
Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 13–??

Least-square inversion with inexact adjoints.
Method of conjugate directions: A tutorial

Sergey Fomel1

ABSTRACT

This tutorial describes the classic method of conjugate directions: the generalization of
the conjugate-gradient method in iterative least-square inversion. I derive the algebraic
equations of the conjugate-direction method from general optimization principles. The
derivation explains the “magic” properties of conjugate gradients. It also justifies the use
of conjugate directions in cases when these properties are distorted either by computa-
tional errors or by inexact adjoint operators. The extra cost comes from storing a larger
number of previous search directions in the computer memory. A simple ratfor program
and three examples illustrate the method.

INTRODUCTION

This paper describes the method of conjugate directions for solving linear operator equations
in Hilbert space. This method is usually described in the numerous textbooks on unconstrained
optimization as an introduction to the much more popular method of conjugate gradients. See,
for example,Practical optimizationby Gill et al. (1995) and its bibliography. The famous
conjugate-gradient solver possesses specific properties, well-known from the original works
of Hestenes and Stiefel (1952) and Fletcher and Reeves (1964). For linear operators and exact
computations, it guarantees finding the solution after, at most,n iterative steps, wheren is
the number of dimensions in the solution space. The method of conjugate gradients doesn’t
require explicit computation of the objective function and explicit inversion of the Hessian
matrix. This makes it particularly attractive for large-scale inverse problems, such as those of
seismic data processing and interpretation. However, it does require explicit computation of
the adjoint operator. Jon Claerbout (1985; 1994) shows dozens of successful examples of the
conjugate gradient application with numerically precise adjoint operators.

The motivation for this tutorial is to explore the possibility of using different types of pre-
conditioning operators in the place of adjoints in iterative least-square inversion. For some
linear or linearized operators, implementing the exact adjoint may pose a difficult problem.
For others, one may prefer different preconditioners because of their smoothness (Claerbout,
1995a; Crawley, 1995a), simplicity (Kleinman and van den Berg, 1991), or asymptotic prop-
erties (Sevink and Herman, 1994). In those cases, we could apply the natural generalization

1email: sergey@sep.stanford.edu

13

14 Fomel SEP–92

of the conjugate gradient method, which is the method of conjugate directions. The cost dif-
ference between those two methods is in the volume of memory storage. In the days when
the conjugate gradient method was invented, this difference looked too large to even consider
a practical application of conjugate directions. With the evident increase of computer power
over the last 30 years, we can afford to do it now.

I derive the main equations used in the conjugate-direction method from very general
optimization criteria, with minimum restrictions implied. The textbook algebra is illustrated
with a ratfor program and three simple examples.

IN SEARCH OF THE MINIMUM

We are looking for the solution of the linear operator equation

d = Am , (1)

wherem is the unknown model in the linear model space,d stands for the given data, and
A is the forward modeling operator. The data vectord belongs to a Hilbert space with a
defined norm and dot product. The solution is constructed by iterative steps in the model
space, starting from an initial guessm0. Thus, at then-th iteration, the current modelmn is
found by the recursive relation

mn = mn−1 +αnsn , (2)

wheresn denotes the step direction, andαn stands for the scaling coefficient. The residual at
then-th iteration is defined by

rn = d−Amn . (3)

Substituting (2) into (3) leads to the equation

rn = rn−1 −αnAsn . (4)

For a given stepsn, we can chooseαn to minimize the squared norm of the residual

‖rn‖
2
= ‖rn−1‖

2
−2αn (rn−1, Asn)+α2

n ‖Asn‖
2 . (5)

The parentheses denote the dot product, and‖x‖ =
√

(x, x) denotes the norm ofx in the
corresponding Hilbert space. The optimal value ofαn is easily found from equation (5) to be

αn =
(rn−1, Asn)

‖Asn‖
2

. (6)

Two important conclusions immediately follow from this fact. First, substituting the value of
αn from formula (6) into equation (4) and multiplying both sides of this equation byrn, we
can conclude that

(rn, Asn) = 0 , (7)

SEP–92 Conjugate directions 15

which means that the new residual is orthogonal to the corresponding step in the residual
space. This situation is schematically shown in Figure 1. Second, substituting formula (6) into
(5), we can conclude that the new residual decreases according to

‖rn‖
2
= ‖rn−1‖

2
−

(rn−1, Asn)2

‖Asn‖
2

, (8)

(“Pythagoras’s theorem”), unlessrn−1 andAsn are orthogonal. These two conclusions are
the basic features of optimization by the method of steepest descent. They will help us define
an improved search direction at each iteration.

Figure 1: Geometry of the resid-
ual in the data space (a scheme).
cdstep-dirres[NR]

r
r

A s

n

n

n-1

IN SEARCH OF THE DIRECTION

Let’s suppose we have a generator that provides particular search directions at each step.
The new direction can be the gradient of the objective function (as in the method of steep-
est descent), some other operator applied on the residual from the previous step, or, generally
speaking, any arbitrary vector in the model space. Let us denote the automatically generated
direction bycn. According to formula (8), the residual decreases as a result of choosing this
direction by

‖rn−1‖
2
−‖rn‖

2
=

(rn−1, Acn)2

‖Acn‖
2

. (9)

How can we improve on this result?

First step of the improvement

Assumingn > 1, we can add some amount of the previous stepsn−1 to the chosen direction
cn to produce a new search directions(n−1)

n , as follows:

s(n−1)
n = cn +β(n−1)

n sn−1 , (10)

16 Fomel SEP–92

whereβ
(n−1)
n is an adjustable scalar coefficient. According to to the fundamental orthogonality

principle (7),

(rn−1, Asn−1) = 0 . (11)

As follows from equation (11), the numerator on the right-hand side of equation (9) is not
affected by the new choice of the search direction:(

rn−1, As(n−1)
n

)2
=
[
(rn−1, Acn)+β(n−1)

n (rn−1, Asn−1)
]2

= (rn−1, Acn)2 . (12)

However, we can use transformation (10) to decrease the denominator in (9), thus further
decreasing the residualrn. We achieve the minimization of the denominator

‖As(n−1)
n ‖

2
= ‖Acn‖

2
+2β(n−1)

n (Acn, Asn−1)+
(
β(n−1)

n

)2
‖Asn−1‖

2 (13)

by choosing the coefficientβ(n−1)
n to be

β(n−1)
n = −

(Acn, Asn−1)

‖Asn−1‖
2

. (14)

Note the analogy between (14) and (6). Analogously to (7), equation (14) is equivalent to the
orthogonality condition (

As(n−1)
n , Asn−1

)
= 0 . (15)

Analogously to (8), applying formula (14) is also equivalent to defining the minimized de-
nominator as

‖Ac(n−1)
n ‖

2
= ‖Acn‖

2
−

(Acn, Asn−1)2

‖Asn−1‖
2

. (16)

Second step of the improvement

Now let us assumen > 2 and add some amount of the step from the (n−2)-th iteration to the
search direction, determining the new directions(n−2)

n , as follows:

s(n−2)
n = s(n−1)

n +β(n−2)
n sn−2 . (17)

We can deduce that after the second change, the value of numerator in equation (9) is still the
same: (

rn−1, As(n−2)
n

)2
=
[
(rn−1, Acn)+β(n−2)

n (rn−1, Asn−2)
]2

= (rn−1, Acn)2 . (18)

This remarkable fact occurs as the result of transforming the dot product(rn−1, Asn−2) with
the help of equation (4):

(rn−1, Asn−2) = (rn−2, Asn−2)−αn−1 (Asn−1, Asn−2) = 0 . (19)

SEP–92 Conjugate directions 17

The first term in (19) is equal to zero according to formula (7); the second term is equal to
zero according to formula (15). Thus we have proved the new orthogonality equation

(rn−1, Asn−2) = 0 , (20)

which in turn leads to the numerator invariance (18). The value of the coefficientβ
(n−2)
n in

(17) is defined analogously to (14) as

β(n−2)
n = −

(
As(n−1)

n , Asn−2
)

‖Asn−2‖
2

= −
(Acn, Asn−2)

‖Asn−2‖
2

, (21)

where we have again used equation (15). IfAsn−2 is not orthogonal toAcn, the second step
of the improvement leads to a further decrease of the denominator in (8) and, consequently, to
a further decrease of the residual.

Induction

Continuing by induction the process of adding a linear combination of the previous steps to the
arbitrarily chosen directioncn (known in mathematics as theGram-Schmidt orthogonalization
process), we finally arrive at the complete definition of the new stepsn, as follows:

sn = s(1)
n = cn +

j =n−1∑
j =1

β(j)
n sj . (22)

Here the coefficientsβ(j)
n are defined by equations

β(j)
n = −

(
Acn, Asj

)
‖Asj ‖

2
, (23)

which correspond to the orthogonality principles(
Asn, Asj

)
= 0 , 1≤ j ≤ n−1 (24)

and (
rn, Asj

)
= 0 , 1≤ j ≤ n . (25)

It is these orthogonality properties that allowed us to optimize the search parameters one at a
time instead of solving then-dimensional system of optimization equations forαn andβ

(j)
n .

ALGORITHM

The results of the preceding sections define the method of conjugate directions to consist of
the following algorithmic steps:

18 Fomel SEP–92

1. Choose initial modelm0 and compute the residualr0 = d−Am0.

2. At n-th iteration, choose the initial search directioncn.

3. If n is greater than 1, optimize the search direction by adding a linear combination of
the previous directions, according to equations (22) and (23), and compute the modified
step directionsn.

4. Find the step lengthαn according to equation (6). The orthogonality principles (24) and
(7) can simplify this equation to the form

αn =
(rn−1, Acn)

‖Asn‖
2

. (26)

5. Update the modelmn and the residualrn according to equations (2) and (4).

6. Repeat iterations until the residual decreases to the required accuracy or as long as it is
practical.

At each of the subsequent steps, the residual is guaranteed not to increase according to equa-
tion (8). Furthermore, optimizing the search direction guarantees that the convergence rate
doesn’t decrease in comparison with (9). The only assumption we have to make to arrive at
this conclusion is that the operatorA is linear. However, without additional assumptions, we
cannot guarantee global convergence of the algorithm to the least-square solution of equation
(1) in a finite number of steps.

WHAT ARE ADJOINTS FOR? THE METHOD OF CONJUGATE GRADIENTS

The adjoint operatorAT projects the data space back to the model space and is defined by the
dot product test

(d, Am) ≡
(
AT d, m

)
(27)

for any m andd. The method of conjugate gradients is a particular case of the method of
conjugate directions, where the initial search directioncn is

cn = AT rn−1 . (28)

This direction is often called thegradient,because it corresponds to the local gradient of the
squared residual norm with respect to the current modelmn−1. Aligning the initial search
direction along the gradient leads to the following remarkable simplifications in the method of
conjugate directions.

SEP–92 Conjugate directions 19

Orthogonality of the gradients

The orthogonality principle (25) transforms according to the dot-product test (27) to the form(
rn−1, Asj

)
=
(
AT rn−1, sj

)
=
(
cn, sj

)
= 0 , 1≤ j ≤ n−1 . (29)

Forming the dot product
(
cn, cj

)
and applying formula (22), we can see that

(
cn, cj

)
=

(
cn, sj −

i = j −1∑
i =1

β(i)
n si

)
=
(
cn, sj

)
−

i = j −1∑
i =1

β(i)
n (cn, si) = 0 , 1≤ j ≤ n−1 . (30)

Equation (30) proves the orthogonality of the gradient directions from different iterations.
Since the gradients are orthogonal, aftern iterations they form a basis in then-dimensional
space. In other words, if the model space hasn dimensions, each vector in this space can
be represented by a linear combination of the gradient vectors formed byn iterations of the
conjugate-gradient method. This is true as well for the vectorm0 −m, which points from the
solution of equation (1) to the initial model estimatem0. Neglecting computational errors, it
takes exactlyn iterations to find this vector by successive optimization of the coefficients. This
proves that the conjugate-gradient method converges to the exact solution in a finite number
of steps (assuming that the model belongs to a finite-dimensional space).

The method of conjugate gradients simplifies formula (26) to the form

αn =
(rn−1, Acn)

‖Asn‖
2

=

(
AT rn−1, cn

)
‖Asn‖

2
=

‖cn‖
2

‖Asn‖
2

, (31)

which in turn leads to the simplification of formula (8), as follows:

‖rn‖
2
= ‖rn−1‖

2
−

‖cn‖
4

‖Asn‖
2

. (32)

If the gradient is not equal to zero, the residual is guaranteed to decrease. If the gradient is
equal to zero, we have already found the solution.

Short memory of the gradients

Substituting the gradient direction (28) into formula (23) and applying formulas (4) and (27),
we can see that

β(j)
n =

(
Acn, r j − r j −1

)
αj ‖Asj ‖

2
=

(
cn, AT r j −AT r j −1

)
αj ‖Asj ‖

2
=

(
cn, cj +1 −cj

)
αj ‖Asj ‖

2
. (33)

The orthogonality condition (30) and the definition of the coefficientαj from equation (31)
further transform this formula to the form

β(n−1)
n =

‖cn‖
2

αn−1‖Asn−1‖
2

=
‖cn‖

2

‖cn−1‖
2

, (34)

β(j)
n = 0 , 1≤ j ≤ n−2 . (35)

Equation (35) shows that the conjugate-gradient method needs to remember only the previous
step direction in order to optimize the search at each iteration. This is another remarkable
property distinguishing that method in the family of conjugate-direction methods.

20 Fomel SEP–92

PROGRAM

The following ratfor program,cdstep() , implements one iteration of the conjugate-direction
method. It is based upon Jon Claerbout’scgstep() program (Claerbout, 1994) and uses an
analogous naming convention. Vectors in the data space are denoted by double letters.

A step of conjugate-direction descent.
#
subroutine cdstep(niter,iter, n, x, g, s, m, rr, gg, ss,ssn)
integer i,j,liter, niter,iter, n, m
real x(n), rr(m), # solution, residual

g(n), gg(m), # direction, conjugate direction
s(n,niter), ss(m,niter) # step, conjugate step

double precision ddot, alpha, ssn(niter)

liter = min0(iter,niter)

do i= 1, n # initial direction
s(i,liter) = g(i)

do i= 1, m
ss(i,liter) = gg(i)

do j= 1, liter-1 { # update direction
alpha = ddot(m,gg,ss(1,j))/ssn(j)

do i= 1, n
s(i,liter) = s(i,liter) - alpha * s(i,j)

do i= 1, m
ss(i,liter) = ss(i,liter) - alpha * ss(i,j)

}

ssn(liter) = dmax1(ddot(m,ss(1,liter),ss(1,liter)),1.d-35)

if (liter == niter) {
do j= 1, niter-1 {

ssn(j) = ssn(j+1)
do i= 1, n

s(i,j) = s(i,j+1)
do i= 1, m

ss(i,j) = ss(i,j+1)
}

}

alpha = ddot(m,ss(1,liter),rr)/ssn(liter)
do i= 1, n # update solution

x(i) = x(i) + alpha * s(i,liter)
do i= 1, m # update residual

rr(i) = rr(i) - alpha * ss(i,liter)

return; end

double precision function ddot(n, x, y)
integer i, n; real x(n), y(n); double precision val
val = 0.; do i=1,n { val = val + x(i) * y(i) }
ddot = val; return; end

SEP–92 Conjugate directions 21

In addition to the previous stepssj (arrays) and their conjugate counterpartsAsj (arrayss),
the program stores the squared norms‖Asj ‖

2 (arrayssn) to avoid recomputation. For prac-
tical reasons, the number of remembered iterationsniter can actually be smaller than the
total number of iterations. The valueniter=2 corresponds to the conjugate-gradient method.
The valueniter=1 corresponds to the steepest-descent method. The iteration process should
start with iter = 1 , corresponding to the first steepest-descent iteration in the method of
conjugate gradients.

EXAMPLES

Example 1: Inverse interpolation

Matthias Schwab has suggested (in a personal communication) an interesting example, in
which thecgstep program fails to comply with the conjugate-gradient theory. The inverse
problem is a simple one-dimensional data interpolation with a known filter (Claerbout, 1994).
The known portion of the data is a single spike in the middle. One hundred other data points
are considered missing. The known filter is the Laplacian (1,−2,1), and the expected result is a
bell-shaped cubic spline. The forward problem is strictly linear, and the exact adjoint is easily
computed by reverse convolution. However, the conjugate-gradient program requires signifi-
cantly more than the theoretically predicted 100 iterations. Figure 2 displays the convergence
to the final solution in three different plots. According to the figure, the actual number of itera-
tions required for convergence is about 300. Figure 3 shows the result of a similar experiment
with the conjugate-direction solvercdstep . The number of required iterations is reduced to
almost the theoretical one hundred. This indicates that the orthogonality of directions implied
in the conjugate-gradient method has been distorted by computational errors. The additional
cost of correcting these errors with the conjugate-direction solver comes from storing the pre-
ceding 100 directions in memory. A smaller number of memorized steps produces smaller
improvements.

Figure 2: Convergence of the missing data interpolation problem with the conjugate-gradient
solver. Current models are plotted against the number of iterations. The three plots are differ-
ent displays of the same data.cdstep-dirmcg[ER]

22 Fomel SEP–92

Figure 3: Convergence of the missing data interpolation problem with the long-memory
conjugate-direction solver. Current models are plotted against the number of iterations. The
three plots are different displays of the same data.cdstep-dirmcd[ER]

Example 2: Velocity transform

The next test example is the velocity transform inversion with a CMP gather from the Mo-
bil AVO dataset (Nichols, 1994; Lumley et al., 1994; Lumley, 1994). I use Jon Claerbout’s
veltran program (Claerbout, 1995b) for anti-aliased velocity transform with rho-filter pre-
conditioning and compare three different pairs of operators for inversion. The first pair is the

CMP stacking operator with the “migration” weighting function
(
w =

(t0/t)
√

t

)
and its adjoint.

The second pair is the “pseudo-unitary” velocity transform with the weighting proportional to
√

|s x|, wherex is the offset ands is the slowness. These two pairs were used in the velocity
transform inversion with the iterative conjugate-gradient solver. The third pair uses the weight
proportional to|x| for CMP stacking and|s| for the reverse operator. Since these two oper-
ators are not exact adjoints, it is appropriate to apply the method of conjugate directions for
inversion. The convergence of the three different inversions is compared in Figure 4. We can
see that the third method reduces the least-square residual error, though it has a smaller effect
than that of the pseudo-unitary weighting in comparison with the uniform one. The results of
inversion after 10 conjugate-gradient iterations are plotted in Figures 5 and 6, which are to be
compared with the analogous results of David Lumley (1994) and Dave Nichols (1994).

Example 3: Leveled inverse interpolation

The third example is the linearized nonlinear inversion for interpolating the SeaBeam dataset
(Claerbout, 1994; Crawley, 1995b). This interpolation problem is nonlinear because the pre-
diction-error filter is estimated simultaneously with the missing data. The conjugate-gradient
solver showed a very slow convergence in this case. Figure 7 compares the results of the
conjugate-gradient and conjugate-direction methods after 2500 iterations. Because of the large
scale of the problem, I setniter=4 in thecdstep() program, storing only the three preced-
ing steps of the conjugate-direction optimization. The acceleration of convergence produced

SEP–92 Conjugate directions 23

Figure 4: Comparison of convergence of the iterative velocity transform inversion. The
left plot compares conjugate-gradient inversion with unweighted (uniformly weighted) and
pseudo-unitary operators. The right plot compares pseudo-unitary conjugate-gradient and
weighted conjugate-direction inversion.cdstep-diritr [ER]

Figure 5: Input CMP gather (left) and its velocity transform counterpart (right) after 10 itera-
tions of conjugate-direction inversion.cdstep-dircvv[ER]

24 Fomel SEP–92

Figure 6: The modeled CMP gather (left) and the residual data (right) plotted at the same
scale. cdstep-dirrst[ER]

a noticeably better interpolation, which is visible in the figure.

CONCLUSIONS

The conjugate-gradient solver is a powerful method of least-square inversion because of its
remarkable algebraic properties. In practice, the theoretical basis of conjugate gradients can
be distorted by computational errors. In some applications of inversion, we may want to
do that on purpose, by applying inexact adjoints in preconditioning. In both cases, a safer
alternative is the method of conjugate directions. Jon Claerbout’scgstep() program actually
implements a short-memory version of the conjugate-direction method. Extending the length
of the memory raises the cost of iterations, but can speed up the convergence.

REFERENCES

Claerbout, J. F., 1985, Imaging the Earth’s Interior: Blackwell Scientific Publications.

Claerbout, J. F., 1994, Applications of Three-Dimensional Filtering: Stanford Exploration
Project.

Claerbout, J., 1995a, Ellipsoids versus hyperboloids: SEP–89, 201–205.

Claerbout, J. F., 1995b, Basic Earth Imaging: Stanford Exploration Project.

Crawley, S., 1995a, Approximate vs. exact adjoints in inversion: SEP–89, 207–215.

SEP–92 Conjugate directions 25

Figure 7: SeaBeam interpolation. Left plot: the result of the conjugate-gradient inversion after
2500 iterations. Right plot: the result of the short-memory conjugate-direction inversion after
2500 iterations.cdstep-dirjbm[CR]

Crawley, S., 1995b, Multigrid nonlinear SeaBeam interpolation: SEP–84, 279–288.

Fletcher, R., and Reeves, C. M., 1964, Function minimization by conjugate gradients: Com-
puter Journal,7, 149–154.

Gill, P. E., Murray, W., and Wright, M. H., 1995, Practical optimization: Academic Press.

Hestenes, M. R., and Stiefel, E., 1952, Methods of conjugate gradients for solving linear
systems: J. Res. NBS,49, 409–436.

Kleinman, R. E., and van den Berg, P. M., 1991, Iterative methods for solving integral equa-
tions: Radio Science,26, 175–181.

Lumley, D., Nichols, D., and Rekdal, T., 1994, Amplitude-preserved multiple suppression:
SEP–82, 25–45.

Lumley, D. E., 1994, Estimating a pseudounitary operator for velocity-stack inversion: SEP–
82, 63–78.

Nichols, D., 1994, Velocity-stack inversion usingLp norms: SEP–82, 1–16.

Sevink, A. G. J., and Herman, G. C., 1994, Fast iterative solution of sparsely sampled seismic
inverse problems: Inverse Problems,10, 937–948.

26 SEP–92

