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Wilson-Burg spectral factorization with application to helix
filtering

Paul Sava, James Rickett, Sergey Fomel, and Jon Claerbout1

ABSTRACT

Spectral factorization methods are used for the estimation of minimum - phase time series
from a given power spectrum. We present an efficient technique for spectral factorization,
based on Newton’s method. We show how to apply the method to the factorization of both
auto and cross-spectra, and present a simple example of 2-D deconvolution in the helical
coordinate system.

INTRODUCTION

Geophysical spectral factorization is the task of estimating a minimum-phase signal with a
given power spectrum. The advent of the helical coordinate system (Claerbout, 1997) has
led to renewed interest in spectral factorization algorithms, since they now apply to multi-
dimensional problems. Specifically, spectral factorization algorithms provide the key to rapid
multi-dimensional recursive filtering with arbitrary functions, which in turn has applications
in preconditioning inverse problems, and wavefield extrapolation.

The Kolmogoroff algorithm (Kolmogoroff, 1939; Claerbout, 1976) is widely used by the
geophysical community since it is the most computationally efficient. However, it is not with-
out its problems: as with all frequency domain methods, it assumes circular boundary condi-
tions. Time-domain functions, especially those with zeros close to the unit circle, often require
extreme amounts of zero-padding before they can be safely factored.

The Wilson-Burg method, introduced below, provides an algorithm for spectral factoriza-
tion that is based on Newton’s iteration for square-roots. Despite its iterative nature, we show
that convergence is quadratic, providing a time-domain algorithm that is potentially cheaper
than Kolmogoroff. In addition we describe how the algorithm can be extended to factor cross-
spectra.

1email: paul@sep.stanford.edu,james@sep.stanford.edu, sergey@sep.stanford.edu,
jon@sep.stanford.edu
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THEORY

Newton’s iteration for square roots

Let g(a) = s− f (a) be the function whose roots we seek to find, wheref (a) is an arbitrary
function ands is a constant. If we find the roots ofg(a) = 0, then we also have found the roots
of f (a) = s. Newton’s iteration forg(a) = 0 can be written asg(at ) = −g′(at )(at+1 −at ), or

s− f (at ) = f ′(at )(at+1 −at ) (1)

If we now considerf (a) = a2, then we can write (1) as:

s−a2
t = 2at (at+1 −at ) (2)

which gives Newton’s iterative procedure for finding square roots

at+1 =
1

2

(
at +

s

at

)
. (3)

Spectra factorization

Suppose now that we want to apply the same procedure to obtain the factors of spectral func-
tions ofZ = ei ω1t (Z-transforms). LetS(Z) be the auto-correlation that we seek to factor into
causal and anticausal parts. Burg (1998, personal communication) recognized that we can use
the Newton method to factorF(Z) = A(Z)Ā(1/Z) by writing an equation equivalent to (2):

S(Z)− At (Z)Āt (1/Z) = At (Z)[ Āt+1(1/Z)− Āt (1/Z)] + Āt (1/Z)[ At+1(Z)− At (Z)] (4)

If we now divide (4) byĀt (1/Z)At (Z) we obtain

Āt+1(1/Z)

Āt (1/Z)
+

At+1(Z)

At (Z)
= 1 +

S(Z)

Āt (1/Z) At (Z)
(5)

Equation (5) leads to the Wilson-Burg algorithm:

1. Compute the right side of (5) by polynomial division forwards and backwards and then
add 1.

2. Abandon negative lags, to only keep the positive powers of theZ polynomial, and also
keep half of the zero lag. Now you haveAt+1(Z)/At (Z).

3. Multiply out (convolve) the denominatorAt (Z). Now we have the desired resultAt+1(Z).

Iterate as long as you wish.
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Quadratic convergence

The iteration converges quadratically starting from any real initial guessa0 except zero. When
a0 is negative, Newton’s iteration converges to the negative square root. Quadratic conver-
gence means that the square of the errorat −

√
s at one iteration is proportional to the error at

the next iteration

at+1 −
√

s ∼ (at −
√

s)2
= a2

t −2at
√

s+s > 0 (6)

so, for example if the error is one significant digit at one iteration, at the next iteration it
is two digits, then four, etc. We cannot use equation (6) in place of the Newton iteration
itself, because it uses the answer

√
s to get the answerat+1, and also we need the factor of

proportionality. Notice, however, if we take this factor to be 1/(2at ), then
√

s cancels and
equation (6) becomes itself the Newton iteration (3).

Even though we cannot estimate the rate of convergence byat −
√

s because we don’t
know the answers, we can get an estimate of it by looking at the difference between the
intermediate solutions at two consecutive steps. From (3), we can write

at+1 −at =
1

2

(
at +

s

at

)
=

a2
t +s

2at
−at (7)

therefore

at+1 −at =
s−a2

t

2at
. (8)

Another interesting feature of the Newton iteration is that all iterations (except possibly
the initial guess) overestimate the ultimate square root. This is obvious from equation (6).

Minimum phase factors

The Wilson-Burg method of spectral factorization generates minimum phase factors. Wilson
(1969) presents a rigorous proof. Here is an intuitive explanation: Both sides of (5) are posi-
tive. Both terms on the right are positive. Since the Newton iteration always overestimates, the
1 dominates the rightmost term. After masking off the negative powers ofZ (and half the zero
power), the right side of (5) adds two wavelets. The 1/2 is wholly real, and hence its real part
always dominates the real part of the rightmost term. Thus (after masking negative powers)
the wavelet on the right side of (5) has a positive real part, so the phase cannot loop about the
origin. This wavelet multipliesAt (Z) to give the final waveletAt+1(Z) and the product of two
minimum-phase wavelets is minimum phase.

Extension to cross-spectra

The same procedure as the one described above can be applied to cross-spectra. Let us first
rewrite (1) as:

f (at ) = s+ f ′(at )(at −at+1) (9)
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This is clearly nothing but a first order Taylor expansion around (s,at+1). We can write a
similar relation for a two-dimensional function as:

f (at ,bt ) = s+ f (a)(at ,bt )(at −at+1)+ f (b)(at ,bt )(bt −bt+1) (10)

where f (a) and f (b) denote the partial derivative with respect toa andb.

If we now considerf (a,b) = ab, we can write (10) as:

atbt −s = bt (at −at+1)+at (bt −bt+1) (11)

Now we can again use Burg’s observation (1998, personal communication) and use (11)
to factorize cross-spectraF(Z) = A(Z)B̄(1/Z) written as polynomials inZ = ei ω1t :

S(Z)− At (Z)B̄t (1/Z) = At (Z)[ B̄t+1(1/Z)− B̄t (1/Z)] + B̄t (1/Z)[ At+1(Z)− At (Z)] (12)

After dividing both sides byAt (Z)B̄t (1/Z), we obtain the equation that enables us to find both
the causal and the anticausal part of a cross-spectrum with the Wilson-Burg algorithm:

B̄t+1(1/Z)

B̄t (1/Z)
+

At+1(Z)

At (Z)
= 1 +

S(Z)

B̄t (1/Z) At (Z)
(13)

Comparison of Wilson-Burg and Kolmogoroff methods

The Kolmogoroff algorithm (Kolmogoroff, 1939; Claerbout, 1976) is the most widely used
spectral factorization algorithm because of its computationally efficiency.

Kolmogoroff method takesO(N logN) operations, whereN is the length of the auto-
correlation function. The cost of factorizing with the Wilson-Burg, is proportional to the
[number of iterations]× [filter length] ×N. If we keep the filter small and limit the number
of iterations, the Wilson-Burg method can be cheaper (linear inN).

Additionally, since the Kolmogoroff method works in the frequency domain, it assumes
circular boundary conditions. Auto-correlation functions, therefore, need to be padded with
zeros before they are Fourier transformed. For functions with zeros near the unit circle, the
padding may need to be many orders of magnitude greater than the original filter length,
N (Rickett and Claerbout, 1998). Wilson-Burg works in the time-domain, so no padding is
needed.

Quadratic convergence means Newton’s method converges extremely fast, when the ini-
tial guess is close to the solution. If we take advantage of this fact (for example, in wave
extrapolation, when going from one layer to another), the method might converge in 1 or 2
iterations, reducing the cost even further. There is no way to make use of an initial guess with
the Kolmogoroff method.

For 3-D filters,N may be very large, and we may need to factor many filters to account for
non-stationarity for example. In these cases, the difference in cost between the two methods
may be very important.
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The Kolmogoroff method, when applied to helix filtering, involves the dangerous busi-
ness of truncating the filter coefficients to reduce the size of the filter. If the auto-correlation
function has roots close to the unit circle, truncating filter coefficients may easily lead to non-
minimum-phase filters. With Wilson-Burg, we can fix the shape of the filter from the very
beginning. This doesn’t guarantee that we will find the exact solution, but at least we can
obtain a reasonable minimum-phase approximation of the desired filter.

In many applications, we need variable (non-stationary) filtering. We believe that extend-
ing Wilson-Burg to variable filters should be trivial: just replace all the polynomial multipli-
cations and divisions with their non-stationary equivalents.

Discussion

At this point, we would like to express a word of caution and remind the reader of some well
known facts (Claerbout, 1976):

1. Not all functions are possible auto or cross-spectra.

2. Every given auto or cross-correlation function has an infinite number of possible so-
lutions, of which there is a unique minimum phase wavelet (or pair of wavelets for
cross-correlations) except for a complex scale factor of unit magnitude.

3. LetS(Z) be theZ transform representation of an auto-correlation function. Suppose that
we have a way to determine the roots of such a polynomial of order 2N: ZN S(Z) = 0.
We can now check to see if the roots come in pairsZ and 1/Z, i.e. if there is a root
outside of the unit circle for every root inside. If this is true, we have a spectrum, and
the roots outside of the unit circle are the actual roots of the minimum phase factor
(Figure 1). If we don’t have roots mirroring each other with respect to the unit circle,
then we don’t really have a spectrum, and we shouldn’t even try to factorize it (Figure 2).

A special case occurs when we have a pair of roots on the unit circle (see, for example,
Z = 1, Figure 1). A polynomial of this type can be factorized into minimum phase
causal and anticausal parts, but the convergence of the Wilson-Burg algorithm becomes
linear instead of quadratic and it may even get unstable, as originally pointed out by
Wilson (1969).

EXAMPLE

In a first example, we applied the method to deconvolution on the helix (Claerbout, 1997) using
the factors obtained with the Wilson-Burg spectral factorization. We take the auto-correlation
to be the negative of the Laplacian operator, and convolve it with a spike placed in the middle
of each panel in Figure 3. We use the Wilson-Burg method to find the wavelet with this auto-
correlation and then deconvolve (do polynomial division) on the helix to find back the input
spike.



264 Spectral factorization SEP–97

Figure 1: Roots of the Z trans-
form representation of a Laplacian:
P(Z) = ZN(−Z−N

− Z−1
+4− Z1

−

ZN). No roots are on the unit cir-
cle, except forZ = 1 and all the
roots appear in pairs that mirror each
other with respect to the unit circle.
burg-lapl4 [CR]
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Figure 2: Roots of the Z
transform representation of
a pseudo-Laplacian:P(Z) =

ZN(−Z−N
− Z−1

+ 3 − Z1
− ZN)

Some of the roots are on the unit
circle, therefore this is not a spec-
trum, and so it is not factorizable.
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Figure 3: Wilson factorization of the Laplacian. From left to right: the input filter; its auto-
correlation; the factors obtained with the Wilson-Burg method; the result of the deconvolution
using the Wilson-Burg factors.burg-autolapfac[ER]
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iter A B
1 0.0364715122 0.0442032255
2 0.0029259326 0.0002011458
3 0.0000014305 0.0000000199
4 0.0000000894 0.0000000199
5 0.0000000596 0.0000000000
6 0.0000000000 0.0000000000

Table 1: Convergence rate

In another example, we analyzed the rate of convergence of the Wilson-Burg method. We
selected a simple polynomial which is the cross-correlation of two triangle functions,

4/Z +15+11Z +7Z2
+3Z3

= 12

(
1+

1

3Z

)(
1+

3

4
Z +

1

2
Z2

+
1

4
Z3

)
(14)

Table 1 shows the quadratic rate of convergence, defined using a relation similar to equation
(8) for the coefficients of the two factors,A andB.

CONCLUSIONS

We presented a method of spectral factorization that is based on Newton’s iterations for square
roots. The method is very efficient from a computational point of view and can be applied to
both auto and cross spectra. We presented a simple example of 2-D deconvolution on a helix.
Given its efficiency and simplicity, the Wilson-Burg method has the potential to surpass the
Kolmogoroff method as the best method of spectral factorization. Special care must be given
to the analysis of the factorizable or non-factorizable functions.
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APPENDIX A

We use the code below to factor cross-correlation functions into two minimum phase filters.
The module contains three subroutines, one for initialization, one for the actual factorization
and a third one for deallocating the memory.

Typecfilter is a complex filter defined in the helical coordinate system. Such a filter is
composed of a “zero lag” coefficient (e.g.s0 ) and two vectors, one for the lags (e.g.ss%lag )
and one for the complex values of the filter (e.g.ss%flt ).

We loop for the desired number of iterations. At each step, we take the auto-correlation
(ss ), divide it by A and B̄, select the filter coefficients of the positive/negative lags, and then
convolve byA/B.

The result is a pair of filters (aa andbb) of typecfilter .

module ccwil {
# Factorization of complex cross-spectra using the Wilson-Burg algorithm

use chelicon
use cpolydiv
use cprint

#-------------------------------------------------------------------
integer, private :: n
complex, dimension( :), allocatable, private :: cross, ab, cc, b, c

contains
subroutine ccwil_init( nmax) {

integer, intent(in) :: nmax; n = nmax
allocate( cross(2*n-1), ab(2*n-1), cc(2*n-1), b(n), c(n))
}

subroutine ccwil_factor( niter, s0, ss, aa, bb) {
integer, intent( in) :: niter
complex, intent( in) :: s0
type( cfilter), intent( in) :: ss
type( cfilter), intent(out) :: aa, bb
integer :: i,stat
real :: eps
logical :: T=.true.,F=.false.
cross = 0.; cross( n) = s0; cross( n+ss%lag) = ss%flt
ab=0.0; cc=0.0; b=0.0; b(1)=1.0; c=0.0

do i = 1, niter {
call cpolydiv_init( aa)
stat = cpolydiv_clop( F, F, cross, ab) # ab = S/A
call cpolydiv_init( bb)
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stat = cpolydiv_clop( T, F, cc , ab) # cc = S/(AB*’)

b( 2:n) = cc( n+1:2*n-1)/cc(n)
eps = maxval(abs(b(2:n)))
call chelicon_init( aa)
stat = chelicon_clop( F, F, b, c) # c = A b
aa%flt = c(1+aa%lag)

b( 2:n) = cc( n-1:1:-1 )/cc(n)
eps = max(abs(maxval(abs(b(2:n)))),abs(eps))
call chelicon_init( bb)
stat = chelicon_clop( F, F, b, c) # c = B* b
bb%flt = c(1+bb%lag)
write( 0,*) i, eps
}
bb%flt=conjg(bb%flt)

}
subroutine ccwil_close () {

deallocate( cross, ab, cc, b, c) }
}
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