecting the coefficientsaj to approximate equation (5). For example, the three-term
Taylor series expansion around the zero wavenumber yields

Hex(k) = 1−a k2
+

a2k4

2
. (7)

The error of approximation (7) as a function ofk for two different values ofa is shown in the
left plot of Figure 1.
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Figure 1: Errors of second-order explicit and implicit approximations for the heat extrapola-
tion. findif-error [CR]

An implicit approach also approximates the ideal filter (5), but with a rational approxima-
tion of the form

Him(k) ≈
b0 +b1k2

+b2k4
+ . . .

1+c1k2 +c2k4 + . . .
. (8)

One way of selecting the coefficientsbi andci is to apply an appropriate Padé approximation
(Baker and Graves-Morris, 1981)2. For example the [2/2] Padé approximation is

Him(k) =
1−

a
2 k2

1+
a
2 k2

. (9)

2If the denominator and the numerator have the same order, Padé approximants are equivalent to the
corresponding continuous fraction expansions.
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This approximation corresponds to the famous Crank-Nicolson implicit method (Crank and
Nicolson, 1947). The error of approximation (9) as a function ofk for different values ofa
is shown in the right plot of Figure 1. Not only is it significantly smaller than the error of
the same-order explicit approximation, but it also has a negative sign. It means that the high-
frequency numerical noise gets suppressed rather than amplified. In practice, this property
translates into a stable numerical extrapolation.

The second derivative operator−k2 can be approximated in practice by a digital filter.
The most commonly used filter has theZ-transformD2(Z) = −Z−1

+2− Z, and the Fourier
transform

D2(k) = e−ik
−2+e−ik

= 2(cosk−1) = −4sin2 k

2
. (10)

Formula (10) approximates−k2 well only for small wavenumbersk. As shown in Appendix
A, the implicit scheme allows the accuracy of the second-derivative filter to be significantly
improved by a variation of the “1/6-th trick” (Claerbout, 1985). The final form of the implicit
extrapolation filter is

Him(k) =
1+

a+β

2 D2(k)

1−
a−β

2 D2(k)
, (11)

whereβ is a numerical constant, found in Appendix A.

Figure 2: Heat extrapolation with explicit and implicit finite-different schemes. Explicit ex-
trapolation appears stable fora = 2/3 (left plot) and unstable fora = 4/3 (middle plot). Im-
plicit interpolation is stable even for larger values ofa (right plot). findif-heat [ER]

A numerical 1-D example is shown in Figure 2. The initial temperature distribution is
given by a step function. The discontinuity at the step gets smoothed with time by the heat
diffusion. The left plot shows the result of an explicit extrapolation witha = 2/3, which
appears stable. The middle plot is an explicit extrapolation witha = 4/3, which shows a
terribly unstable behavior: the high-frequency numerical noise is amplified and dominates the
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solution. The right plot shows a stable (though not perfectly accurate) extrapolation with the
implicit scheme for the larger value ofa = 2.

The difference in stability between explicit and implicit schemes is even more pronounced
in the case ofwave extrapolation. For example, let us consider the ideal depth extrapolation
filter in the form of the phase-shift operator (Gazdag, 1978; Claerbout, 1985)

W(k) = ei
√

a2−k2
, (12)

wherea = ω/v, ω is the time frequency, andv is the seismic velocity (which may vary spa-
tially); we assume for simplicity that both the depth step4z and the space sampling4x are
normalized to 1. A simple implicit approximation to filter (12) is

Wim(k) = eia 1−4a2
+ ia k2

1−4a2 − ia k2
= ei φ , (13)

whereφ = a−2arctan a k2

4a2−1
. We can see that approximation (13) is again a pure phase shift

operator, only with a slightly different phase. For that reason, the operator is unconditionally
stable for all values ofa: the total wave energy from one depth level to another is preserved.
Operator (12) corresponds to the Crank-Nicolson scheme for the 45-degree one-way wave
equation (Claerbout, 1985). Its phase error as a function of the dip angleθ = arcsink

a for
different values ofa is shown in Figure 3.

Figure 3: The phase error of
the implicit depth extrapolation
with the Crank-Nicolson method.
findif-phase[CR]
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The unconditional stability property is not achievable with the explicit approach, though
it is possible to increase the stability of explicit operators by using relatively long filters (Hol-
berg, 1988; Hale, 1991b).

SPECTRAL FACTORIZATION AND THREE-DIMENSIONAL EXTRAPOLATION

In this section, we continue our review of extrapolation methods to reveal the principal diffi-
culties of three-dimensional extrapolation. We then describe a new, helix-transform approach
to this old and fascinating problem.

Inverse filter factorization

The conventional way of applying implicit finite-difference schemes reduces to solving a sys-
tem of linear equations with a sparse matrix. For example, to apply the scheme of equation
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(11), we can put the filter denominator on the other side of the extrapolation equation, writing
it as (

I −
a−β

2
D2

)
Tt+1 =

(
I +

a+β

2
D2

)
Tt , (14)

whereI is the identity matrix,D is the convolution matrix for filter (10), andTt is the vector
of temperature distribution at time levelt . In the case of two-dimensional extrapolation, the
matrix on the left side of equation (14) takes the tridiagonal form

A = (I −cD2) =



1+2c1 −c1 0 · · · 0
−c2 1+2c2 −c2 0 · · ·

0 −c3 · · · · · · · · ·

· · · 0 · · ·

· · · · · · −cn−1

0 −cn 1+2cn

 , (15)

wherec =
a−β

2 , and where, for simplicity, we assume zero-slope boundary conditions. Like
any positive-definite tridiagonal matrix, matrixA can be inverted recursively by anLU de-
composition into two bidiagonal matrices. The cost of inversion is directly proportional to the
number of vector components. The same conclusion holds for the case of depth extrapolation
[equation (13)] with the substitutionc =

β+ia
1−4a2 .

In the case of a laterally constant coefficienta, we can take a different point of view on
the tridiagonal matrix inversion. In this case, the matrixA2 represents a convolution with a
symmetric three-point filter 1−c D2(k). TheLU decomposition of such a matrix is precisely
equivalent to filterfactorization into the product of a causal minimum-phase filter with its
adjoint. This conclusion can be confirmed by the easily verified equality

1+c(Z−1
−2+ Z) =

(1+b)2

4

(
1+

1−b

1+b
Z

) (
1+

1−b

1+b
Z−1

)
, (16)

whereb =
√

1+4c. The inverse of the causal minimum-phase filter 1+
1−b
1+b Z is a recursive

inverse filter. Correspondingly, the inverse of its adjoint pair, 1+
1−b
1+b Z−1, is the same inverse

filtering, performed in the adjoint mode (backwards in space). In the next subsection, we show
how this approach can be carried into three dimensions by applying the helix transform.

Helix and multidimensional deconvolution

The major obstacle of applying an implicit extrapolation in three dimensions is that the in-
verted matrix is no longer tridiagonal. If we approximate the second derivative (Laplacian)
on the 2-D plane with the commonly used five-point filterZ−1

x + Z−1
y − 4+ Zx + Zy, then

the matrix on the left side of equation (14), under the usual mapping of vectors from a two-
dimensional mesh to one dimension, takes the infamous blocked-tridiagonal form (Birkhoff,
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1971)

Ã = (I −cD2) =



A1 −c1 I 0 · · · 0
−c2 I A 2 −c2 I 0 · · ·

0 −c3 I · · · · · · · · ·

· · · 0 · · ·

· · · · · · −cn−1 I
0 −cn I A n

 . (17)

Inspecting this form more closely, we see that the main diagonal ofÃ, as well as the two offset
diagonals formed by the scaled identity matrices, remains continuous, while the second top
and bottom diagonals are broken. Therefore, even for constantc, the inverted matrix does not
have a simple convolutional structure, and the cost of its inversion grows nonlinearly with the
number of grid points.

A helix transform, recently proposed by one of the authors (Claerbout, 1997a), sheds new
light on this old problem. Let us assume that the extrapolation filter is applied by sliding it
along thex direction in the{x, y} plane. The diagonal discontinuities in matrixÃ occur ex-
actly in the places where the forward leg of the filter slides outside the computational domain.
Let’s imagine a situation, where the leg of the filter that went to the end of thex column,
would immediately appear at the beginning of the next column. This situation defines a dif-
ferent mapping from two computational dimensions to the one dimension of linear algebra.
The mapping can be understood as the helix transform, illustrated in Figure 4 and explained
in detail by Claerbout (1997a). According to this transform, we replace the original two-
dimensional filter with a long one-dimensional filter. The new filter is partially filled with
zero values (corresponding to the back side of the helix), which can be safely ignored in the
convolutional computation.

d

a b c

Figure 4: The helix transform of two-dimensional filters to one dimension. The two-
dimensional filter in the left plot is equivalent to the one-dimensional filter in the right plot,
assuming that a shifted periodic condition is imposed on one of the axes.findif-helix1 [CR]
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This is exactly the helix transform that is required to make all the diagonals of matrixÃ
continuous. In the case of laterally invariant coefficients, the matrix becomes strictly Toeplitz
(having constant values along the diagonals) and represents a one-dimensional convolution
on the helix surface. Moreover, this simplified matrix structure applies equally well to larger
second-derivative filters ( such as those described in Appendix B), with the obvious increase of
the number of Toeplitz diagonals. Inverting matrixÃ becomes once again a simple inverse fil-
tering problem. To decompose the 2-D filter into a pair consisting of a causal minimum-phase
filter and its adjoint, we can apply spectral factorization methods from the 1-D filtering theory
(Claerbout, 1976, 1992), for example, Kolmogorov’s highly efficient method (Kolmogorov,
1939). Thus, in the case of a laterally invariant implicit extrapolation, matrix inversion re-
duces to a simple and efficient recursive filtering, which we need to run twice: first in the
forward mode, and second in the adjoint mode.

Figure 5: Heat extrapolation in two dimensions, computed by an implicit scheme with helix
recursive filtering. The left plot shows the input temperature distributions; the two other plots,
the extrapolation result at different time steps. The coefficienta is 2. findif-heat3d [ER]

Figure 5 shows the result of applying the helix transform to an implicit heat extrapola-
tion of a two-dimensional temperature distribution. The unconditional stability properties are
nicely preserved, which can be verified by examining the plot of changes in the average tem-
perature (Figure 6).

Figure 6: Demonstration of the sta-
bility of implicit extrapolation. The
solid curve shows the normalized
mean temperature, which remains
nearly constant throughout the ex-
trapolation time. The dashed curve
shows the normalized maximum
value, which exhibits the expected
Gaussian shape. findif-heat-mean
[ER]

In principle, we could also treat the case of a laterally invariant coefficient with the help of
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the Fourier transform. Under what circumstances does the helix approach have an advantage
over Fourier methods? One possible situation corresponds to a very large input data size with
a relatively small extrapolation filter. In this case, theO(NlogN) cost of the fast Fourier
transform is comparable with theO(Nf N) cost of the space-domain deconvolution (whereN
corresponds to the data size, andNf is the filter size). Another situation is when the boundary
conditions of the problem have an essential lateral variation. The latter case may occur in
applications of velocity continuation, which we discuss in the next section. Later in this paper,
we return to the discussion of problems associated with lateral variations.

THREE-DIMENSIONAL IMPLICIT VELOCITY CONTINUATION

Velocity continuation is a process of navigating in the migration velocity space, applicable
for time migration, residual migration, and migration velocity analysis (Fomel, 1996a). In
the zero-offset (post-stack) case, the velocity continuation process is described by the simple
partial differential equation (Claerbout, 1986; Fomel, 1994)

∂2P

∂v ∂t
+v t

(
∂2P

∂x2
+

∂2P

∂y2

)
= 0 , (18)

wheret is the vertical time coordinate of the migrated image,x andy are spatial (midpoint)
coordinates, andv is the migration velocity. Slightly different versions of two-dimensional im-
plicit extrapolation with equation (18) have been described by Li (1986) and (Fomel, 1996a).

Figure 7: Impulse responses of the velocity continuation operator, computed by an implicit,
unconditionally stable extrapolation via the helix transform. The left plot corresponds to con-
tinuation towards higher velocities (migration mode); the right plot, smaller velocities (mod-
eling mode). findif-velcon [ER]

The helix approach has allowed us to modify the old code for three dimensions. Figure 7
shows impulse responses of an implicit helix-based three-dimensional velocity continuation.
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Figure 8: Qdome synthetic model,
used for testing the 3-D velocity con-
tinuation program. findif-qdome
[ER]

Figure 9 illustrates the velocity continuation process on the Qdome synthetic model (Claer-
bout, 1997b), shown in Figure 8. Continuation backward in velocity corresponds to the “mod-
eling” mode, while forward continuation corresponds to the “migration” mode. It is possible to
balance the amplitudes of the two processes so that the finite-difference velocity continuation
behaves as a unitary operator (Fomel, 1996a,b).

Figure 9: Modeling (left) and migration (right) with the Qdome synthetic model, obtained
by running the 3-D velocity continuation backward and forward in velocity.findif-modmig
[CR]

DEPTH EXTRAPOLATION AND THE V(X) CHALLENGE

Can the constant-velocity result help us achieve the challenging goal of a stable implicit depth
extrapolation through media with lateral velocity variations?

The first idea that comes to mind is to replace the space-invariant helix filters with a pre-
computed set of spatially varying filters, which reflect local changes in the velocity fields.
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This approach would merely reproduce the conventional practice of explicit depth extrapo-
lators, popularized by Holberg (1988) and Hale (1991b). However, it hides the danger of
losing the property of unconditional stability, which is obviously the major asset of implicit
extrapolators.

Another route, partially explored by Nichols (1991), is to implement the matrix inversion
in the three-dimensional implicit scheme by an iterative method. In this case, the helix in-
version may serve as a powerful preconditioner, providing an immediate answer in constant
velocity layers and speeding up the convergence in the case of velocity variations. To see why
this might be true, one can write the variable-coefficient matrixÃ in the form

Ã = B+D , (19)

where matrixB corresponds to some constant average velocity, andD is the matrix of velocity
perturbations. The system of linear equations that we need to solve is then

(B+D)m = d , (20)

wherem is the vector of extrapolated wavefield, andd is an appropriate righthand side. The
helix transform provides us with the operatorB−1, which we can use to precondition system
(20). Introducing the change of variables

m = B−1x , (21)

we can transform the original system (20) to the form

d = (B+D)B−1x = x+DB−1x . (22)

When the velocity perturbation is small3, even the simple iteration

x0 = d ; (23)

xk = d−DB−1xk+1 (24)

will converge rapidly to the desired solution. This interesting possibility needs thorough test-
ing.

The third untested possibility (Papanicolaou, personal communication) is to implement a
clever patching in the velocity domain, applying a constant-velocity filter locally inside each
patch. Recently developed fast wavelet transform techniques (Vetterli and Kovacevic, 1995),
in particular thelocal cosine transform, provide a formal framework for that approach.

CONCLUSIONS

The feasibility of multidimensional deconvolution, proven by the helix transform, allows us
to revisit the problem of implicit wavefield extrapolation in three dimensions. The attraction

3In the linear-algebraic sense, this means that the spectral radius of operatorDB−1 is strictly less than
one.
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of implicit finite-difference methods lies in their unconditional stability, a property invaluable
for practical applications.

We have shown that at least in the constant coefficient case (that is, laterally invariant ve-
locity), it is possible to implement an extremely efficient implicit extrapolation by a recursive
inverse filtering in the helix-transformed computational model. Unfortunately, the case of lat-
eral velocity variations still presents a difficult problem that may not have an exact solution.
We are currently exploring different roads to that goal.
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APPENDIX A

THE 1/6-TH TRICK

Given the filterD2(k), defined in formula (10), we can construct an accurate approximation
to the second derivative operator−k2 by considering a filter ratio (another Padé-type approxi-
mation) of the form

−k2
≈

D2(k)

1+βD2(k)
, (A-1)

whereβ is an adjustable constant (Claerbout, 1985). The actual Padé coefficient isβ = 1/12.
As pointed out by Francis Muir, the value ofβ = 1/4−1/π2

≈ 1/6.726 gives an exact fit at
the Nyquist frequencyk = π . Fitting the derivative operator in theL1 norm yields the value
of β ≈ 1/8.13. All these approximations are shown in Figure A-1.

Figure A-1: The second-derivative
operator in the wavenumber domain
and its approximations.findif-sixth
[CR]
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APPENDIX B

CONSTRUCTING AN “ISOTROPIC” LAPLACIAN OPERATOR

The problem of approximating the Laplacian operator in two dimensions not only inherits the
inaccuracies of the one-dimensional finite-difference approximations, but also raises the issue
of azimuthal asymmetry. For example, the usual five-point filter

F5 =

0 1 0
1 −4 1
0 1 0

(B-1)

exhibits a clear difference between the grid directions and the directions at a 45-degree angle
to the grid. To overcome this unpleasant anisotropy, we can consider a slightly larger filter of
the form

F9 =

α γ α

γ −4(α +γ ) γ

α γ α

(B-2)
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where the constantsα andγ are to be defined. The Fourier-domain representation of filter
(B-2) is

F9(kx,ky) = 4α [coskx cosky −1]+2γ [coskx +cosky −2] , (B-3)

and the isotropic filter that we can try to approximate is defined analogously to its one-
dimensional equivalent, as follows:

F(kx,ky) = 2(cosk−1) = 2(cos
√

k2
x +k2

y −1) . (B-4)

Comparing equations (B-3) and (B-4), we notice that they match exactly, when either of the
wavenumberskx or ky is equal to zero, provided that

α =
1−γ

2
. (B-5)

Therefore, we can reduce the problem to estimating a single coefficientγ . Another way of
expressing this conclusion is to represent filterF9 in equation (B-3) as a linear combination of
filter F5 from equation (B-3) and its rotated version (Cole, 1994), as follows:

F9 = γ

0 1 0
1 −4 1
0 1 0

+ (1−γ )
1/2 0 1/2

0 −2 0
1/2 0 1/2

(B-6)

With the value ofγ = 0.5, filter F9 takes the value

F9 =

1/4 1/2 1/4
1/2 −3 1/2
1/4 1/2 1/4

(B-7)

and corresponds precisely to the nine-point McClellan filter (McClellan, 1973; Hale, 1991a).
On the other hand, the value ofγ = 2/3 gives the least error in the vicinity of the zero
wavenumberk. In this case, the filter is

F9 =

1/6 2/3 1/6
2/3 −10/3 2/3
1/6 2/3 1/6

(B-8)

Errors of different approximations are plotted in Figure B-14

Under the helix transform, a filter of the general form (B-2) becomes equivalent to a one-
dimensional filter with theZ transform

F9(Z) = α Z−Nx−1
+γ Z−Nx +α Z−Nx+1

+γ Z−1
−4(α +γ )

+γ Z +α ZNx−1
+γ ZNx +α ZNx+1 , (B-9)

4Another way of constructing circular-symmetric filters is suggested by the rotated McClellan transform
(Biondi and Palacharla, 1993).
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Figure B-1: The numerical anisotropy error of different Laplacian approximations. Both the
five-point Laplacian (plot a) and its rotated version (plot b) are accurate along the axes, but
exhibit significant anisotropy in between at large wavenumbers. The nine-point McClellan
filter (plot c) has a reduced error, while the filter withγ = 2/3 (plot d) has the flattest error
around the origin.findif-laplace [CR]

where Nx is the helix period (the number of grid points in thex dimension). To find the
inverse of a convolution with filter (B-9), we factorize the filter into the causal minimum-
phase component and its adjoint:

F9(Z) = P(Z)P(1/Z) . (B-10)

To find the coefficients of the filterP, any one-dimensional spectral factorization method can
be applied. It is important to point out that the result of factorization (neglecting the numerical
errors) does not depend onNx. Another approach is to define a residual error vector for the
coefficients of Z in equation (B-10) and minimize it for some particular norm. For example,
minimizing theL1 norm whenF9 is the McClellan filter (B-7), we discover that the filterP,
after transforming back to two dimensions, takes the form

−1.6094 0.4293 0.05157 0.017406
0.01428 0.033513 0.0808 0.2543 0.3521 0.1553

(B-11)

The results of applying a recursive deconvolution with filter (B-11) are shown in Figure B-
2. An essentially similar procedure, only with a different set of filters, works for implicit
wavefield extrapolation.
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Figure B-2: Inverting the Laplacian operator by a helix deconvolution. The top left plot shows
the input, which contains a single spike and the causal minimum-phase filterP. The top right
plot is the result of inverse filtering. As expected, the filter is deconvolved into a spike, and the
spike turns into a smooth one-sided impulse. After the second run, in the backward (adjoint)
direction, we obtain a numerical solution of Laplace’s equation! In the two bottom plots, the
solution is shown with grayscale and contours.findif-inv-laplace [ER]
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