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Inverse B-spline interpolation

Sergey Fomel1

ABSTRACT

B-splines provide an accurate and efficient method for interpolating regularly spaced data.
In this paper, I study the applicability of B-spline interpolation in the context of the inverse
interpolation method for regularizing irregular data. Numerical tests show that, in compar-
ison with lower-order linear interpolation, B-splines lead to a faster iterative conversion in
under-determined problems and a more accurate result in over-determined problems. In
addition, they provide a constructive method for creating discrete regularization operators
from continuous differential equations.

INTRODUCTION

The problem of interpolating irregularly sampled data to regular grid (data regularization) can
be recast as the inverse process with respect to interpolating regularly sampled data to irregular
locations. Claerbout (1999) describes an iterative least-squares optimization approach to data
regularization. The optimization is centered around two goals. The first goal is to minimize
the power of the residual difference between the observed and predicted data. The second goal
is to style the solution according to some predefined regularization criterion.

The ability of inverse interpolation to reach the data fitting goal depends on the accuracy
of the forward interpolation operator. Forward interpolation is one of the classic problems
in numerical analysis and has been studied extensively by generations of theoreticians and
practitioners (Fomel, 1997b). The two simplest and most widely used methods are the nearest
neighbor interpolation and linear interpolation. There are several approaches for constructing
more accurate (albeit more expensive) linear forward interpolation operators: cubic convolu-
tion (Keys, 1981), local Lagrange, tapered sinc (Harlan, 1982), etc. Wolberg (1990) presents
a detailed review of different conventional approaches.

Spline interpolation, based on representing the interpolated function by smooth piece-wise
polynomials, has been in use for a long time (de Boor, 1978), but only recently Unser et al.
(1993a,b) have discovered a way of implementing forward B-spline interpolation with an arbi-
trary order of accuracy in an efficient signal-processing fashion. The key idea is to implement
the B-spline transform with recursive filtering. First, an efficient recursive filtering transforms
regularly spaced data into spline coefficients, then the spline coefficients are interpolated onto
irregular locations. B-spline interpolants exhibit a superior performance for any given order
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of accuracy in comparison with other methods of similar efficiency (Thévenaz et al., 2000).

In this paper, I study the applicability of B-spline interpolation in the context of the inverse
interpolation method. In the first section, I review the forward interpolation problem and con-
firm the observations of Thévenaz et al. (2000) about the superior performance of B-splines.
The second section introduces a constructive method of creating discrete regularization op-
erators from B-splines and helical filtering (Claerbout, 1998). The method performance is
evaluated with a simple numerical test. In conclusion, I summarize the benefits of using B-
splines for data regularization.

FORWARD INTERPOLATION

Forward interpolation plays only a supplementary role in this paper, but it has many applica-
tions of its own in the seismic processing practice. It is sufficient to mention such applications
as trace resampling, NMO, Kirchoff and Stolt migrations, log-stretch, radial transform, etc.
Two simple examples appear at the end of this section.

The general form of a linear forward interpolation operator is

f (x) =

∑
n∈N

W(x,n) f (n) , (1)

wheren is a point on a given regular gridN, x is a point in the continuum,f (x) is the
reconstructed continuous function, andW(x,n) is a linear weight. Although in the discussion
that follows, I refer to only the one-dimensional theory, a generalization to many dimensions
is straightforward.

Nearest neighbor and beyond

The two simplest forms of the forward interpolation operators are the 1-point nearest neighbor
interpolation with the weight

W(x,n) =

{
1, for n−1/2 ≤ x < n+1/2
0, otherwise

(2)

and the 2-point linear interpolation with the weight

W(x,n) =

{
1−|x −n|, for n−1 ≤ x < n+1
0, otherwise

(3)

Because of their simplicity, the nearest neighbor and linear interpolation methods are very
practical and easy to apply. Their accuracy is, however, limited and may be inadequate for
interpolating high-frequency signals. The shapes of interpolants (2) and (3) and their spectra
are plotted in Figures 1 and 2. The spectra plots show that both interpolants act as low-pass
filters, preventing the high-frequency energy from being correctly interpolated.
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Figure 1: Nearest neighbor interpolant (left) and its spectrum (right).bspl-nnint [CR]
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Figure 2: Linear interpolant (left) and its spectrum (right).bspl-linint [CR]
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On the other side of the accuracy scale, there is the infinitely long sinc interpolant:

W(x,n) =
sin[π (x −n)]

π (x −n)
. (4)

According to the sampling theorem (Kotel’nikov, 1933; Shannon, 1949), equation (4) provides
an optimal interpolation for any band-limited signal. In practice, it is not directly applicable
because of a prohibitively expensive computation. The shape of the sinc function and its
spectrum are shown in Figure 3. The spectrum is identically equal to one in the Nyquist
frequency band.
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Figure 3: Sinc interpolant (left) and its spectrum (right).bspl-sincint [CR]

Several approaches exist for extending the nearest neighbor and linear interpolation to
more accurate (albeit more expensive) methods. One example is the 4-point cubic convolution
suggested by Keys (1981). The cubic convolution interpolant is a local piece-wise cubic func-
tion, which approximates the ideal sinc equation (4). Another popular approach is to taper the
ideal sinc function in a local window. For example, one can use the Kaiser window (Kaiser
and Shafer, 1980)

W(x,n) =


sin[π (x −n)]

π (x −n)

I0

(
α

√
1−

(
x−n

N

)2)
I0(α)

for n− N < x < n+ N

0, otherwise

(5)

where I0 is the zero-order modified Bessel function of the first kind. The Kaiser-windowed
sinc interpolant (5) has the adjustable parameterα, which controls the behavior of its spectrum.
I have found empirically the value ofα = 4 to provide a spectrum that deviates from 1 by no
more than 1% in a relatively wide band.

I compare the accuracy of different forward interpolation methods on a one-dimensional
signal shown in Figure 4. The ideal signal has an exponential amplitude decay and a quadratic
frequency increase from the center towards the edges. It is sampled at a regular 50-point
grid and interpolated to 500 regularly sampled locations. The interpolation result is compared
with the ideal one. Observing Figures 5, 6, and 7, we can see the interpolation error steadily
decreasing as we go subsequently from 1-point nearest neighbor to 2-point linear, 4-point
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Figure 4: One-dimensional test sig-
nal. Top: ideal. Bottom: sampled at
50 regularly spaced points. The bot-
tom plot is the input in a forward in-
terpolation test.bspl-chirp [ER]

Figure 5: Interpolation error of the
nearest neighbor interpolant (dashed
line) compared to that of the linear
interpolant (solid line). bspl-binlin
[ER]

Figure 6: Interpolation error of the
linear interpolant (dashed line) com-
pared to that of the cubic convolution
interpolant (solid line). bspl-lincub
[ER]
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Figure 7: Interpolation error of the
cubic convolution interpolant (dashed
line) compared to that of the 8-point
windowed sinc interpolant (solid
line). bspl-cubkai [ER]

cubic convolution, and 8-point windowed sinc interpolation. At the same time, the cost of
interpolation grows proportionally to the interpolant length.

The differences among different methods are also clearly visible from the discrete spectra
of the corresponding interpolants. The left plots in figures 8 and 9 show discrete interpolation
responses: the functionW(x,n) for a fixed value ofx = 0.7. The right plots compare the
corresponding discrete spectra. We can see that the spectrum gets flatter and wider as the
accuracy of the method increases.

Figure 8: Discrete interpolation re-
sponses of linear and cubic convo-
lution interpolants (left) and their
discrete spectra (right) forx = 0.7.
bspl-speclincub[ER]

Interpolation and convolution

As I discussed in an earlier paper (Fomel, 1997b), a general approach for constructing the
interpolant functionW(x,n) in equation (1) is to select an appropriate function basis for rep-
resenting the functionf (x). The functional basis representation has the general form

f (x) =

∑
k∈K

ckψk(x) , (6)
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Figure 9: Discrete interpolation re-
sponses of cubic convolution and
8-point windowed sinc interpolants
(left) and their discrete spectra (right)
for x = 0.7. bspl-speccubkai[ER]

whereψk(x) are basis function, andck are the corresponding coefficients. Once an appropriate
basis is selected, one can define theW(x,n) function by means of the least squares method.

Unser et al. (1993a) noticed that the function basis idea has an especially simple imple-
mentation if the basis is convolutional and satisfies the equation

ψk(x) = β(x −k) . (7)

In other words, the basis is constructed by integer shifts of a single functionβ(x). Substituting
formula (7) into equation (6) yields

f (x) =

∑
k∈K

ckβ(x −k) . (8)

Evaluating the functionf (x) in equation (8) at an integer valuen, we obtain the equation

f (n) =

∑
k∈K

ckβ(n−k) , (9)

which has the exact form of a discrete convolution. The basis functionβ(x), evaluated at inte-
ger values, is digitally convolved with the vector of basis coefficients to produce the sampled
values of the functionf (x). We can invert equation (9) to obtain the coefficientsck from
f (n) by inverse recursive filtering (deconvolution). In the case of a non-causal filterβ(n), an
appropriate spectral factorization will be needed prior to applying the recursive filtering.

According to the convolutional basis idea, forward interpolation becomes a two-step pro-
cedure. The first step is the direct inversion of equation (9): the basis coefficientsck are found
by deconvolving the sampled functionf (n) with the factorized filterβ(n). The second step
reconstructs the continuous (or arbitrarily sampled) functionf (x) according to formula (8).
The two steps could be combined into one, but usually it is more convenient to apply them
separately. I show a schematic relationship among different variables in Figure 10.
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Figure 10: Schematic relationship
among different variables for inter-
polation with a convolutional basis.
bspl-scheme[NR]
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B-splines

B-splines represent a particular example of a convolutional basis. Because of their compact
support and other attractive numerical properties, B-splines are a good basis choice for the
forward interpolation problem and related signal processing problems (Unser, 1999).

B-splines of the order 0 and 1 coincide with the nearest neighbor and linear interpolants (2)
and (3) respectively. B-splinesβn(x) of a higher ordern can be defined by a repetitive convo-
lution of the zeroth-order splineβ0(x) (the box function) with itself:

βn(x) = β0(x)∗ · · · ∗β0(x)︸ ︷︷ ︸
(n+1) times

. (10)

There is also the explicit expression

βn(x) =
1

n!

n+1∑
k=0

Cn+1
k (−1)k(x +

n+1

2
−k)n

+
, (11)

which can be proved by induction. HereCn+1
k are the binomial coefficients, and the function

x+ is defined as follows:

x+ =

{
x, for x > 0
0, otherwise

(12)

As follows from formula (11), the most commonly used cubic B-splineβ3(x) has the expres-
sion

β3(x) =


(
4−6|x|

2
+3|x|

3)/6, for 1> |x| ≥ 0
(2−|x|)3/6, for 2> |x| ≥ 1
0, elsewhere

(13)

The corresponding discrete filterβ3(n) is a centered 3-point filter with coefficients 1/6, 2/3,
and 1/6. According to the traditional method, a deconvolution with this filter is performed
as a tridiagonal matrix inversion (de Boor, 1978). One can accomplish it more efficiently
by spectral factorization and recursive filtering (Unser et al., 1993a). The recursive filtering
approach generalizes straightforwardly to B-splines of higher orders.
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Figure 11: Third-order B-splineβ3(x) (left) and its spectrum (right).bspl-splint3 [CR]
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Figure 12: Seventh-order B-splineβ7(x) (left) and its spectrum (right).bspl-splint7 [CR]
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Both the support length and the smoothness of B-splines increase with the order. In the
limit, B-slines converge to the Gaussian function. Figures 11 and 12 show the third- and
seventh-order splinesβ3(x) andβ7(x) and their continuous spectra.

It is important to realize the difference between B-splines and the corresponding inter-
polantsW(x,n), which are sometimes calledcardinal splines. An explicit computation of the
cardinal splines is impractical, because they have infinitely long support. Typically, they are
constructed implicitly by the two-step interpolation method, outlined in the previous subsec-
tion. The cardinal splines of orders 3 and 7 and their spectra are shown in Figures 13 and 14.
As B-splines converge to the Gaussian function, the corresponding interpolants rapidly con-
verge to the sinc function (4). A good convergence is achieved with the help of the infinitely
long support, which results from recursive filtering at the first step of the interpolation proce-
dure.
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Figure 13: Effective third-order B-spline interpolant (left) and its spectrum (right).
bspl-crdint3 [CR]
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Figure 14: Effective seventh-order B-spline interpolant (left) and its spectrum (right).
bspl-crdint7 [CR]

In practice, the recursive filtering step adds only marginally to the total interpolation cost.
Therefore, ann-th order B-spline interpolation is comparable in cost with any other method
with an (n + 1)-point interpolant. The comparison in accuracy usually turns out in favor of
B-splines. Figures 15 and 16 compare interpolation errors of B-splines and other similar-cost
methods on the example from Figure 4.
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Figure 15: Interpolation error of
the cubic convolution interpolant
(dashed line) compared to that of
the third-order B-spline (solid line).
bspl-cubspl[ER]

Figure 16: Interpolation error of the
8-point windowed sinc interpolant
(dashed line) compared to that of the
seventh-order B-spline (solid line).
bspl-kaispl [ER]
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Similarly to Figures 8 and 9, we can also compare the discrete responses of B-spline
interpolation with those of other methods. The right plots in Figures 17 and 18 show that the
discrete spectra of the effective B-spline interpolants are genuinely flat at low frequencies and
wider than those of the competitive methods. Although the B-spline responses are infinitely
long because of the recursive filtering step, they exhibit a fast amplitude decay.

Figure 17: Discrete interpolation
responses of cubic convolution and
third-order B-spline interpolants
(left) and their discrete spectra (right)
for x = 0.7. bspl-speccubspl[ER]

Figure 18: Discrete interpolation
responses of 8-point windowed
sinc and seventh-order B-spline
interpolants (left) and their dis-
crete spectra (right) forx = 0.7.
bspl-speckaispl[ER]

2-D example

For completeness, I include a 2-D forward interpolation example. Figure 19 shows a 2-D
analog of function in Figure 4 and its coarsely-sampled version.

Figure 20 compares the errors of the 2-D nearest neighbor and 2-D linear (bi-linear) inter-
polation. Switching to bi-linear interpolation shows a significant improvement, but the error
level is still relatively high. As shown in Figures 21 and 22, B-spline interpolation again
outperforms other methods with comparable cost complexity. In all cases, I constructed 2-
D interpolants by orthogonal splitting. Although the splitting method reduces computational
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Figure 19: Two-dimensional test function (left) and its coarsely sampled version (right).
bspl-chirp2 [ER]

overhead, the main cost factor is the total interpolant size, which squares when going from
1-D to 2-D.

Beyond B-splines

It is not too difficult to construct a convolutional basis with better interpolation properties
than those of B-splines, for example by sacrificing their smoothness. The following piece-
wise cubic function has a lower smoothness thanβ3(x) in equation (13) but slightly better
interpolation behavior:

µ3(x) =


(
10−13|x|

2
+6|x|

3)/16, for 1> |x| ≥ 0
(2−|x|)2(5−2|x|)/16, for 2> |x| ≥ 1
0, elsewhere

(14)

Figures 23 and 24 compare the test interpolation errors and discrete responses of methods
based on the B-spline functionβ3(x) and the lower smoothness functionµ3(x). The latter
method has a slight but visible performance advantage and a slightly wider discrete spectrum.

Blu et al. (1998) have developed a general approach for constructing non-smooth piece-
wise functions with optimal interpolation properties. However, the gain in accuracy is often
negligible in practice. In the rest of this paper, I use the classic B-spline method.
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Figure 20: 2-D Interpolation errors of nearest neighbor interpolation (left) and linear interpo-
lation (right). Top graphs show 1-D slices through the center of the image.bspl-plcbinlin
[ER]

Figure 21: 2-D Interpolation errors of cubic convolution interpolation (left) and third-order
B-spline interpolation (right). Top graphs show 1-D slices through the center of the image.
bspl-plccubspl[ER]
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Figure 22: 2-D Interpolation errors of 8-point windowed sinc interpolation (left) and seventh-
order B-spline interpolation (right). Top graphs show 1-D slices through the center of the
images. bspl-plckaispl [ER]

Figure 23: Interpolation error of
the third-order B-spline interpolant
(dashed line) compared to that of the
lower smoothness spline interpolant
(solid line). bspl-splmom4[ER]
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Figure 24: Discrete interpolation re-
sponses of third-order B-spline and
lower smoothness spline interpolants
(left) and their discrete spectra (right)
for x = 0.7. bspl-specsplmom4
[ER]

Seismic applications of forward interpolation

For completeness, I conclude this section with two simple examples of forward interpolation
in seismic data processing. Figure 25 shows a 3-D impulse response of Stolt migration (Stolt,
1978), computed by using 2-point linear interpolation and 8-point B-spline interpolation. As
noted by Ronen (1982) and Harlan (1982), inaccurate interpolation may lead to spurious arti-
fact events in Stolt-migrated image. Indeed, we see several artifacts for the image with linear
interpolation (the left plots in Figure 25.) The artifacts are removed by a more accurate inter-
polation method (the right plots in Figure 25.)

Another simple example is radial trace transform (Ottolini, 1982) Figure 26 shows a land
shot gather contaminated by nearly radial ground-roll. As discussed by Claerbout (1983),
Henley (1999), and Brown and Claerbout (2000), one can effectively eliminate ground-roll
noise by applying radial trace transform, followed by high-pass filtering and the inverse ra-
dial transform. Figure 27 shows the result of the forward radial transform of the shot gather
in Figure 26 in the radial band of the ground-roll noise and the transform error after going
back to the original domain. Comparing the results of using linear and third-order B-spline
interpolation, we see once again that the transform artifacts are removed with a more accurate
interpolation scheme.

INVERSE INTERPOLATION AND DATA REGULARIZATION

In the notation of Claerbout (1999), inverse interpolation amounts to a least-squares solution
of the system

Lm ≈ d ; (15)

εAm ≈ 0 , (16)

whered is a vector of known dataf (xi ) at irregular locationsxi , m is a vector of unknown
function valuesf (n) at a regular gridn, L is a linear interpolation operator of the general
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Figure 25: Stolt migration impulse response. Left: using linear interpolation. Right: us-
ing seventh-order B-spline interpolation. Migration artifacts are removed by a more accurate
forward interpolation method.bspl-stolt [ER]

Figure 26: Ground-roll-contaminated
shot gather used in a radial transform
test bspl-radialdat[ER]
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Figure 27: Radial trace transform results. Top: radial trace domain. Bottom: residual error
after the inverse transform. The error should be zero in a radial band from 0 to 0.65 km/s radial
velocity. Left: using linear interpolation. Right: using third-order B-spline interpolation.
bspl-radial [ER]
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form (1), A is an appropriate regularization (model styling) operator, andε is a scaling pa-
rameter. In the case of B-spline interpolation, the forward interpolation operatorL becomes a
cascade of two operators: recursive deconvolutionB−1, which converts the model vectorm to
the vector of spline coefficientsc, and a spline basis construction operatorF. System (15-16)
transforms to

FB−1m ≈ d ; (17)

εAm ≈ 0 . (18)

We can rewrite (17-18) in the form that involves only spline coefficients:

Wc ≈ d ; (19)

εABc ≈ 0 . (20)

After we find a solution of system (19-20), the modelm will be reconstructed by the simple
convolution

m = Bc . (21)

This approach resembles a more general method of model preconditioning (Fomel, 1997a).

The inconvenient part of system (19-20) is the complex regularization operatorAB. Is it
possible to avoid the cascade ofB andA and to construct a regularization operator directly
applicable to the spline coefficientsc? In the following subsection, I develop a method for
constructing spline regularization operators from differential equations.

Spline regularization

In many cases, the regularization (styling) condition originates in a continuous differential
operator. For example, one can think of the gradient or Laplacian operator for regularizing
smooth functions (Fomel, 2000b), plane-wave destructor for regularizing local plane waves
(Fomel, 2000a), or the offset continuation equation for regularizing seismic reflection data
(Fomel, 2000c).

Let us denote the continuous regularization operator byD. Regularization implies seek-
ing a function f (x) such that the least-squares norm ofD

[
f (x)

]
is minimum. Using the

usual expression for the least-squares norm of continuous functions and substituting the basis
decomposition (8), we obtain the expression

∥∥D
[

f (x)
]∥∥=

∫ (
D
[

f (x)
])2

dx =

∫ (∑
k∈K

ck D [β(x −k)]

)2

dx . (22)

The problem of finding functionf (x) reduces to the problem of finding the corresponding
set of basis coefficientsck. We can obtain the solution to the least-squares optimization by
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differentiating the quadratic objective function (22) with respect to the basis coefficientsck.
This leads to the system of linear equations∑

k∈K

ck

∫
D [β(x −k)] D

[
β(x − j )

]
dx =

∑
k∈K

ckdj −k = 0 , (23)

where

dj =

∫
D [β(x)] D

[
β(x − j )

]
dx . (24)

Equation (23) is clearly a discrete convolution of the spline coefficientsck with the filter dj

defined in equation (24). To transform the system (23) to a regularization condition of the
form

Dc ≈ 0 , (25)

we need to treat the digital filterdj as an autocorrelation and find its minimum-phase factor.
Equation (25) replaces equation (20) in the inverse interpolation problem setting.

We have found a constructive way of creating B-spline regularization operators from con-
tinuous differential equations.

A simple regularization example is shown in Figure 28. The continuous operatorD in
this case comes from the theoretical plane-wave differential equation. I constructed the auto-
correlation filterdj according to formula (24) and factorized it with the efficient Wilson-Burg
method on a helix (Sava et al., 1998). The figure shows three plane waves constructed from
three distant spikes by applying an inverse recursive filtering with two different plane-wave
regularizers. The left plot corresponds to using first-order B-splines (equivalent to linear in-
terpolation). This type of regularizer is identical to Clapp’s steering filters (Clapp et al., 1997)
and suffers from numerical dispersion effects. The right plot was obtained with third-order
splines. Most of the dispersion is suppressed by using a more accurate interpolation.

Test example

Now that we have all the problem pieces together, we can test the performance gain in the
inverse interpolation problem (19)-(25) from the application of B-splines.

For a simple 1-D test, I chose the function shown in Figure 4, but sampled at irregular
locations. To create two different regimes for the inverse interpolation problem, I chose 50
and 500 random locations. The two sets of points were interpolated to 500 and 50 regular
samples respectively. The first test corresponds to an under-determined situation, while the
second test is clearly over-determined. Figures 29 and 30 show the input data for the two test
after normalized binning to the selected regular bins.

I solved system (19)-(25) by the iterative conjugate-gradient method, utilizing a recursive
filter preconditioning (Fomel, 1997a) for faster convergence. The regularization operatorD
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Figure 28: B-spline regularization. Three plane waves constructed by 2-D recursive filtering
with the B-spline plane-wave regularizer. Left: using first-order B-splines (linear interpola-
tion). Right: using third-order B-splines.bspl-sthree[ER,M]

Figure 29: 50 random points binned
to 500 regular grid points. The ran-
dom data are used for testing inverse
interpolation in an under-determined
situation. bspl-bin500[ER]
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Figure 30: 500 random points binned
to 50 regular grid points. The random
data are used for testing inverse inter-
polation in an over-determined situa-
tion. bspl-bin50 [ER]

was constructed by using the method of the previous subsection with the tension-spline differ-
ential equation (Smith and Wessel, 1990; Fomel, 2000b) and the tension parameter of 0.01.

The least-squares differences between the true and the estimated model are plotted in Fig-
ures 31 and 32. Observing the behavior of the model misfit versus the number of iterations and
comparing simple linear interpolation with the third-order B-spline interpolation, we discover
that

• In the under-determined case, both methods converge to the same final estimate, but
B-spline inverse interpolation does it faster at earlier iterations. The total computational
gain is not significant, because each B-spline iteration is more expensive than the corre-
sponding linear interpolation iteration.

• In the over-determined case, both methods converge similarly at early iterations, but
B-spline inverse interpolation results in a more accurate final estimate.

From the results of this simple experiment, it is apparent that the main advantage of using
more accurate interpolation in the data regularization context occurs in the over-determined
situation, when the estimated model is well constrained by the available data.

Application to 3-D seismic data regularization

In this subsection, I demonstrate an application of B-spline inverse interpolation for regular-
izing three-dimensional seismic reflection data. The dataset of this example comes from the
North Sea and was used before for testing AMO (Biondi et al., 1998) and common-azimuth
migration (Biondi, 1996). Figure 33 shows the midpoint geometry and the corresponding bin
fold for a selected range of offsets and azimuths. The goal of data regularization is to create
a regular data cube at the specified bins from the irregular input data, preprocessed by NMO.
As typical of marine acquisition, the fold distribution is fairly regular but has occasional gaps
caused by the cable feathering effect. The data cube after normalized binning (inverse nearest
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Figure 31: Model convergence in
the under-determined case. Dashed
line: using linear interpolation. Solid
line: using third-order B-spline.
bspl-norm500[ER]

Figure 32: Model convergence in
the over-determined case. Dashed
line: using linear interpolation. Solid
line: using third-order B-spline.
bspl-norm50[ER]
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Figure 33: Midpoint geometry (left) and fold distribution (right) for the 3-D data test
bspl-cmpfold [ER]

neighbor interpolation) is shown in Figure 34. Binning works reasonably well in the areas of
large fold but fails to fill the zero fold gaps and has an overall limited accuracy. Inverse inter-
polation using bi-linear interpolants significantly improves the result (Figure 35), and inverse
B-spline interpolation improves the accuracy even further (Figure 36). In both cases, I regu-
larized the data in constant time slices, using recursive filter preconditioning with plane-wave
destructor filters analogous to those in Figure 28. The plane wave slope was estimated from
the binned data with the method of Fomel (2000a). The inverse interpolation results preserve
both flat reflection events in the data and steeply-dipping diffractions. When data regulariza-
tion is used as a preprocessing step for common-azimuth migration (Biondi and Palacharla,
1996), preserving diffractions is important for correct imaging of sharp edges in the subsurface
structure.

CONCLUSIONS

I have reviewed the B-spline forward interpolation method and confirmed the observation of
Thévenaz et al. (2000) about its superior performance in comparison with other methods of
similar cost. Whenever an accurate forward interpolation scheme is desired, B-splines can be
an extremely valuable tool. B-spline forward interpolation involves two steps. The first step
is recursive filtering, which results in a set of spline coefficients. The second step is a linear
spline interpolation operator.
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Figure 34: 3-D data after normalized binningbspl-bin1 [ER]
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Figure 35: 3-D data after inverse interpolation with bi-linear interpolantsbspl-int2 [CR]
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Figure 36: 3-D data after inverse interpolation with third-order B-spline interpolantsbspl-int4
[CR]
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Analyzing the role of B-spline interpolation in data regularization, I have introduced a
method of constructing B-spline discrete regularization operators from continuous differential
equations.

Simple numerical experiments with B-spline inverse interpolation show that the main ad-
vantage of using a more accurate interpolation scheme occurs in an over-determined setting,
where B-splines lead to a more accurate model estimates. In an under-determined setting, the
B-spline inverse interpolation scheme converges faster at early iterations, but the total compu-
tational gain may be insignificant.

I have shown on a simple real data example that inverse B-spline interpolation can be used
as an accurate method of data regularization for processing 3-D seismic reflection data.
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