5.0 Some Frontiers

In this final chapter of the book are gathered together imaging concepts
that have been published, but have not yet come into routine industrial use.
The first part of this chapter develops the mathematical concept of linear
moveout and how it relates to velocity analysis. Data can be focused so that
the interval velocity can be read directly. The latter part of the chapter is
about multiple reflections. Here too linear moveout helps to define the prob-
lem. You will see basic mathematical tools that have the power to deal with
multiple reflections and lateral velocity variations. This chapter has many
data processing proposals. They are not descriptions of production processes!

Interpreting Seismic Data

Initially I regarded this chapter as one for specialists interested mainly in
devising new processes. Then I realized that in dealing with things that don’t
seem to work as they are expected to, we are really, for the first time, strug-
gling to contend with reality, not with what theory predicts. This can hold
much interest for skilled interpreters.

The heart of petroleum prospecting is the interpretation of reflection
seismic data. What is seismic interpretation? To be a ‘‘routine interpreter”
you must know everything on which theory and practice generally agree. To
be a good interpreter you must know the ‘‘noise level” of alternate
phenomena with similar effects. Anomalies in seismic data can arise from the
complexity of the earth itself, from seismic wave propagation in the earth
(deep, near surface, or out of plane), or from imperfections in recording and
imaging techniques. To make realistic judgements in so wide a realm, you
must be a seismologist who is part geologist, part engineer, and part
mathematician. This chapter will not teach you to be a good interpreter, but
it will offer you a chance to observe some critical thinking about the relation-
ship of seismic theory to seismic data.
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Leaning

Echo delay is much like depth. We usually measure angles by their
departure from the vertical ray, while in reality zero-offset data is rarely
recorded. The best seismic data is usually far from vertical. In this chapter a
pattern of thinking is developed that is oriented about a selected nonvertical
ray. Rotation of coordinates does not solve the problem since after rotation,
the plane on which measurements would be made would no longer be simply
z = 0. Rotation would also make a mess of the simple seismic velocity func-
tion v(z) by making it a strongly two-dimensional function v’(z’, z'). The
view of offset presented in Chapter 3 may have seemed rather complete, but
in fact it was not very general because square roots were expanded about the
vertical ray. The Stolt stretch development in Section 4.5 illustrated the
advantage of leaving the hyperbola top and getting out on the flanks.

Linear moveout (LMO) is the way to reorient our thinking about non-
vertical rays. While not widely incorporated in the modern production
environment, this deeper view of offset is of special interest to researchers. It
offers an understanding of multiple reflections, a subject untouched in
Chapter 3. It also offers a better understanding of velocity estimation.

Stepout Review

In Section 1.5 a Snell wave was defined as a plane wave that has become
nonplanar by moving into a velocity-stratified medium v = v(2). A plane
wave keeps its angle of propagation constant, while a Snell wave keeps its
stepout dt /dx a constant function of z. Figure 1 shows a Snell wave
incident on the earth’s surface. The wavefronts at successive times are not
parallel to each other; they are horizontal translations of one another. The
slowness of horizontal motion is called the stepout. It is measured in units of
inverse velocity and is given as milliseconds per meter or as seconds per kilo-
meter. The slowness, denoted as p, is also called the ray parameter or the
Snell parameter:

p = % — ﬂ%(%(%l = const(z) (1)
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FRONTIERS 5.1 Radial Traces

FIG. 5.0-1. Wayvefront arrival at earth’s surface, showing that observation of
dt /dz gives the ratio dt /dx = (sinf)/v.

5.1 Radial Traces

Radial trace sections were introduced in Section 3.6 as an alternative to
constant-offset sections. In Section 3.6 the goal was to achieve a proper
migration of nonzero-offset data. We also saw the definition of dip moveout
(DMO). DMO simplifies further analysis because after DMO we can analyze
gathers assuming that they come from a horizontally layered earth.

A radial trace gather is defined by a deformation of an ordinary gather.
Let the ordinary gather be denoted by P (z,t). Let the radial parameter be
denoted by r = z /t. Then the radial trace gather P'(r,t) is defined by
the deformation P'(r,t)= P(rt,t).

The horizontal location z of the tip of a ray moves according to

z = v t sinf. So in a constant-velocity medium, the radial trace with a
fixed r =z /t contains all the energy that propagates at angle 4.

The constancy of propagation angle within a radial trace should be help-
ful in the analysis of multiple reflections. It should also be helpful in compen-
sation for the shot waveform, since the antenna effects of the shot and geo-
phone arrays are time-invariant on each radial trace.

Assuming reflectors at depth 2; and constant velocity, hyperbolic

travel-time curves are

t2p2 = 22422 (1)
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FRONTIERS 5.1 Radial Traces

Let us see what happens to the hyperbola (1) when the offset z s
transformed to the radial parameter r =z /t. We get an equation for a
family of curves in the (r, t }-plane (plotted in figure 1).

22 = t2(v?-r? (2)

1N
my

FIG. 5.1-1. Family of hyperbolas before and after transformation to radial
space.

The asymptotes, instead of being along sloping lines z2 = +v2t2, are
along vertical lines r = +v. The filled region of the (r,¢)plane is rec-
tangular, while the filled region of the (z, ¢ }-plane is triangular.

Figure 2 shows a field profile before and after transformation to radial
space. Zero traces were interspersed between live ones to clarify the shape of
the deformation. To understand this deformation, it helps to remember that
a field trace is a curve of constant z = rt.

An interesting aspect of the radial-trace transformation is its effect on
ground roll. A simple model of ground roll is a wave traveling horizontally at
a constant rate. So on a radial-trace gather the ground roll is found as d.c.
(zero frequency) on a few radial traces near r = +v,,y- Figure 3 shows an

approximation to the idealization.
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FIG. 5.1-2. Field profile from Alberta (Western Geophysical) interspersed
with zero traces, shown before and after radial-trace deformation.

Moveout-Corrected Radial Traces

Moveout correction may be regarded as a transformation from time to
depth. When the moveout correction is properly done, all traces should show
the same depth-dependent reflectivity. In principle, radial moveout correction
proceeds by introducing 2 and eliminating ¢ with the substitution tv =

Vz24z2. In practice you would prefer a travel-time-depth axis to a depth

axis. So the transformation equation becomes t = vV 7?+z2/v2. Eliminating
r with rt we get

‘T l—Tr2/122 ®)

Inspecting (3) we see that moveout correction in radial-trace coordinates
is a uniform compression of the time t-axis into a 7-axis. The amount of
compression is fixed when r is fixed. The amount of compression does not
change with time. The uniformity of the compression is an aid to modeling
and removing the effects of shot waveforms and multiple reflections. It is
curious to note that moveout correction of radial traces compresses time,
while moveout correction of constant-offset data stretches time nonuniformly.
Figure 3 shows a field profile before and after the radial-trace transformation.
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FIG. 5.1-3. Field profile from Alberta (Western Geophysical) shown before
and after deformation into radial traces.

Snell Traces

The radial-trace coordinate system can be used no matter what the ve-
locity of the earth. But the coordinate system has a special advantage when
the velocity is constant, because then it gathers all the energy of a fixed pro-
pagation angle. The logical generalization to stratified media is to gather all
the energy with a fixed Snell parameter. A Snell trace is defined (Ottolini) as
a trajectory on the (z,t)plane where the stepout p = dt /dz would be

constant if the velocity were v (z).

Where the velocity increases with depth,
the Snell traces bend upward. The Snell trace trajectory is readily found by
integrating the ray equations:

¥4
f tan § dz
0

K4

/

0

v

dz
cos 0

(4a)

(4b)

To do moveout correction on the Snell traces, introduce the vertical travel-

time depth ¢

such that

equations become

-

z(p,7)

t(p,7)

dz = v dr.

O by o

The radial-trace moveout-correction
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Where the earth velocity is stratified, Snell traces have a theoretical
advantage over radial traces. However they have the disadvantage that the
curves could become multibranched, so that the transformation would not be
one-to-one. So in practice you might use a simplified velocity model instead
of your best estimate of the true velocity.

More philosophically, the transition from constant-offset traces to radial
traces is a big one, whereas the transition from radial traces to Snell traces is
not so large. Since the use of radial traces is not widespread, we can specu-
late that the practical usefulness of Snell traces may be further limited.

5.2 Slant Stack

Slant stack is a transformation of the offset axis. It is like steering a
beam of seismic waves. I believe I introduced the term slant stack (Schultz
and Claerbout [1978]) as a part of a migration method to be described next in
Section 5.3. I certainly didn’t invent the slant-stack concept! It has a long
history in exploration seismology going back to Professor Rieber in the 1930s
and to Professor Riabinkin in the Soviet Union. Mathematically, the slant-
stack concept is found in the Radon [1917] transformation.

The slant-stack idea resembles the Snell trace method of organizing data
around emergent angle. The Snell trace idea selects data based on a
hypothetical velocity predicting the local stepout p = dt /dz. Slant stack
does not predict the stepout, but extracts it by filtering. Thus slant stack
does its job correctly whether or not the velocity is known. When the veloci-
ty of the medium is known, slant stack enables immediate downward con-
tinuation even when mixed apparent velocities are present as with diffractions
and multiple reflections.
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FRONTIERS 5.2 Slant Stack

Slant Stacking and Linear Moveout

Looking on profiles or gathers for events of some particular stepout
p = dt /dz amounts to scanning hyperbolic events to find the places where
they are tangent to a straight line of slope p. The search and analysis will
be easier if the data is replotted with linear moveout — that is, if energy
located at offset z = g-s and time ¢ in the (z, ¢ )-plane is moved to time
7= 1 —pz in the (z,7)plane. This process is depicted in figure 1. The
linear moveout converts all events stepping out at a rate p in (z, t }space to
“horizontal” events in (z,7)}space. The presence of horizontal timing lines
facilitates the search for and the identification and measurement of the loca-
tions of the events.

X1 X1
- X r — X
t{ !
l\ t}
3]
slope
p = 2
dx
t t

FIG. 5.2-1. Linear moveout converts the task of identifying tangencies to
constructed parallel lines to the task of locating the tops of convex events.

After linear moveout 7 =t - pr, the components in the data that have
Snell parameters near p are slowly variable along the z-axis. To extract
them, apply a low-pass filter on the z-axis, and do so for each value of 7.
The limiting case of low-frequency filtering is extracting the mean. This leads
to the idea of slant stack.

To slant stack, do linear moveout with 7= ¢ — pz, then sum over =z.
This is the same as summing along slanted lines in (¢, z )-space. In either
case, the entire gather P(z,t) gets converted to a single trace that is a
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function of 7.

Slant stack assumes that the sum over observed offsets is an adequate
representation of integration over all offset. The (slanted) integral over offset
will receive its major contribution from the zone in which the path of integra-
tion becomes tangent to the hyperboloidal arrivals. On the other hand, the
contribution to the integral is vanishingly small when the arrival-time curve
crosses the integration curve. The reason is that propagating waves have no
zero-frequency component.

The strength of an arrival depends on the length of the zone of tangency.
The Fresnel definition of the length of the zone of tangency is based on a
half-wavelength condition. In an earth of constant velocity (but many flat
layers) the width of the tangency zone would broaden with time as the hyper-
bolas flatten. This increase goes as V¢, which accounts for half the
spherical-divergence correction. In other words, slant stacking takes us from
two dimensions to one, but a V{ remains to correct the conical wavefront
of three dimensions to the plane wave of two.

Slant-Stack Gathers are Ellipses.

A slant stack of a data gather yields a single trace characterized by the
slant parameter p. Slant stacking at many p-values yields a slant-stack
gather. (Those with a strong mathematical-physics background will note that
slant stacking transforms travel-time curves by the Legendre transformation.
Especially clear background reading is found in Thermodynamics, by H.B.
Callen, Wiley, 1960, pp. 90-95).

Let us see what happens to the familiar family of hyperbolas
1202 = 21-2-{—:1:2 when we slant stack. It will be convenient to consider the
circle and hyperbola equations in parametric form, that is, instead of

t2v2 =1247% we use z = vt cosf and z = vt sinf or z = z tané.

Take the equation for linear moveout
T = t - pzx (1)
and eliminate ¢ and z with the parametric equations.

T = z _ sinb ztanfd = Z cosd (2)
v cos b v v

T = —f—)—\/1~p2v2 (3)

Squaring gives the familiar ellipse equation

2

) -k ®
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A\

FIG. 5.2-2. Travel-time curves for a data gather on a multilayer earth model
of constant velocity before and after slant stacking.

DN
/4

Equation (4) is plotted in figure 2 for various reflector depths z;.

Two-Layer Model

Figure 3 shows the travel times of waves in a two-layer model. As is the
usual case, the velocity is higher in the deeper layer. At the left are the fa-
miliar hyperboloidal curves. Strictly, the top curve is exactly a hyperbola
whereas the lower curve is merely hyperboloidal. The straight line through
the origin represents energy traveling horizontally along the earth’s surface.
The lower straight line is the head wave. (In seismology it is often called the
refracted wave, but this name can cause confusion). It represents a ray that
hits the deeper layer at critical angle and then propagates horizontally along
the interface.

The right side of the figure shows the travel-time curves after slant
stacking. Note that curves cross one another in the (z, ¢ }-space but they do
not cross one another in the (p, 7)-space. The horizontal axis p = dt /dzx
has physical dimensions inverse to velocity. Indeed, the velocity of each layer
may be read from its travel-time curve as the maximum p -value on its ellipse.
The head waves — which are straight lines in (z, t }space — are points in
(p, 7)space located where the ellipsoids touch. The top curve in (p, 7)-space
is exactly an ellipse, and the lower curve is merely ellipsoidal.
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FIG. 5.2-3. Identification of precritical reflection (a ), postcritical reflection
(b), and head wave (c ).

Interval Velocities from Slant Stacks

Section 1.5 showed that downward continuation of Snell waves is purely
a matter of time shift. The amount of time shift depends only on the angle of
the waves. For example, a frequency domain equation for the shifting is

i ZV1-p% (25 2y
P(w7p7z2) = P(w’pyzl)e Y (5)

Downward continuing to the first reflector, we find that the first reflections
should arrive at zero time. In migration it is customary to retard time with
respect to the zero-dip ray. So downward continuation in retarded time
flattens the first reflection without changing the zero-dip ray. Time shifting
the data to align on the first-layer reflection is illustrated by the third panel
in figure 4. The first panel shows the velocity model, and the second panel
shows the slant stacks at the surface. After the first reflector is time aligned,
we have the data that should be observed at the bottom of the first layer.
Now the next deeper curve is an exact ellipse. Estimate the next deeper ve-
locity from that next deeper ellipse. Continue the procedure to all depths.
This method of velocity estimation was proposed and tested by P. Schultz
[1982].

Figure 4 illustrates the difficulty caused by a shallow, high-velocity layer.
Reflection from the bottom of any deeper, lower-velocity layer gives an incom-
plete ellipse. It does not connect to the ellipse above because it seems to want
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— I b
7

FIG. 5.2-4. Schultz flattening on successive layers.

to extend beyond. The large p-values (dotted in the figure) are missing
because they are blocked by the high-velocity (low p ) layer above. The cutoff
in p happens where waves in the high-velocity layer go horizontally. So
there are no head waves on deeper, lower-velocity layer bottoms.

Schultz’s method of estimating velocity from an ellipse proceeds by sum-
ming on scanning ellipses of various velocities and selecting the one with the
most power. So his method should not be troubled by shallow high-velocity
layers. It is interesting to note that when the velocity does increase continu-
ously with depth, the velocity-depth curve can be read directly from the
rightmost panel of figure 4. The velocity-depth curve would be the line con-
necting the ends (maximum p ) of the reflections, i.e. the head waves.

Interface Velocity from Head Waves

The determination of earth velocity from head waves is an old subject in
seismology. Velocity measurement from head waves, where it is possible,
refers to a specific depth —the depth of the interface— so it has even better
depth-resolving power than an interval velocity (the velocity of a depth inter-
val between two reflections).

Traditionally, head-wave velocity analysis involved identification (pick-
ing) of travel times. Travel times are hard to pick out on noisy data. Clay-
ton and McMechan [1981] introduced a new method based on the wavefield
itself, instead of on picked travel times. They did for the velocity analysis of
head waves what wave-equation migration did for reflections.

The same idea for getting velocity from back-scattered head waves on
sections (Section 3.5) can be used on ordinary head waves on common-
midpoint gathers. On gathers you have the extra information not on a sec-
tion that downward continuation focuses energy on zero offset. The focus is
not a featureless point. Take original data to consist of a head wave only,
with no reflection. Downward continuation yields a focus at zero offset. The
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FIG. 5.2-5. The upper figure (23 contains a synthetic head-wave profile (plot-
ted with linear moveout). The data is transformed by slant stack to the lower
half of the figure (b). The result of downward continuation of this slant-
stacked wavefield (b) is shown in figure 6. (Clayton & McMechan)

focus is a concentrated patch of energy oriented with the same stepout
dt /[dh as the original unfocused head wave. Summing through the focus at
all possible orientations (slant stack) transforms the data wu(h,7) to dip
space, say u(p, 7). The velocity of the earth at travel-time depth 7 is
found where the seismic energy has concentrated on the (p,7)-plane. The
velocity is given directly by v(r) =1/p (7). Given wv(7), v(z) is readily
found. Or the entire calculation could be done in depth 2z directly instead
of in travel-time depth 7.

Clayton and McMechan actually do the downward continuation and the
slant stack in the opposite order. They slant stack first and then downward
continue. In principle these processes can be done in either order. Remember
that we are bootstrapping to the correct earth velocity. Slant stacking does
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not depend on the earth’s velocity, but downward continuation does. Slant
stacking need be done only once if it is done first, which is why Clayton and
MecMechan do it that way. Figures 5 and 6 show one of their examples.

p (sec/km)
4940 0.36 0,% 0,25 o
° 3 | a
1
g «
£ g
: Y
'g"'g.s oo 9.8 4.0 4.5 5.0 B.56.0
v (km/sec)

FIG. 5.2-6. The result of downward continuation of the slant-stacked
wavefield in figure 5b with the correct velocity-depth function (the solid line).
(Clayton & McMechan)

Compare the method of Clayton and McMechan to that of Schultz.
Schultz flattens the reflections by a method that is sensitive to the large p
parts of the ellipse. Clayton and McMechan look only at the largest p part of
the ellipse. Schultz has the advantage that a method based on reflection is
not troubled by high-velocity layers, but the disadvantage that decision mak-
ing is required during the descent. Clayton and McMechan present the inter-
preter with a plane of information from which the interpreter selects the ve-
locity. Clayton and McMechan's velocity space is a linear, invertible function
of the data. Section 5.4 will describe a linear, invertible transformation of
reflection data (not head waves) to velocity space.
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Slant Stack and Fourier Transform

Let u(z,t) be a wavefield. The slant stack w(p,7) of the wavefield is
defined mathematically by

w(p,7) = [u(z,7+pz)ds (6)

The integral across z in (6) is done at constant 7, which is a slanting line
in the (z, t }-plane.

Slant stack is readily expressed in Fourier space. The definition of the
two-dimensional Fourier transformation of the wavefield u(z,t) is

Uk,w) = ffei‘”t"ik"u(x,t)dx dt (7)

Recall the definition of Snell’s parameter in Fourier space p = k /w and use
it to eliminate k& from the 2-D Fourier transform (7).

U(wp,w) = ffei“’(t"”z)u(z,t)dx dt (8)
Change the integration variable from ¢t to 7=1 - pz.
Uwp,w) = [e'“" [fu(z,7+pz)ds |dT (9)
Insert the definition (6) into (9).
Uwp,w) = fe“‘” (p,7)dr (10)

Think of U(wp,w) as a one-dimensional function of w that is extracted
from the (k, w)-plane along the line &k = wp.

The inverse Fourier transform of (10) is

T(p,7) = fe"-“”'U(wp,w)dw (11)

The result (11) states that a slant stack can be created by Fourier-
domain operations. First you transform u(z,t) to U(k,w). Then extract
U(wp,w) from U(k,w). Finally, inverse transform from w to 7 and
repeat the process for all interesting values of p.

Getting U(wp,w) from U(k,w) seems easy, but this turns out tc be
the hard part. The line k¥ = wp will not pass nicely through all the mesh
points (unless p = At /Az) so some interpolation must be done. As we have
seen from the computational artifacts of Stolt migration, Fourier-domain
interpolation should not be done casually. Interpolation advice is found in
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Section 4.5.

Both (6) and (11) are used in practice. In (6) you have better control of
truncation and aliasing. For large datasets, (11) is much faster.

Inverse Slant Stack

Tomography in medical imaging is based on the same mathematics as
inverse slant stack. Simply stated, (two-dimensional) tomography or inverse
slant stacking is the reconstruction of a function given line integrals through
it. The inverse slant-stack formula will follow from the definition of two-
dimensional Fourier integration:

u(z,t) = fe_i“’t [feikx Uk,w)dk | dw (12)

Substitute k& =wp and dk =wdp into (12). Notice that when w is
negative the integration with dp runs from positive to negative instead of
the reverse. To keep the integration in the conventional sense of negative to
positive, introduce the absolute value |w|. (More generally, a change of

variable of volume integrals introduces the Jacobian of the transformation).
Thus,

u(z,t) = [e W [[et“r U(wp,w) |w| dp | dw (13)
u(z,t) = [{[e ™ [Uwp,w)e'“P* |w|]|dw}dp (14)

Observe that the { } in (14) contain an inverse Fourier transform of a product
of three functions of frequency. The product of three functions in the w-
domain is a convolution in the time domain. The three functions are first
U(wp,w), which by (11) is the FT of the slant stack. Second is a delay
operator e'“P?  i.e an impulse function of time at time pz. Third is an
|w]| filter. The |w| filter is called a rho filter. The rho filter does not
depend on p so we may separate it from the integration over p. Let ‘“‘x”
denote convolution. Introduce the delay pr as an argument shift. Finally
we have the inverse slant-stack equation we have been seeking:

u(z,t) = rho(t)* [ T(p, t-pz) dp (15)

It is curious that the inverse to the slant-stack operation (6) is basically
another slant-stacking operation (15) with a sign change.
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Plane-Wave Superposition

Equation (15) can be simply interpreted as plane-wave superposition. To
make this clear, we first dispose of the rho filter by means of a definition.

u(p,7) = rho(r)* uw(p,7) (16)

Equation (16) will be seen to be more than a definition. We will see that
u(p,7) can be interpreted as the plane-wave spectrum. Substituting the
definition (16) into both (15) and (6) gives another transform pair:

u(z,t) = [u(p,t-pz)dp (17)

w(p,7) = rho(r)* [u(z, 7+ pz)ds (18)

To confirm that % (p,7) may be interpreted as the plane-wave spec-
trum, we take u(p,7) to be the impulse function &(p —py) &(r—17,) and
substitute it into (17). The result wu(z,t)= 6(t — pyz - 75) is an impulsive
plane wave, as expected.

Reflection Coefficients — Spherical versus Planar

The amplitudes that you see on the reflected waves on a field profile are
affected by many things. Assume that corrections can be made for the spheri-
cal divergence of the wave, the transmission coefficients through the layers,
inner bed multiples, etc. What remains are the spherical-wave reflection
coefficients. Spherical-wave reflection strengths are not the same as the
plane-wave reflection coefficients calculated in FGDP or by means of Zoep-
pritz [1919] equations. Theoretical analyses of reflection coefficient strengths
are always based on Fourier analysis. Equations (17) and (18) provide a link
between plane-wave reflection coefficients and cylindrical-wave reflection
coefficients. See page 196 for going from cylinders to spheres.

The Rho Filter

In practical work, the rho filter is often ignored because it can be
absorbed into the rest of the filtering effects of the overall data recording and
processing activity. However, the rho filter is not inconsequential. The
integrations in the slant stack enhance low frequencies, and the rho filter
pushes them back to their appropriate level. Let us inspect this filter. The
rho filter has the same spectrum as does the time derivative, but their time
functions are very different. The finite-difference representation of a time
derivative is short, only At in time duration. Because of the sharp corner
in the absolute-value function, the rho filter has a long time duration. The
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Hilbert kernel -1/t has a Fourier trapnsform ¢ sgn(w). Notice that
|w| =(-tw) X 1 sgn(w). In the time domain this means that
d/dt(-1/t)=1/t% so rho(t) =1/t

An alternate view is that the rho filter should be divided into two parts,
with half going into the forward slant stack and the other half into the
inverse. Then slant stacking would not cause the power spectrum of the data
to change. An interesting way to divide the |w| is |w| = vVoiw Viw. Tt
was shown in Section 4.6 that V—iw is a causal time function and Viw is
anticausal. More details about slant stacks are found in Phinney et al. [1981]

In practice, slant stack is not so cleanly invertible as 2-D FT, so various
iteration and optimization techniques are often used.

EXERCISES

1. Assume that v(z)= const and prove that the width of a Fresnel zone
increases in proportion to Vit .

2.  Given v(z), derive the width of the Fresnel zone as a function of ¢.

5.3 Snell Waves and Skewed Coordinates

Slant stacks are closely related to Snell waves. But there is more to it
than that. Three different types of gathers (CSP, CGP, and CMP) can be
slant stacked, and the meaning is different in each case.

A Snell wave can be synthesized by slant stacking ordinary reflection
data. Snell waves are described by wave-propagation theory. You can expect
to be able to write a wave equation that really describes the Snell wave
despite complexities of lateral velocity variation, multiple reflections, shear
waves, or all these complications at once. Contrast this to a CDP stack
where downward continuation is already an approximation even when velocity
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is constant. Of course we can always return to data analysis in shot-geophone
space. But the slant stack is a stack, and that means there is already some
noise reduction and data compression.

Snell Wave Information in Field Data

The superposition principle allows us to create an impulse function by a
superposition of sinusoids of all frequencies. A three-dimensional generaliza-
tion is the creation of a point source by the superposition of plane waves
going in all directions. Likewise, a plane wave can be a superposition of many
Huygens secondary point sources. A Snell wave can be simulated by an
appropriate superposition, called a slant stack, of the point-source data
recorded in exploration.

Imagine that all the shots in a seismic survey were shot off at the same
time. The downgoing wave would be approximately a plane wave. (Let us
ignore the reality that the world is 3-D and not 2-D). The data recorded from
such an experiment could readily be simulated from conventional data simply
by summing the data field P(s,g,t) over all s. In each common-
geophone profile the traces would be summed with no moveout correction.

To simulate a nonvertical Snell wave, successive shots must be delayed

(to correspond to a supersonic airplane), according to some prescribed
p, =dt/ds.

What happens if data is summed over the geophone axis instead of the
shot axis? The result is point-source experiments recorded by receiver anten-
nas that have been highly tuned to receive vertically propagating waves.
Time shifting the geophones before summation simulates a receiver antenna
that records a Snell wave, say, p, = dt /dg upcoming at an angle
sin § = Py V.

Integration over an axis is an extreme case of low-pass filtering over an
axis. Between the two extremes of the point-source case and the plane-wave
case is the case of directional senders and receivers.

The simple process of propagation spreads out a point disturbance to a
place where, from a distance, the waves appear to be nearly plane waves or
Snell waves. Little patches of data where arrivals appear to be planar can be
analyzed as though they were Snell waves.

In summary, a downgoing Snell wave is achieved by dip filtering in shot
space, whereas an upcoming Snell wave is achieved by dip filtering in geo-
phone space.
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Muting and Data Recording

The basic goal of muting is to remove horizontally moving energy. Such
energy is unrelated to a deeper image. Typically muting is performed as
described in Section 3.5 — that is, a weighting function zeroes data generally
beyond some value of (g-s)/t. There is no question that muting removes
much horizontally moving energy, but more can be done. Because of back-
scattering, horizontally moving energy can often be found inside the mute
zone. The way to get rid of it is to use a dip filter instead of a weighting
function. Before modern high-density recording, slow moving noises were
often aliased on the geophone cable, so dip filtering wasn’t feasible. If the
emergent angle isn’t close enough to vertical, that is, if dt /dg isn’t small
enough, then the waves can’t have come from the exploration target. On
explosion data, filtering is not so easily applied in shot space as it is in geo-
phone space because data is not very densely recorded in shot space. Don’t
fall into the trap of thinking that this dip filtering can be done on a common-
mid point gather. Back-scattered ground roll has no moveout on a common-
midpoint gather (see Section 3.2).

Marine water-bottom scatter is frequently so strong that it is poorly
suppressed by conventional processing. In Section 3.2 we saw the reason:
point scatterers imply hyperbolic arrivals, which have steep dip, hence they
have the stacking velocities of sediment rather than water. What is needed
are two dip filters — one to reject waves leaving the shots at nonpenetrating
angles, and the other to reject waves arriving at the geophones at non-
penetrating angles.

Present-day field arrays filter on the basis of spatial frequency k_.. More
high-frequency energy would be left in the data if the recording equipment
used dip (k /w) filters instead of spatial-frequency k filters. The causal dip
filters described in Section 2.5 might work nicely.

Synthesizing the Snell Wave Experiment

Let us synthesize a downgoing Snell wave with field data, then imagine
how the upcoming wave will look and how it will carry to us information
about the subsurface.

Slant stacking will take the survey line data P (s, ¢, t), which is a func-
tion of shot location s, geophone location ¢, and travel time ¢, and sum
over the shot dimension, thereby synthesizing the upcoming wave U(g,t),
which should have been recorded from a downgoing Snell wave. This should
be the case even though there may be lateral velocity variation and multiple
reflections.
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The summation process is confusing because three different kinds of time
are involved:

t = travel time in the point-source field experiments.

t! = t -p(g —s) = interpretation time. The shal-
lowest reflectors are seen just after ¢/ = 0.

t pseudo =  time in the Snell pseudoexperiment with a mov-
ing source.

Time in the pseudoexperiment in a horizontally layered earth has the peculiar
characteristic that the further you move out the geophone axis, the later the
echoes will arrive. Transform directly from the field experiment time ¢ to
interpretation time t' by

t' = tieudo — P T = t-plg-s) (1)

Figure 1 depicts a downgoing Snell wave.

2 e

fron

B

FIG. 5.3-1. Wavefront of a Snell wave that reflects from two layers, carrying
information back up to g¢,.

Figure 2 shows a hypothetical common-geophone gather, which could be
summed to simulate the Snell wave seen at location ¢, in figure 1. The
lateral offset of B from C is identical in figure 1 with that in figure 2 (at
two places in figure 2). Repeating the summation for all geophones syn-
thesizes an upcoming wave from a downgoing Snell wave.
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input data shifted for firing after firing
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FIG. 5.3-2. On the left is a common-geophone gather at ¢, over two flat

reflectors. In the center the data is shifted by linear moveout in preparation
for the generation of the synthetic Snell wave by summation over shots. On
the right is shown the Snell wave trace recorded at geophone g¢;. A Snell

wave seismic section consists of many side-by-side traces like g¢ ;.

The variable ¢’ may be called an interpretation coordinate, because
shallow reflectors are seen just after ¢’ = 0, and horizontal beds give echoes
that arrive with no horizontal stepout, unlike the pseudo-Snell wave. For
horizontal beds, the detection of lateral location depends upon lateral change
in the reflection coefficient. In figure 1, the information about the reflection
strength at B is recorded rightward at ¢, instead of being seen above B,
where it would be on conventional stack. The moving of received data to an
appropriate lateral location is thus an additional requirement for full interpre-
tation.

Figure 3 shows the same two flat layers as figures 1 and 2, but there are
also anomalous reflection coefficients at points 4, B, and C. Point A is
directly above point B. The path of the wave reflected at B leads directly
to C and thence to g,. Subsequent frames show the diffraction hyperbolas

associated with these three points. Notice that the pseudo-Snell waves
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model Snell wave
g1 A C g1
——0-0- - g -8
A C
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partial interpretation Sfull interpretation
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7
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FIG. 5.3-3. Top left is three point scatterers on two reflectors. Top right is
the expected Snell wave. Bottom left is the Snell wave after linear moveout.
Bottom right is after transform to full interpretation coordinates. At last a,
b,and ¢ are located where A, B,and C began.
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reflecting from the flat layers step out at a rate p. Hyperbolas from the
scatters A, B, and C come tangent to the Snell waves at points a, b,
and c¢. Notice that & and ¢ lie directly under g; because all are
aligned along a raypath with Snell parameter p. The points A, B,and C
locate the tops of the hyperbolas since the earliest arrival must be directly
above the point scatterer, no matter what the incident wavefield. Converting
to the interpretation coordinate t’ in the next frame offers the major advan-
tage that arrivals from horizontal layers become horizontal. But notice that
the hyperboloids have become skewed. Limiting our attention to the arrivals
with little stepout, we find information about the anomalous reflection
coefficients entirely in the vicinities of a, b, and ¢, which points originally
lay on hyperbola flanks. These points will not have the correct geometrical
location, namely that of A, B and C, until the data is laterally shifted to
the left, to, say, ¢’ =g¢ — f (t'). Then a will lie above b. The correct
amount of shift f (¢') is a subject that relates to velocity analysis. The ve-
locity analysis that pertains to this problem will be worked out in the next
section.

What’s Wrong with Snell Waves?

Before the DSR was developed, I thought that the only proper way to
analyze seismic data was to decompose it into Snell waves. Since a Fresnel
zone seems to be about 10° wide, not many Snell waves should be required.
The small number of required sections was important because of the limited
power of computers in the 1970’s. I knew that each Snell wave is analyzable
by a single square-root equation, and that even multiple reflections can be
handled by methods described in FGDP and here in Section 5.6. Theoreti-
cally this approach was a big improvement over CDP stack, which is hardly
analyzable at all. A practical problem for downgoing Snell waves, however, is
that they may become complicated early if they encounter lateral velocity
inhomogeneity shortly after they depart the earth’s surface. I no longer
believe that Snell waves are a panacea, although I am unsure what their ulti-
mate role will be. But many waves behave a little like they are Snell waves.
This motivates the development of a coordinate system that is ideal for Snell
waves, and good for waves that are not far from being Snell waves.
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Lateral Invariance

The nice thing about a vertically incident source of plane waves p =0
in a horizontally stratified medium is that the ensuing wavefield is laterally
invariant. In other words, an observation or a theory for a wavefield would in
this case be of the form P(t) X const(z). Snell waves for any particular
nonzero p -value are also laterally invariant. That is, with

t! = t-pz (2a)

! = z (2b)

lateral invariance is given by the statement
P(z,t) = P'(t') X const(z') (3)

Obviously, when an apparently two-dimensional problem can be reduced to
one dimension, great conceptual advantages result, to say nothing of sampling
and computational advantages. Before proceeding, study equation (3) until
you realize why the wavefield can vary with z but be a constant function of
z'! when (2b) says z = z’.

The coordinate system (2) is a retarded coordinate system, not a moving
coordinate system. Moving coordinate systems work out badly in solid-earth
geophysics. The velocity function is never time-variable in the earth, but it
becomes time-variable in a moving coordinate system. This adds a whole
dimension to computational complexity.

The goal is to create images from data using a model velocity that is a
function of all space dimensions. But the coordinate system used will have a
reference velocity that is a function of depth only.

Snell Wave Coordinates

A Snell wave has three intrinsic planes, which suggests a coordinate sys-
tem. First are the layer planes of constant z, which include the earth’s sur-
face. Second is the plane of rays. Third is the moving plane of the wave-
front. The planes become curved when velocity varies with depth.

The following equations define Snell wave coordinates:

2'(z,z,t) = cozé’ (4a)
z'(z,z,t) = ztand + z (4b)
t'z,z,t) = °°zo o Smd (4c)
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Equation (4a) simply defines a travel-time depth using the vertical phase
velocity seen in a borehole. Interfaces within the earth are just planes of con-
stant z’.

Setting z' as defined by equation (4b) equal to a constant, say, T,
gives the equation of a ray, namely, (z —z,)/2 = —tan 6. Different values
of z are different rays.

Setting t' as defined by equation (4c) equal to a constant gives the
equation for a moving wavefront. To see this, set ¢’ = t, and note that at

constant z you see the borehole speed, and at constant z you see the air-
plane speed.

Mathematically, one equation in three unknowns defines a plane. So, set-
ting the left side of any of the equations (4a,b,c) to a constant gives an equa-
tion defining a plane in (2, z, t }-space. To get some practice, we will look at
the intersection of two planes. Staying on a wavefront requires dt’ = 0.
Using equation (4c) gives

' =0 = 88 4, S8 4Ly (5)

v v

Combining the constant wavefront equation dt’ = 0 with the constant depth
equation dz' = dz = 0 gives the familiar relationship

dt

- = P (6)

When coordinate planes are nonorthogonal, the coordinate system is said
to be affine. With affine coordinates, such as (4), we have no problem with
computational tractability, but we often do have a problem with our own con-
fusion. For example, when we display movies of marine field data, we see a
sequence of (h, t)-planes. Successive planes are successive shot points. So
the data is displayed in (s, h) when we tend to think in the orthogonal
coordinates (y, h) or (s, ¢g). With affine coordinates I find it easiest to for-
get about the coordinate axis, and think instead about the perpendicular
plane. The shot axis s can be thought of as a plane of constant geophone,
say, c¢g. So I think of the marine-data movie as being in (cs, ck, ct }space.
In this movie, another plane, really a family of planes, the planes of constant
midpoints cy, sweep across the screen, along with the “texture” of the data
(Section 3.0).

To define Snell coordinates when the velocity is depth-variable, it is only
necessary to interpret (4) carefully. First, all angles must be expressed in
terms of p by the Snell substitution sin§ = p v(z). Then z must every-
where be replaced by the integral with respect to z.
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Snell Waves in Fourier Space

The chain rule for partial differentiation says that

! ! )

9, t', z', 2 Oy
— ' ' '

0, = t', =', 2, Oy
! ! !

62 t', =', z', 82'

In Fourier space, equations (7a) and (7b) may be interpreted as
—tw = -1«

ik, = +pd + ik]

T

(7a,b,c)

(8a)
(8b)

Of particular interest is the energy that is flat after linear moveout (constant
with z’). For such energy 9/0z' =i k! = 0. Combining (8a) and (8b)

gives the familiar equation

EXERCISES

Explain the choice of sign of the s-axis in figure 1.

(9)

2. Equation (4) is for upgoing Snell waves. What coordinate system would

be appropriate for downgoing Snell waves?

3. Express the scalar wave equation in the coordinate system (4). Neglect

first derivatives.

4. Express the dispersion relation of the scalar wave equation in terms of

the Fourier variables (&', k., k).
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5.4 Interval Velocity by Linear Moveout

Linear moveout forms the basis for a simple, graphical method for finding
seismic velocity. The method is particularly useful for the analysis of data
that is no longer in a computer, but just exists on a piece of paper. Addition-
ally, the method offers insights beyond those offered by the usual computer-
ized hyperbola scan. Using it will help us rid ourselves of the notion that
angles should be measured from the vertical ray. Non-zero Snell parameter
can be the ‘‘default.”

Ultimately this method leads to a definition of velocity spectrum, a plane
in which the layout of data, after a linear invertible transformation, shows the
seismic velocity.

Graphical Method for Interval Velocity Measurement
A wave of velocity v from a point source at location (z, z) = (0, 2, )
passes any point (z,z) at time t where

v21?2 = 224 (2 -2,)? (1)

In equation (1) z should be replaced by either half-offset h or midpoint y.
Then t is two-way travel time; the velocity v 1is half the rock velocity; and
(z —2,) is the distance to an image source.

Differentiating (1) with respect to ¢t (at constant z) gives

dz

29t = 923 —

v T (2)
e _ T dr
v t dt (3)

Figure 1 shows that the three parameters required by (3) to compute the
material velocity are readily measured on a common-midpoint gather.

Equation (3) can be used to estimate a velocity whether or not the earth
really has a constant velocity. When the earth velocity is stratified, say,
v(z), it is easy to establish that the estimate (3) is exactly the root-mean-
square (RMS) velocity. First recall that the bit of energy arriving at the point
of tangency propagates throughout its entire trip with a constant Snell pa-
rameter p = dt /dx.
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FIG. 5.4-1. A straight line, drawn tangent to hyperbolic observations. The
slope p of the line is arbitrary and may be chosen so that the tangency
occurs at a place where signal-to-noise ratio is good. (Gonzalez)

The best way to specify velocity in a stratified earth is to give it as some
function v'(z). Another way is to pick a Snell parameter p and start des-
cending into the earth on a ray with this p. As the ray goes into the earth
from the surface z =0 at t = 0, the ray will be moving with a speed of,
say, v(p,t). It is an elementary exercise to compute v(p,t) from v'(z)
and vice versa. The horizontal distance z which a ray will travel in time ¢
is given by the time integral of the horizontal component of velocity, namely,

t
T = {v(p,t)sin()dt (4)

Replacing siné by pv and taking the constant p out of the integral
yields

t
gz = p [v(p,t)dt (5)
0

Recalling that p = dt /dz, insert(5) into (3):

2 T dr

Y measured = T dt (6)

1 t

2 2

Y measured _t- f v (P ’ t) dt (7)

0

which justifies the assertion that

Y measured = vroot-mean-aquarc = UrMS (8)

Equation (7) is exact. It does not involve a ‘“small offset” assumption or a
“straight ray’’ assumption.
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Next compute the interval velocity. Figure 2 shows hyperboloidal
arrivals from two flat layers. Two straight lines are constructed to have the
same slope p. Then the tangencies are measured to have locations (z,,t;)
and (4, ty). Combining (6) with (4), and using the subseript j to denote
the 5'® tangency (:l:j b ), gives

B, o = {v(p,t)2dt (9)

Assume that the velocity between successive events is a constant v
and subtract (9) with j+1 from (9) with j to get

dr 2
(‘Tj—f-l - mj) _Et- = (t1'+1 - tj) Y interval (10)

tnterval

X1 X2

FIG. 5.4-2. Construction of two parallel lines on a common-midpoint gather
which are tangent to reflections from two plane layers. (Gonzalez)

Solving for the interval velocity gives

i1~ % dx (11)
-t dt

2 —
Vinterval = '
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So the velocity of the material between the j® and the j+1%
reflectors can be measured directly using the square root of the product of the
two slopes in (11), which are the dashed and solid straight lines in figure 2.
The advantage of manually placing straight lines on the data, over automated
analysis, is that you can graphically visualize the noise sensitivity of the meas-
urement, and you can select on the data the best offsets at which to make the
measurement.

If you do this routinely you quickly discover that the major part of the
effort is in accurately constructing two lines that are tangent to the events.
When you run into difficulty, you will find it convenient to replot the data
with linear moveout ¢! =t — pz. After replotting, the lines are no longer
sloped but horizontal, so that any of the many timing lines can be used.
Locating tangencies is now a question of finding the tops of convex events.
This is shown in figure 3.

7z

vt *t’=t—pz

FIG. 5.4-3. Measurement of interval velocity by linear moveout. (Gonzalez)
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In terms of the time t', equation (11) is

0 . 1 1 1 1
Vinterval = Al ; = A ;‘ (12)
Az Az T

Earth velocity is measured on the right side of figure 3 by measuring the slope
of the dashed line, namely At’/Az, and inserting it into equation (12).
(The value of p is already known by the amount of linear moveout that was
used to make the plot).

Common-Midpoint Snell Coordinates

Common-midpoint slanted wave analysis is a more conservative approach
to seismic data analysis than the Snell wave approach. The advantage of
common-midpoint analysis is that the effects of earth dip tend to show up
mainly on the midpoint axis, and the effect of seismic velocity shows up
mainly on the offset axis. Our immediate goal is to define an invertible,
wave-equation approach to determination of interval velocity.

The disadvantage of common-midpoint analysis is that it is nonphysical.
A slant stack at common geophone simulates a downgoing Snell wave, and
you expect to be able to write a differential equation to describe it, no matter
what ensues, be it multiple reflection or lateral velocity wvariation. A
common-midpoint slant stack does not model anything that is physically real-
izable. Nothing says that a partial differential equation exists to extrapolate
such a stack. This doesn’t mean that there is necessarily anything wrong
with a common-midpoint coordinate system. But it does make us respect the
Snell wave approach even though its use in the industrial world is not exactly
growing by leaps and bounds.

(Someone implementing common-midpoint slant stack would immediately
notice that it is easier than slant stack on common-geophone data. This is
because at a common midpoint, the tops of hyperboloids must be at zero
offset, the location of the Fresnel zone is more predictable, and interpolation
and missing data problems are much alleviated).

Seismic data is collected in time, geophone, shot, and depth coordinates
(t,g9,s,2). A new four-component system will now be defined. Midpoint is
defined in the usual way:

+ s
y(t,g,8,2) = g2 (13)

Travel-time depth is defined using the vertical phase velocity in a borehole.
Two-way travel times are used, in order to be as conventional as possible:
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cos 0
v

1(t,g,s,z) = 22z (14)

Next the surface offset A’ is defined. We will not use the old definition of
offset. For this method, shots and geophones should not go straight down,
but along a ray. This can be soif k' is defined as follows:

h'(t,g,s,2) = g;s+ztan0 (15)

With this new definition of h' the separation of the shot and geophone
decreases with depth for constant h'.

Define the LMO time as the travel time in the point-source experiment
less the linear moveout. So, at any depth, the LMO timeis ¢t —p(g-s). As
k' was defined to be the surface half-offset, t’ is defined to be the surface
LMO time. From the LMO time of a buried experiment, the LMO time at
the surface is defined by adding in the travel-time depth of the experiment:

t! = t-p(g-s)+r (16)

You may like to think of (16) as a “slant” on time retardation for upcoming
waves, say, t' = t;y0 + 2,0, /v. Formally,

cos

t'(t,g,8,2) = t-p(g-s)+2z (17)

Figure 4 is a geometrical representation of these concepts.

From the geometry of figure 4 it will be deduced that a measurement of
a reflection at some particular value of (h', t’) directly determines the veloci-
ty. Write an equation for the reflector depth:
B!

t’
—_ h’] 6 = reflector depth = 8
v [ 5 TP cos reflector dep — (18)

Using Snell’s law to eliminate angles and solving for velocity gives

v = _1_ _.__1.__ (19)
P ¢!
P+
2h

This is consistent with equation (12).

Gathering the above definitions into a group, and allowing for depth-
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FIG. 5.4-4. The CMP-LMO coordinate frame geometry. This is a natural
coordinate system for describing waves that resemble a reference Snell wave.

variable velocity by replacing z by the integral over z, we get

F4
t'(t,g,8,2) = t~p(g—s)+2fCO59 dz (20a)
0
y(t,g,s,2) = L12 (20)
F
h'(t,g,8,2) = 92—8+ftan0dz (20¢)
0
¢ cos 6
t,g,s,2) = 2] coz dz (20d)
0
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Before these equations are used, all the trigonometric functions must be
eliminated by Snell’s law for stratified media, sin §(z) = p v(z). Snell’s pa-
rameter p is a numerical constant throughout the analysis.

The equation for interval velocity determination (12) again arises when
dt'/dz from (20a) and dh'/dz from (20c) are combined:

dt'  2cosé

—_— = 21
dh' v tan 6 (21)

Eliminating the trig functions with p v = sin § allows us to solve for the
interval velocity:

(22)

dt’
dh'

1
1
+ —
PTa
At the earth’s surface z = 0, seismic survey data can be put into the
coordinate frame (20) merely by making a numerical choice of p and doing
the linear moveout. No knowledge of velocity v (z) is required so far. Then
we look at the data for some tops of the skewed hyperbolas. Finding some,
we use equation (12), (19) or (22) to get a velocity with which to begin down-
ward continuation.

Waves can be described in either the (¢,g¢,s,2) physical coordinates
or the newly defined coordinates (t’,y,h’, 7). In physical coordinates the
image is found at

t = 0 and g = s (23a,b)

To express these conditions in the Snell coordinates, insert (23) into (20a) and
(20d). The result is what programmers call the stopping condition:

t! = 7 (24)

This is the depth at which the velocity information should be best focused in
the (h', t'}-plane. Next some downward-continuation equations.

Differential Equations and Fourier Transforms

The chain rule for partial differentiation gives

'atW Pt't v k' o7 T —at'j
9, tly vy by 1 9y
36 - t’a Ys h ,s Ty ah' (25)
az t'z Y, h ’z T2 ar
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In our usual notation the Fourier representation of the time derivative 9, is
—tw. Likewise, 8,/ and the spatial derivatives (ay yOp1, 0, Bg ,0,,0,) are
associated with i(ky, ki, ko, Icg yk,,k,). Using these Fourier variables in
the vectors of (25) and differentiating (20) to find the indicated elements in
the matrix of (25), we get

[ . B
] B 0 o0 0 o |
kg -p 1/2 1/2 0 ky (26 b d)
= a” 7c7
k, p 1/2-12 O ky
k, 2 cos § 0 tan @ 2 cos § krj
[ © ] | v v |t

Let S be the sine of the takeoff angle at the source and let G be the
sine of the emergent angle at the geophone. If the velocity v is known, then
these angles will be directly measurable as stepouts on common-geophone
gathers and common-shot gathers. Likewise, on a constant-offset section or a
slant stack, observed stepouts relate to an apparent dip Y, and on a linearly
moved-out common-midpoint gather, stepouts measure the apparent stepout
H'. The precise definitions are

v k, v kg

S = " G = ” (27a,b)
v k v k

Y = ! H = 2:' (27¢,d)

With these definitions (26b) and (26¢) become
G = pv+Y+H = Y+(H +pv) (28a)
S = pv+Y-H = Y-(H+pv) (28b)

The familiar offset stepout angle H is related to the LMO residual stepout
angle H' by H'= H -pv. Setting H' equal to zero means setting &,
equal to zero, thereby indicating integration over h', which in turn indicates
slant stacking data with slant angle p. Small values of H'/v or ky//w
refer to stepouts near to p.

Processing Possibilities

The double-square-root equation is

Zzo_ _%(\/1_S2+V1—G2) (29)
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With substitutions (26a,d), and (27a,b) the DSR equation becomes

L T [1_2pv(H'—Y)+(H'—Y)2 }”2
w 1-p2p2 2 1-p2v?
' ! 2 1/2
4 1_2pv(H +Y)+ (H' +Y) } } (30)
1—p2v2

Equation (30) is an exact representation of the double-square-root equa-
tion in what is called retarded Snell midpoint coordinates.

The coordinate system (20) can describe any wavefield in any medium.
Equation (20) is particularly advantageous, however, only in stratified media
of velocity near v(z) for rays that are roughly parallel to any ray with the
chosen Snell parameter p. There is little reason to use these coordinates
unless they “fit” the wave being studied. Waves that fit are those that are
near the chosen p wvalue. This means that H' doesn’t get too big. A
variety of simplifying expansions of (30) are possible. There are many permu-
tations of magnitude inequalities among the three ingredients pv, H’', and
Y. You will choose the expansion according to the circumstances. The
appropriate expansions and production considerations, however, have not yet
been fully delineated. But let us take a look at two possibilities.

First, any dataset can be decomposed by stepout into many datasets,
each with a narrow bandwidth in stepout space — CMP slant stacks, for
example. For any of these datasets, H' could be ignored altogether. Then
(30) would reduce to

1/2 1/2
_k_r=1_l{ [1_—2va+Y2 ] /+[1_+2va+Y2 ]/ } s1a)
w 2 1-p2y2 1-p2p2
or
k
T =1- 1 [\/1—(Y—pv)2+\/1—(Y+pv)2] (31b)
w 2 1—p2U2

The above approach is similar to the one employed by Richard Ottolini in his
dissertation.

Next, let us make up an approximation to (30) which is separable in Y
and H'’. We will be using separation methodology introduced in Section 3.4.
Equation (31b) provides the first part. Then take Y =0 and keep all terms
up to quadratics in H':

k 2
_T = _._11____ (32)
w 2(1 - p20?)? |
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A separable approximation of (30) is (31b) plus (32). It is no accident
that there are no linear powers of H' in (32). The coordinate system was
designed so that energy near the chosen model ¥ =0 and H = pv should
not drift in the (A’, t’}-plane as the downward continuation proceeds.

The velocity spectrum idea represented by equation (32) is to use the H'
term to focus the data on the (h', t'}-plane. After focusing, it should be pos-
sible to read interval velocities directly as slopes connecting events on the
gathers. This approach was used in the dissertation of Alfonso Gonzalez
[1982].

EXERCISE

1. A hyperbola is identified on a zero-offset section. The top is obscured
but you can measure (p,z,t) at two places. What is the earth veloci-
ty? Given the same measurements on a field profile (constant s ) what is
the earth velocity?

5.5 Multiple Reflection, Current Practice

Near the earth’s surface are a variety of unconsolidated materials such as
water, soil, and the so-called weathered zone. The contrast between these
near-surface materials and the petroleum reservoir rocks below is often severe
enough to produce a bewildering variety of near-surface resonances. These
resonance phenomena are not predicted and cannot be explained by the
methods described in previous chapters.

Hard Sea Floor Example

Figure 1 shows textbook-quality multiple reflections from the sea floor.
Hyperbolas v2t2-22= z]-2 appear at uniform intervals z; = ] AZ,
7=0,1,2, - - -. The data is unprocessed other than by multiplication by a
spherical divergence correction ¢. Air is slower and lighter than water while
sea-floor sediment is almost always faster and denser. This means that
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successive multiple reflections almost always have alternating polarity. The
polarity of a seismic arrival is usually ambiguous, but here the waveform is
distinctive and it clearly alternates in polarity from bounce to bounce. The
ratio of amplitudes of successive multiple reflections is the reflection
coefficient. In figure 1, the reflection coefficient seems to be about — 0.7. Mul-
tiply reflected head waves are also apparent, as are alternating polarities on
them. Since the head-wave multiple reflections occur at critical angle, they
should have a -1.0 reflection coefficient. We see them actually increasing
from bounce to bounce. The reason for the increase is that the spherical-
divergence correction is based on three-dimensional propagation, while the
head waves are really spreading out in two dimensions.

Multiple reflections are fun for wave theorists, but they are a serious
impediment to geophysicists who would like to see the information-bearing
primary reflections that they mask.

Deconvolution in Routine Data Processing

The water depth in figure 1 is deeper than typical of petroleum prospect-
ing. Figures 2 and 3 are more typical. In figure 2, the depth is so shallow it
is impossible to discern bounces. With land data the base of the weathered
zone is usually so shallow and indistinct that it is generally impossible to dis-
cern individual reflections. The word shallow as applied to multiple reflections
is defined to mean that the reflections reoccur with such rapidity that they
are not obviously distinguished from one another.

Statisticians have produced a rich literature on the subject of deconvolu-
tion. For them the problem is really one of estimating a source waveform,
not of removing multiple reflections. There is a certain mathematical limit in
which the multiple-reflection problem becomes equivalent to the source-
waveform problem. This limit holds when the reverberation is confined to a
small physical volume surrounding the shot or the geophone, such as the soil
layer. The reason that the source-waveform and multiple-reflection problems
are equivalent in this limit is that the downgoing wave from a shot is not sim-
ply intrinsic to the shot itself but also includes the local soil resonances. The
word ghost in reflection seismology refers to the reflection of the source pulse
from the surface (or sometimes from the base of the weathered layer).
Because the source is so near to these reflectors, we often regard the ghost as
part of the source waveform too.

An extensive literature exists on the vertical-incidence model of multiple
reflections. Among wave-propagation theorists, the removal of all multiples is
called tnverston. It seems that for inversion theory to be applicable to the
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real problem, the theory must include a way to deal with an unknown, spec-
trally incomplete, shot waveform.

Routine work today typically ignores inversion theory and presumes the
mathematical limit within which multiples may be handled as a shot
waveform. The basic method was first developed for the industry by
Schneider, Larner, Burg, and Backus [1964] of GSI (figure 2). Despite many
further theoretical developments and the continuing active interest of many
practical workers, routine deconvolution is little changed.
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IG. 5.5-2. Field profiles before (left) and after (right) deconvolution. (distri-
uted by GSI, circa 1965)

o

Conventional industrial deconvolution (figure 2) has many derivations
and interpretations. I will state in simple terms what I believe to be the
essence of deconvolution. Every seismogram has a spectrum. The spectrum
is a product of many causes. Some causes are of fundamental interest. Oth-
ers are extraneous. It is annoying when a seismogram is resonant just because
of some near-surface phenomena. Deconvolution is basically a process in
which strong resonances are measured, and then a filter is designed to
suppress them. The filter is designed to have a spectrum that is roughly
inverse to the spectrum of the raw data. Thus the output of the filter is
roughly white (equal amounts of all frequencies). From the earliest times,
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seismologists have found that reflection seismic data rarely makes sense much
outside the frequency band 10-100 Hz, so as a final step, frequencies outside
the band are removed. (The assumption that the output spectrum should be
white seems to most seismologists to be a weak assumption, but practice usu-
ally shows it better than interpreting earth images from raw data).

Another nonmathematical explanation of why deconvolution is a success
in practice is that it equalizes the spectrum from trace to trace. It balances
the spectra (Tufekcic et al {1981]). Not only is it annoying when a seismo-
gram is resonant just because of some near-surface phenomena, but it is more
annoying when the wave spectrum varies from trace to trace as the near sur-
face varies from place to place. A variable spectrum makes it hard to meas-
ure stepouts. Notice that the conventional industrial deconvolution described
above includes spectral balancing as a byproduct. Figure 3 shows data that
needs spectral balancing.

The above interpretation of deconvolution and why it works is different
from what is found in most of the geophysical literature. Deconvolution is
often interpreted in terms of the predictability of multiple reflections and the
nonpredictability of primary reflections. It is shown in FGDP how multiple
reflections are predicted. They are predicted, not by a strictly convolutional
model, but approximately so. Prediction by convolution works best when the
reverberation is all in shallow layers. Then it is like a source waveform.

Cardiovascular research is well integrated with routine practice, whereas
pulmonary research is not. I compare this to migration and velocity theory
being a good guide to industrial practice, whereas deconvolution theory is less
so. The larger gap between theory and practice is something to be aware of.
Some fields are more resistant to direct attack. In them you progress by more
indirect routes. This is confusing for the student and demoralizing for the
impatient. But that is the way it is. For more details, see Ziolkowski [1984].

The next few pages show land data with buried geophones confirming
that source waveforms are mainly near-surface reverberation. Then we turn
to departures from the convolutional model.

A Vertical Seismic Profile (VSP)

Seismologists always welcome the additional information from a vertical
seismic profile (VSP). A VSP is some collection of seismograms recorded from
the surface to a borehole. Routine well-based measurements such as rock cut-
tings and electric logs record local information, often just centimeters from
the well. It is nice to think of the earth as horizontal strata, but this idealiza-
tion fails at some unknown distance from the well. Surface reflection
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seismology, although it is further from the ‘“‘ground truth” of well-bore meas-
urements, provides the needed information about lateral continuity. But sur-
face reflection data has resolving-power limitations as well as other uncertain-
ties. The VSP provides information at an intermediate scale and also pro-
vides a calibration of the surface seismic method. Unfortunately, VSPs are
costly and we rarely have them.

The subject of VSP occupies several books and many research papers.
(See Gal'perin [1974] and Balch et al {1982]). Here we will just look at a sin-
gle VSP to get some idea of source waveforms and multiple reflections. The
VSP shown in figure 4 is from a typical land area. The multiple reflections
are not so severe as with the marine data shown elsewhere in this chapter.
The earliest arrival in figure 4 is the primary downgoing wave. Downgoing
waves increase their travel time with depth, the slope of the arrival curve giv-
ing the downward component of velocity. After the first downgoing waves
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FIG. 5.5-4. Vertical seismic profile. The source is at the earth’s surface near
the borehole. The horizontal axis is the receiver depth. The vertical axis is
travel time from zero to one second. Amplitudes are scaled by ¢ 1. (ARCO)

arrive, you can see more downgoing waves with the same velocity. Upgoing
waves have the opposite slope of the downgoing waves. These are also visible
in figure 4.

Since late echoes are weaker than early ones, seismic data is normally
scaled upwards with time before being displayed. There is no universal agree-
ment in either theory or practice of what scaling is best. 1 have usually found
t2 scaling to be satisfactory for reflection data. (See Section 4.1). Figure 4

shows that t15 scaling keeps the first arrival at about a constant amplitude
on the VSP.

Viewing figure 4 from the side shows that the downgoing pulse is fol-
lowed by a waveform that is somewhat consistent from depth to depth. The
degree of consistency is not easy to see because of interference with the
upcoming wave. As far as I can tell from the figure, the downgoing wave at
the greatest depth is equal to that at the shallowest depth.

Figure 5 shows the same data augmented by some shallow receivers. You
will notice that the downgoing wave no longer seems to be independent of
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depth. So we can conclude that, as a practical matter, the downgoing
waveform seems to be mainly a result of near-surface reverberation.
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FIG. 5.5-5. The data of figure 4 augmented with shallower receivers. Ampli-
tudes are scaled by ¢t . (ARCO)

The energy in the first burst in figure 4 is roughly comparable to the
remaining energy. The remaining energy would be less if the VSP were
displayed without ¢1® scaling, but since the surface reflection data is nor-
mally displayed with some such scaling (often t2), it makes more sense statist-
ically to speak of the energy on the scaled data. So the reverberating energy

is roughly comparable to the first arriving energy.

Below the near-surface region, the downgoing wave changes slowly with
depth. Now we should ask how much the downgoing wave would change if
the experiment were moved laterally. Obviously the borehole will not move
laterally and we will be limited to data where only the surface source moves
laterally. Since near-surface variations often change rapidly in the lateral
direction, we may fear that the downgoing waveform also changes rapidly
with shot location. The reverberation near a shot is repeated similarly near
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any surface receiver. The resulting composite reverberation is the convolution
of near-shot reverberation and near-geophone reverberation. So to get the
information needed to deconvolve surface seismic data, the VSP should be
recorded with many surface source locations.

Unfortunately such offset VSP data is rarely available. When petroleum
production declines and expensive secondary recovery methods are contem-
plated, the cost of VSP will not seem so high. The production lost during
VSP acquisition may be more easily weighed against future gains.

Again we should think about the meaning of ‘‘bad’’ data. Seismic data is
generally repeatable whenever it is above the level of the ambient microse-
ismic noise. But often the signals make no sense. The spatial correlations
mean nothing to us. Most data at late times fits this description. Perhaps
what is happening is this: (1) The downgoing waveform is getting a long
trail; (2) the trail is a chaotic function of the surface location; and (3) the
energy in the trail exceeds the energy in the first pulse. So, with so much ran-
domness in the downgoing wave, the upcoming wave is necessarily
incomprehensible.

Deep Marine Multiples, a Phenomenon of Polar Latitudes

It has frequently been noted that sea-floor multiple reflection seems to be
a problem largely in the polar latitudes only — rarely in equatorial regions.
This observation might be dismissed as being based on the statistics of small
numbers, but two reasons can be given why the observation may be true.
Each of these is of interest whether or not the statistics are adequate.

It happens that natural gas is soluble in water and raises the temperature
of freezing, particularly at high pressure. Ice formed when natural gas is
present is called gas hydrate. Thus there can be, under the liquid ocean,
trapped in the sediments, solid gas hydrate. The gas hydrate stiffens the sedi-
ment and enhances multiple reflections.

A second reason for high multiple reflections at polar latitudes has to do
with glacial erosion. Ordinarily ocean bottoms are places of slow deposition
of fine-grained material. Such freshly deposited rocks are soft and generate
weak multiple reflections. But in polar latitudes the scouring action of gla-
ciers removes sediment. Where erosion is taking place the freshly exposed
rock is stronger and stiffer than newly forming sediments. Thus, stronger
sea-floor reflections.

Continents erode and deposit at all latitudes. However, one might specu-
late that on balance, continental shelves are created by deposition in low and
middle latitudes, and then drift to high latitudes where they erode. While
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highly speculative, this theory does provide an explanation for the association
of multiple reflections with polar latitudes.

Water bottom Peg leg Intra bed

\AVARRAINN /

/

|

FIG. 5.5-6. Raypaths are displayed for (a) a water-bottom multiple, (b) a
pegleg multiple family, and (c¢) a short-path multiple.

Pegleg and Intrabed Multiple Reflections
Multiple reflections fall into one of three basic categories — see figure 6.

Water-bottom multiples are those multiples whose raypaths lie entirely
within the water layer (figure 6a). Since the sea floor usually has a higher
reflectivity than deeper geological horizons, water-bottom multiples often have
strong amplitudes. In deep water these multiples can be very clear and dis-
tinct. A textbook-quality example is shown in figure 1.

Pegleg multiple reflections are variously defined by different authors.
Here pegleg multiples (figure 6b) are defined to be those multiples that
undergo one reflection in the sedimentary sequence and other reflections in the
near surface.

To facilitate interpretation of seismic data, let us review the timing and
amplitude relations of vertical-incidence multiple reflections in layered media.
Take the sea-floor two-way travel time to be ¢; with reflection coefficient
¢ - Then the n th multiple reflection comes at time n t; with reflection
strength ¢ . Presume also a deeper primary reflection at travel-time depth
to with reflection coefficient c¢4. The sea-floor peglegs arrive at times
to+ n t;. Note that peglegs come in families. For example, the time
to+ 2t, could arise from three paths, fo+ 2¢;, ¢, +15+ ¢, 0r 2t + t,.
So the nth order pegleg multiple echo is really a summation of n + 1 rays,
and thus its strength is proportional to (n +1)c, ¢}. The sea-floor rever-
beration is ¢}, which is not the same function of n as the function that

describes reverberation on sediments, (n +1)c]. Ignoring the sea-floor
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A raypath that is representative of yet another class of multiples, called
short-path or intrabed multiples, is shown in figure 6¢c. Their turn-around is
not at or near the earth’s surface. These multiples are rarely evident in field
data, although figure 8 shows a clear case in which they are. When they are
identified, it is often because the seismic data is being interpreted using some
accompanying well logs. The reason that short-path multiples are so rarely
observed compared to peglegs is that the reflection coefficients within the sedi-
mentary sequence are so much lower than on the free surface. The weakness
of individual short-path multiples may be compensated for, however, by the
very large numbers in which they can occur. Any time a seismic section
becomes incomprehensible, we can hypothesize that the data has become
overwhelmed by short-path multiples.
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FIG. 5.5-8. A rare case of unambiguous intrabed multiple reflections. The
data was recorded near Puerto Rico. The inner-bed multiple is between the
sea floor and the basement. Thus its travel time is t,,,, + (¢ ;55 — tﬂoor)‘
Do you see it? (Western Geophysical)
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The Need to Distinguish between Types of Sections

By 1974, wave-equation methods had established themselves as a success-
ful way to migrate CDP-stacked sections. Bolstered by this success, Don
Riley and I set out to apply the wave equation to the problem of predictive
suppression of deep-water multiple reflections. Hypothesizing that diffraction
effects were the reason for all the difficulty that was being experienced then
with deep-water multiple reflection, we developed a method for the modeling
and predictive removal of diffracted multiple reflections (see FGDP, Chapter
11-4). We didn't realize that in practice the multiple reflection problem
would be so much more difficult than the primary reflection problem. For pri-
maries, the same basic migration method works on zero-offset sections, CDP-
stacked sections, or vertical-incidence plane-wave sections. Our multiple-
suppression method turned out to be applicable only to vertical plane-wave
stacks. Don Riley prepared figure 9, which shows some comparisons.

W |

‘:' ll.

1-0 Synthetic 2-D Synthetic 27-Fold CDP Section Near Trace

field data
eeeeeeeeeeeee

FIG. 5.5-9. Diffracted multiple-reflection examples: (a ) 1-D synthetic, (b
synthetic, vertical plane-wave source, (c ) 27-fold CDP data section (GSI),
near-trace section. (Riley)

One thing to keep in mind while studying the comparisons in figure 9 is
that on the field data there are likely to be aspects of propagation in three
dimensions that may go unrecognized. The third dimension is always a
“‘skeleton in the closet.” It doesn’t usually spoil two-dimensional migration,
but that doesn’t assure us that it won't spoil 2-D wave-equation multiple
suppression.
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Examples of Shallow-Water Multiples with Focusing

The exploding-reflector concept does not apply to multiple reflections, so
there is no simple wave-theoretic means of predicting the focusing behavior of
multiples on a near-trace section. Luckily multiples on vertical plane-wave
stacks are analyzable. They may give us some idea about the focusing
behavior of multiple reflections on other seismic sections. A vertically down-
going plane wave is simulated by a common-geophone stack without moveout.
This isn’t the same as the familiar CDP stack, but it is analyzable with the
techniques described in Chapters 1 and 2.

Consider a multiple reflection that has undergone several surface
bounces. The seismic energy started out as a downgoing plane wave. It
remained unchanged until its first reflection from the sea floor. The sea-floor
bounce imposed the sea-floor topography onto the plane wave. In a computer
simulation the topography would be impressed upon the plane wave by a step
with the lens equation. Then the wave diffracted its way up to the surface
and back down to the sea floor. In a computer another topographic lens shift
would be applied. The process of alternating diffraction and lensing would be
repeated as often as you would care to keep track of things. Figure 10 shows
such a simulation. A striking feature of the high-order multiple reflections in
figure 10 is the concentration of energy into localized regions. It is easy to see
how bounces from concave portions of the sea floor can overcome the ten-
dency of acoustic energy to spread out. These regions of highly concentrated
energy that occur late on the time axis do not resemble primaries at all. With
primaries a localized disturbance tends to be spread out into a broad hyper-
bola. Primary migration of the highly concentrated bursts of energy seen on
figure 10 must lead to semicircles. Such semicircles are most unlikely geologi-
cal models — and are all too often predicted by the industry’s best migration
programs.

The most important thing to learn from the synthetic multiple reflections
of figure 10 is that multiples need not resemble primaries. Semicircles that
occur on migrated stacks could be residual multiple reflections. Unfor-
tunately, there is no simple theory that says whether or not focused multiples
on vertical wave stacks should resemble those on zero-offset sections or CDP
stacks. Luckily some data exists that provides an answer. Figure 11 is a
zero-offset section which establishes that such focusing phenomena are indeed
found in qualitative, if not quantitative, form on reflection survey data.

The marine data exhibited in figure 11 clearly displays the focusing
phenomena in the synthetic calculations of figure 10. This suggests that we
should utilize our understanding in a quantitative way to predict and suppress
the multiple reflections in order to get a clearer picture of the earth’s
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FIG. 5.5-10. Simulated sea-
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subsurface. There are several reasons why this would not be easy to do.
First, the Riley theory applies to vertical wave stacks. These are quantita-
tively different from common-midpoint stacks. Second, the effective seismic
sea-floor depth is not a known input: it must somehow be determined from
the data itself. Third, the water depth in figure 11 is so shallow that indivi-
dual bounces cannot be distinguished.

|

Why Deconvolution Fails in Deep Water

It has been widely observed that deconvolution generally fails in deep
water. A possible reason for this is that deep water is not the mathematical
limit at which the multiple-reflection problem is equivalent to the shot-
waveform problem. But that is not all. Theory predicts that under ordinary
circumstances multiples should alternate in polarity. The examples of figure 1
and figure 2 confirm it. You will have trouble, however, if you look for alter-
nating polarity on CDP stacks. The reason for the trouble also indicates why
deconvolution tends to fail to remove deep multiples from CDP stacks.

Recall the timing relationships for multiples at zero offset. The rever-
beration period is a constant function of time. Because of moveout, this is not
the case at any other offset. Normal-moveout correction will succeed in
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FIG. 5.5-11. Example of focusing effects on multiple reflections in near-trace

section at Chukchi Sea. These effects are obscured by stacking. (U.S. Geologi-
cal Survey)

A. Existing structure.

B. Former structure unevenly eroded away leaving localities of sea floor con-
vex Or concave.

C. High order multiple reflections focusing where the sea floor is concave.

Existing structural dip exposed in windows where the multiples are weak
(i.e., where convex sea floor causes multiple to spread rapidly).
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restoring zero-offset timing relationships in a constant-velocity earth, but
when the velocity increases with depth, the multiples will have a slower RMS
velocity than the primaries. So the question is what velocity to use, and
whether, in typical land and marine survey situations, the residual time shifts
are greater than a half-wavelength. No equations are needed to answer this
question. All that is needed is the general observation that conventional
common-midpoint stacking suppresses multiples because they have lower velo-
cities than primaries. This observation implies that normal moveout routinely
time shifts multiple reflections a half-wavelength or more out of their natural
zero-offset relationships.

To make matters worse, the amplitude relationships that we expect at
zero offset are messed up. Reflection coefficient is a function of angle. But on
a seismogram from some particular offset, each multiple reflection will have
reflected at a different angle.

Vertical incidence timing relationships are approrimately displayed on
CDP stacks. The practical difficulty is that the CDP stack does not mimic
the vertical-incidence situation well enough to enable satisfactory prediction
of multiples from primaries.

Before stack, on marine data, moveout could be done with water veloci-
ty, but then any peglegs would not fit the normal-incidence timing relation-
ship. Since peglegs are often the worst part of the multiple-reflection prob-
lem, moveout should perhaps be done with pegleg velocity. No matter how
you look at it, all the timing relationships for deep multiple reflections can-
not be properly adjusted by moveout correction.

EXERCISE

1. On some land data it was noticed that a deep multiple reflection arrived
a short time earlier than predicted by theory. What could be the expla-
nation?
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5.6 Multiple Reflection — Prospects

To improve our ability to suppress multiples, we try to better character-
ize them. The trouble is that a realistic model has many ingredients. Few of
the theories that abound in the literature have had much influence on routine
industrial practice. I would put these unsuccessful theories into two
categories:

1. Those that try to achieve everything with statistics, oversimplifying
the complexity of the spatial relations

2. Those that try to achieve everything with mathematical physics,
oversimplifying the noisy and incomplete nature of the data

Multiple reflection is a good subject for nuclear physicists, astrophysi-
cists, and mathematicians who enter our field. Those who are willing to take
up the challenge of trying to carry theory through to industrial practice are
rewarded by learning some humility. I'll caution you now that I haven’t
pulled it all together in this section either!

Here two approaches will be proposed, both of which attend to geometry
and statistics. Both approaches are new and little tested. Regardless of how
well they may work, I think you will find that they illuminate the task.

The first approach, called CMP slant stack, is a simple one. It
transforms data into a form in which all offsets mimic the simple, one-
dimensional, zero-offset model. The literature about that model in both
statistics and mathematical physics is extensive.

The second approach is based on a replacement impedance concept. It is
designed to accommodate rapid lateral variations in the near surface. It is
easiest to explain for a hypothetical marine environment where the sole
difficulty arises from lateral variation in the sea-floor reflectivity. The basic
idea is downward continuation of directional shots and directional geophones
to just beneath the sea floor, but no further. This is followed by upward con-
tinuation through a replacement medium that has a zero sea-floor reflection
coefficient. This process won’t eliminate all the multiple reflections, but it
should eliminate the most troublesome ones.
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Transformation to One Dimension by Slant Stack

A rich literature (c.f. FGDP) exists on the one-dimensional model of mul-
tiple reflections. Some authors develop many facets of wave-propagation
theory. Others begin from a simplified propagation model and develop many
facets of information theory. These one-dimensional theories are often
regarded as applicable only at zero offset. However, we will see that all other
offsets can be brought into the domain of one-dimensional theory by means of
slant stacking.

% S & S g1 &)

FIG. 5.6-1. Rays at constant-offset (left) arrive with various angles and hence
various Snell parameters. Rays with constant Snell parameter (right) arrive
with various offsets. At constant p all paths have identical travel times.

The way to get the timing and amplitudes of multiples to work out like
vertical incidence is to stop thinking of seismograms as time functions at con-
stant offset, and start thinking of constant Snell parameter. In a layered
earth the complete raypath is constructed by summing the path in each layer.
At vertical incidence p = 0, it is obvious that when a ray is in layer j its
travel time t; for that layer is independent of any other layers which may
also be traversed on other legs of the total journey. This independence of
travel time is also true for any other fixed p. But, as shown in figure 1, it is
not true for a ray whose total offset Y, f j instead of its p, is fixed. Like-
wise, for fixed p, the horizontal distance f]- which a ray travels while in
layer 7 is independent of other legs of the journey. Thus, in addition,
t; + const f j for any layer j is independent of other legs of the journey.
So tj’ =t - pf]- is a property of the 7' layer and has nothing to do with
any other layers which may be in the total path. Given the layers that a ray
crosses, you add up the ;i and the f]- for each layer, just as you would in
the vertical-incidence case. Some paths are shown in figure 2.

To see how to relate field data to slant stacks, begin by searching on a
common-midpoint gather for all those patches of energy (tangency zones)
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FIG. 5.6-2. A two-layer model showing the events (¢, 2¢, to, tg+t;). On
the top is a ray trace. On the left is the usual data gather. On the right the
gather is replotted with linear moveout t' = t — pf . Plots were calcu-
lated with (v, v4, 1/p ) in the proportion (1,2,3). Fixing our attention on the
patches where data is tangent to lines of slope p, we see that the arrival
times have the vertical-incidence relationships — that is, the reverberation
period is fixed, and it is the same for simple multiples as it is for peglegs.
This must be so because the ray trace at the top of the figure applies precisely
to those patches of the data where dt/dx = p. Furthermore, since
6, = b6y, the times (t',2t,', t,/+t,') also follow the familiar vertical-
incidence pattern. (Gonzalez)
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where the hyperboloidal arrivals attain some particular numerical value of
slope p = dt /df . These patches of energy seen on the surface observations
each tell us where and when some ray of Snell’s parameter p has hit the
surface. Typical geometries and synthetic data are shown in figures 2 and 3.

Both the ¢ j and the tj’ behave like the times of normal-incident mul-
tiple reflections. While the lateral location of any patch unfortunately
depends on the velocity model v (z), slant stacking makes the lateral location
irrelevant. In principle, slant stacking could be done for many separate values
of p so that the (f,t)}space would get mapped into a (p, t)space. The
nice thing about (p, t }space is that the multiple-suppression problem decou-
ples into many separate one-dimensional problems, one for each p-value.
Not only that, but the material velocity is not needed to solve these problems.
It is up to you to select from the many published methods. After suppressing
the multiples you inverse slant stack. Once back in (f , ¢ }space you could
estimate velocity and further suppress multiples using your favorite stacking
method.
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FIG. 5.6-3. The same geometry as figure 2 but with more multiple reflections.

Figure 3 is a ‘“‘workbook’ exercise. By picking the tops of all events on
the right-hand frame and then connecting the picks with dashed lines, you
should be able to verify that sea-bottom peglegs have the same interval veloc-
ity as the simple bottom multiples. The interval velocity of the sediment can
be measured from the primaries. The sediment velocity can also be measured
by connecting the nth simple multiple with the nth pegleg multiple.
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Transformation to one dimension by slant stack for deconvolution is a
process that lies on the border between experimental work and industrial
practice. See for example Treitel et al [1982]. Its strength is that it correctly
handles the angle-dependences that arise from the source-receiver geometry as
well as the intrinsic angle-dependence of reflection coefficient. One of its
weaknesses is that it assumes lateral homogeneity in the reverberating layer.
Water is extremely homogeneous, but sediments at the water bottom can be
quite inhomogeneous.

Near-Surface Inhomogeneity

Soils have strange acoustic behavior. Their seismic velocities are usually
less than or equal to the speed of sound in water (1500 meters/sec). It is not
uncommon for soil velocity to be five times slower than the speed of sound in
water, or as slow as the speed of sound in air (300 meters/sec). Where practi-
cal, seismic sources are buried under the weathered zone, but the receivers are
almost always on the surface. About the only time you may encounter buried
receivers is in a marshy area. There field operations are so difficult that you
will have many fewer receivers than normal.

A source of much difficulty is that soils are severely laterally inhomogene-
ous. It is not rare for two geophones separated by 10 meters to record quite
different seismograms. In particular, the uphole transit time (the seismic
travel time from the bottom of a shot hole to the surface near the top of the
hole) can easily exhibit time anomalies of a full wavelength. All this despite a
flat level surface. How can such severe, unpredictable, travel-time anomalies
in the weathered zone be understood? By river meanders, tiny shallow gas
pockets, pocketed carbonates, glacial tills, etc. All these irregularities can be
found at depth too, but they are worse at the surface before saturation and

the pressure of burial reduce the acoustic inhomogeneity. See also Section
3.7.

The shallow marine case is somewhat better. Ample opportunities for
lateral variations still exist — there are buried submarine channels as well as
buried fossil river channels. But the dominant aspect of the shallow marine
case becomes the resonance in the water layer. The power spectrum of the
observed data will be controlled by this resonance.

Likewise, with land data, the power spectrum often varies rapidly from
one recording station to the next. These changes in spectrum may be inter-
preted as changes in the multiple reflections which stem from changes in the
effective depth or character of the weathered zone.
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Modeling Regimes

Downward-continuation equations contain four main ingredients: the
slowness of the medium at the geophone v (g )!; likewise at the shot (s )l
the stepout in offset space k; /w; and the dip in midpoint space Icy [w.
These four ingredients all have the same physical dimensions, and modeling
procedures can be categorized according to the numerical inequalities that are
presumed to exist among the ingredients. One-dimensional work ignores three
of the four — namely, dip, stepout, and the difference v (g )‘l—v(s )’1.
CMP slant stack includes the stepout k; /w. Now we have a choice as to
whether to include the dip or the lateral velocity variation. The lateral veloc-
ity variation is often severe near the earth’s surface where the peglegs live.
Recall the simple idea that typical rays in the deep subsurface emerge steeply
at a low-velocity surface. When using continuation equations in the near sur-
face, we are particularly justified in neglecting dip, that is v~ >> Icy Jw. Tt
is nice to find this excuse to neglect dip since our field experiments are so
poorly controlled in dip out of the plane of the experiment. Offset stepout, on
the other hand, is probably always much larger in the plane of the survey line
than out of it.

Another important ingredient for modeling or processing multiple
reflections is the coupling of upcoming and downgoing waves. This coupling
introduces the reflectivity beneath the shot ¢ (s) and the receiver ¢ (g). An
important possibility, to which we will return, is that ¢ (s) may be different
from ¢(g), even though all the angles may be neglected.

Subtractive Removal of Multiple Reflections

Stacking may be thought of as a multiplicative process. Modeling leads
to subtractive processes. The subtractive processes are a supplement to stack-
ing, not an alternative: After subtracting, you can stack.

First we try to model the multiple reflections, then we try to subtract
them from the data. In general, removal by subtraction is more hazardous
than removal by multiplication. To be successful, subtraction requires a
correct amplitude as well as a timing error of less than a quarter-wavelength.

Statistically determined empirical constants may be introduced to
account for discrepancies between the modeling and reality. In statistics this
is known as regression. For example, knowing that a collection of data points
should fit a straight line, we can use the method of least-sum-squared-
residuals to determine the best parameters for the line. A careful study of the
data points might begin by removing the straight line, much as we intend to
remove multiple reflections. Naturally an adjustable parameter can help
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account for the difficulty expected in calculating the precise amplitude for the
multiples. An unknown timing error is much harder to model. Because of the
nonlinearity of the mathematics, a slightly different, more tractable approach
is to take as adjustable parameters the coefficients in a convolution filter.
Such a filter could represent any scale factor and time shift. It is tempting to
use a time-variable filter to account for time-variable modeling errors. An
inescapable difficulty with this is that a filter can represent a lot more than
just scaling and amplitude. And the more adjustable parameters you use, the
more the model will be able to fit the data, whether or not the model is
genuinely related to the data.

The difficulty of subtracting multiple reflections is really just this: If an
inadequate job is done of modeling the multiples — say, for example, of
modeling the geometry or velocity — then you need many adjustable parame-
ters in the regression. With many adjustable parameters, primary reflections
get subtracted as well as multiples. Out goes the baby with the bath water.

Slanted Deconvolution and Inversion

Because of the wide offsets used in practice, it has become clear that
seismologists must pay attention to differences in the sea floor from bounce to
bounce. A straightforward and appealing method of doing so was introduced
by Taner [1980] — that was his radial-trace method. A radial trace is a line
cutting through a common-shot profile along some line of constant r =& [t.
Instead of deconvolving a seismogram at constant offset, we deconvolve on a
radial trace. The deconvolution can be generalized to a downward-
continuation process. Downward continuation of a radial trace may be
approximated by time shifting. Unfortunately, there is a problem when the
data on the line consists of both sea-floor multiples and peglegs, because these
require different trajectories. The problem is resolved, at least in principle, by
means of Snell waves. Estevez, in his dissertation [1977], showed theoretically
how Snell waves could also be used to resolve other difficulties, such as
diffraction and lateral velocity variation (if known). An example illustrating
the relevance of the differing depths of the sea floor on different bounces, is
shown in figure 4.

Incompleteness of the data causes us to have problems with most inver-
sion methods. Data can be incomplete in time, space, or in its spectrum.
Any recursive method must be analyzed to ensure that an error made at shal-
low depths will not compound uncontrollably during descent. All data is
spectrally incomplete. Also, with all data there is uncertainty about the shot
waveform. At the p-values for which pegleg multiples are a problem, the first
sea-floor bounce usually occurs too close to the ship to be properly recorded.
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To solve this problem, Taner built a special auxiliary recording system.

It is an advantage for Snell wave methods that slant stacking creates
some signal-to-noise enhancement from the raw field data, but it is a disad-
vantage that the downward continuation must continue to all depths. The
methods to be discussed next are before-stack methods, but they do not
require downward continuation much below the sea floor.

The Split Backus Filter

We are preparing a general strategy, impedance replacement, for dealing
with surface multiple reflections. This strategy will require heavy artillery
drawn from both regression theory and wave-extrapolation theory. So as not
to lose sight of the goals, we will begin with an example drawn from an ideal-
ized geometry. That reality is not too far from this idealization was demon-
strated by Larry Morley, whose doctoral dissertation [1982] illustrates a suc-
cessful test of this method and describes the impedance-replacement strategy
in more detail.

Imagine that the sea floor is flat. Near the shot the sea-floor reflection
coefficient is taken as c¢,. Near the geophone it is taken to be Cq - Near the
geophone the reverberation pattern is

1

_ 272 . 373 474, ...
T—_*_—Z—Z—l—chﬁ—ch CgZ +CgZ+ (1)
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where Z is the two-way delay operator for travel to the water bottom. (See
Section 4.6 or FGDP for Z-transform background). Near the shot there is a
similar reverberation sequence:

1

_ 2,2 3,3 474, ...
1—_+—c—a—z- = 1~CBZ+68Z —CSZ +CaZ+ (2)

Ignoring the difference between ¢, and ¢, leads to the Backus [1959] rever-
beration sequence, which is the product of (1) and (2):

1 1
1+4¢Z 1+c 2

The denominator in (3) is the Backus filter. Applying this filter should
remove the reverberation sequence. Morley called the filter which results from
explicitly including the difference at the shot and geophone a split Backus
filter. The depth as well as the reflection coefficient may vary laterally. (The
effect of dip is second order). Thus the split Backus operator can be taken to
be

1-2cZ +3¢%2%-4¢323 + 5¢%2% - - (3)

(1+ e, e'.“”'(s)] [1+cg e'."‘”'(g)) (4)

Inverting (4) into an expression like (3), you will find that the n*® term splits
into n terms. This just means that paths with sea-floor bounces near the
shot can have different travel times than paths with bounces near the geo-
phone.

Figure 5, taken from Morley’s dissertation, shows that split pegleg multi-
ples are an observable phenomenon. His interpretation of the figure follows:

[The figure] is a constant-offset section (COS) from the same line for an
offset halfway down the cable (a separation of 45 shot points with this
geometry). The first-order pegleg multiple starting at 2.5 seconds on the
left and running across to 3 seconds on the right is ‘““degenerate” (unsplit)
on the near-trace section but is split on the COS due to the sea-floor
topography. The maximum split is some 200 mils around shot points
180-200. This occurs, as one might expect, where the sea floor has max-
imum dip; i.e., where the difference between sea-floor depths at the shot
and geophone positions is greatest.

Most present processing ignores the Backus filter altogether and solves
for an independent deconvolution filter for each seismic trace. This intro-
duces a great number of free parameters. By comparison, a split Backus
approach should do a better job of preserving primaries.
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FIG. 5.8-5. Constant-offset section (COS) from the same line as figure 7 in
Section 5.5. Offset distance is about 46 shotpoints. Notice that the first-order
pegleg multiple is now split into two distinct arrivals, PM1s and PM1g.
(AMOCO Canada, Morley)

In practice we would expect that any method based on the split Backus
concept would need to include the effect of moveout. Luckily, velocity con-
trast would reduce the emerging angle for peglegs. Of course, residual
moveout problems would be much more troublesome with water-bottom mul-
tiples. Presumably the process should be applied after normal moveout in
that case. Let us take a look at the task of estimating a split Backus opera-
tor.
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Sea-Floor Consistent Multiple Suppression

Erratic time shifts from trace to trace have long been dealt with by the
so-called surface-consistent statics model. Using this model you fit the
observed time shifts, say, (s, g), to a regression model t(s,¢g)~
ty(s)+ t;(g). The statistically determined functions ¢ (s) and ¢, (9) can
be interpreted as being derived from altitude or velocity variations directly
under the shot and geophone. Taner and Coburn [1980] introduced the
closely related idea of a surface-consistent frequency response model that is
part of the statics problem. We will be interpreting and generalizing that
approach. Our intuitive model for the data P(s, ¢g,w) is

1 1
P(s,gq, ~ - . X 5
(3 g w) 1+cs e'wr(s) 1+cge'wr(g) ()
i V2?4 4k 2
e H(h,w)Y(y,w)F(w)

The first two factors represent the split Backus filter. The next factor is the
normal moveout. The factor H(h,w) is the residual moveout. The factor
Y (y,w) is the depth-dependent earth model beneath the midpoint y. The
last factor F (w) is some average filter that results from both the earth and
the recording system.

One problem with the split Backus filter is a familiar one — that the
time delays 7(s) and 7(g) enter the model in a nonlinear way. So to linear-
ize it the model is generalized to

Pl(s,g,w) = S(s,w)G(g,w) H(h,w) Y(y,w) F(w) (6)

Now S contains all water reverberation effects characteristic of the shot
location, including any erratic behavior of the gun itself. Likewise, receiver
effects are embedded in G. Moveout correction was done to P, thereby
defining P’.

Theoretically, taking logarithms gives a linear, additive model:
In Pl(s,g,w) = (7)
InS(s,w)+InG(g,w)+InH(h,w)+ In Y(y,w)+ In F(w)

The phase of P’, which is the imaginary part of the logarithm, contains
the travel-ttme information in the data. This information begins to lose
meaning as the data consists of more than one arrival. The phase function
becomes discontinuous, even though the data is well behaved. In practice,
therefore, attention is restricted to the real part of (7), which is really a state-
ment about power spectra. The decomposition (7) is a linear problem,
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perhaps best solved by iteration because of the high dimensionality involved.
In reconstructing S and G from power spectra, Morley used the Wiener-
Levinson technique, explicitly forcing time-domain zeroes in the filters S and
G to account for the water path. He omitted the explicit moveout correc-
tion in (5), which may account for the fact that he only used the inner half of
the cable.

Replacement-Medium Concept of Multiple Suppression

In seismology wavelengths are so long that we tend to forget it is physi-
cally possible to have a directional wave source and a directional receiver.
Suppose we had, or were somehow able to simulate, a source that radiated
only down and a receiver that received only waves coming up. Then suppose
that we were somehow able to downward continue this source and receiver
beneath the sea floor. This would eliminate a wide class of multiple
reflections. Sea-floor multiples and peglegs would be gone. That would be a
major achievement. One minor problem would remain, however. The data
might now lie along a line that would not be flat, but would follow the sea
floor. So there would be a final step, an easy one, which would be to upward
continue through a replacement medium that did not have the strong disrup-
tive sea-floor reflection coefficient. The process just described would be called
impedance replacement. It is analogous to using a replacement medium in
gravity data reduction. It is also analogous to time shifting seismograms for
some replacement velocity. (See Section 3.7).

The migration operation downward continues an upcoming wave. This is
like downward continuing a geophone line in which the geophones can receive
only upcoming waves. In reality, buried geophones see both upcoming and
downgoing waves. The directionality of the source or receiver is built into the
sign chosen for the square-root equation that is used to extrapolate the
wavefield. With the reciprocal theorem, the shots could also be downward
continued. Likewise shots physically radiate both up and down, but we can
imagine shots that radiate either up or down, and mathematically the choice
is a sign. So the results of four possible experiments at the sea floor, all possi-
bilities of upward and downward directed shots and receivers, can be deduced.

Extrapolating all this information across the sea-floor boundary requires
an estimate of the sea-floor reflection coefficient. This coefficient enters the
calculation as a scaling factor in forming linear combinations of the waves
above the sea floor. The idea behind the reflection-coefficient estimation can
be expressed in two ways that are mathematically equivalent:
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The waves impinging on the boundary from above and below should
have a cross-correlation that vanishes at zero lag.

There should be minimum power in the wave that impinges on the
boundary from below.

After the geophones are below, you must start to think about getting the
shots below. To invoke reciprocity, it is necessary to invert the directionality
of the shots and receivers. This is why it was necessary to include the auxili-
ary experiment of upward-directed shots and receivers.

EXERCISES

1. Refer to figure 3.

a.

What graphical measurement shows that the interval velocity for
simple sea-floor multiples equals the interval velocity for peglegs?

What graphical measurements determine the sediment velocity?

With respect to the velocity of water, deduce the numerical value of
the (inverse) Snell parameter p.

Deduce the numerical ratio of the sediment velocity to the water ve-
locity.

2. Consider the upcoming wave U observed over a layered medium of

layer impedances given by (I, I9, I3, - - ), and the upcoming wave

U' at the surface of the medium (I, Iy, I, - - - ). Note that the top

layer is changed.

a. Draw raypaths for some multiple reflections that are present in the
first medium, but not in the second.

b. Presuming that you can find a mathematical process to convert the
wave U to the wave U’, what multiples are removed from U’
that would not be removed by the Backus operator?

c. Utilizing techniques in FGDP, chapter 8, derive an equation for U’

in terms of U, Iy, and I, that does not involve I4, I, - - -
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5.7 Profile Imaging

A field profile consists of the seismograms of one shot and many receivers
along a line. Migration of a single profile, or of many widely separated
profiles, demands a conceptual basis that is far removed from anything dis-
cussed so far in this book, namely, exploding-reflector and survey-sinking con-
cepts. Such a conceptual basis exists, predates (Claerbout [1970]), and seems
more basic than that of exploding reflectors or survey sinking. I call this older
imaging concept the U /D imaging concept.

The sinking concept seems to demand complete coverage in shot-
geophone space. Exploding reflectors requires many closely spaced shots. On
the other hand, profile imaging with the U /D concept has no requirement
for density along the shot axis. An example of a dataset that could only be
handled by the older concept is a sonobuoy. A sonobuoy is a hydrophone
with a radio transmitter. It is thrown overboard, and a ship with an air gun
sails away, repeatedly firing until the range is too great. The principle of
reciprocity says that the data is equivalent to a single source with a very long
line of geophones.

While improving technology is leading to greater sampling density on the
geophone axis, we are unlikely to see increasing density in shot space. There
are only twenty-four hours in a day, and we must wait ten seconds between
shots for the echoes to die down. So, given a certain area to survey and a cer-
tain number of months to work, we end out with an irreducible shotpoint
density. Indeed, with three-dimensional geometries proving their worth, we
may see less spatial sampling density. Poor sample density in shot space is a
small impediment to profile methods.

Unlike the exploding-reflector method and the survey-sinking method,
U/D concepts readily incorporate modeling and analysis of multiple
reflections. Indeed, an ingenious algorithm for simultaneous migration and
de-reverberation is found in FGDP. In principle it can be applied to either
field profiles or slant stacks.

Wave equation methods have been suggestive of new ways of making
weathering-layer corrections. Yet none have yet become widely accepted in
practice, and it is too early to tell whether a DSR approach or a profile
approach will work better.

All these considerations warrant a review of the profile migration method
and the U /D imaging concept. We could easily see a revival of these in
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one form or another.

The U /D Imaging Concept

The U /D imaging concept says that reflectors exist in the earth at
places where the onset of the downgoing wave ts time-coincident with an
upcoming wave. Figure 1 illustrates the concept.
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FIG. 5.7-1. Upcoming and downgoing waves observed with buried receivers.
A disturbance leaves the surface at { =0 and is observed passing the buried
receivers G ...G; at progressively later times. At the depth of a reflector,
z3, the G receiver records both the upcoming and downgoing waves in
time coincidence. Shallower receivers also record both waves. Deeper
receivers record only D . The fundamental principle of reflector mapping
states that reflectors exist where U and D are time-coincident. (Riley)

It is easy to confuse the survey-sinking concept with the U /D concept
because of the similarity of the phrases used to describe them: ‘“downward
continue the shots” sounds like ‘“downward continue the downgoing wave.”
The first concept refers to computations involving only an upcoming wavefield
U(s,g,2,t). The second concept refers to computations involving both
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upcoming U(z, z,t) and downgoing D(z,z,t) waves. No particular
source location enters the U /D concept; the source could be a downgoing
plane wave.

In profile migration methods, the downgoing wave is usually handled
theoretically, typically as an impulse whose travel time is known analytically
or by ray tracing. But this is not important: the downgoing wave could be
handled the same way as the upcoming wave, by the Fourier or finite-
difference methods described in previous chapters. The upcoming wave could
be expressed in Cartesian coordinates, or in the moveout coordinate system to
be described below.

The time coincidence of the downgoing and upcoming waves can be
quantified in several ways. The most straightforward seems to be to look at
the zero lag of the cross-correlation of the two waves. The image is created
by displaying the zero-lagged cross-correlation everywhere in (z, 2 )-space.

The time coincidence of the upcoming wave and the earliest arrival of a
downgoing wave gives evidence of the existence of a reflector, but in principle,
more can be learned from the two waves. The amplitude ratio of the upcom-
ing to the downgoing wave gives the reflection coefficient.

In the Fourier domain, the product U(w,z, z) ﬁ(w, z,z) represents
the zero lag of the cross-correlation. The reflection coefficient ratio is given
by U(w,z,2)/D(w,z,z). This ratio has many difficulties. Not only may
the denominator be zero, but it may have zeroes in the wrong part of the
complex plane. This happens when the downgoing wave is causal but not
minimum phase. (See Section 4.6 and FGDP). The phase of the complex con-
jugate of a complex number equals the phase of the inverse of the number.
Thus the ratio U /D and the product U D both have the same phase. It
seems you can invent other functional forms that compromise the theoretical
appeal of U /D with the stability of U D.

Don C. Riley [1974] proposed another form of the U /D principle,
namely, that the upcoming waves must vanish for all time before the first
arrival of the downgoing wave. Riley’s form found use in wave-equation
dereverberation.

Migration with Moveout Correction

If the earth were truly inhomogeneous in all three dimensions, we could
hardly expect the data of a single seismic line to make any sense at all. But
reflection seismology usually seems to work, even when it is restricted to a
single line. This indicates that the layered model of the earth is a reasonable
starting point. Thus normal-moveout correction is usually a good starting
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process. Mathematically, NMO is an excellent tool for dealing with depth
variation in velocity, but its utility drops in the presence of steep dip or a
wide dip spectrum.

My early migration programs were based on concepts derived from single
profiles. The data and the wave equation were transformed to a moveout-
corrected coordinate system. This approach to migration is well suited to
data that is sparsely sampled on the geophone axis. When steepness of dip
becomes the ground on which migration is evaluated, then moveout correction
offers little advantage; indeed, it introduces unneeded complexity. Whatever
its merits or drawbacks, NMO commands our attention by its nearly universal
use in the industrial world.

Moveout/Radial Coordinates in Geophone Space

Our theoretical analysis will abandon the geophone axis ¢ in favor of a
radial-like axis characterized by a Snell parameter p. (This really says noth-
ing about the implied data processing itself, since it would be simple enough
to transform final equations back to offset). The coordinate system being
defined will be called a retarded, moveout-corrected, Snell trace, coordinate
system. Ideal data in this coordinate system in a zero-dip earth is unchanged
as it is downward continued. Hence the amount of work the differential equa-
tions have to do is proportional to the departure of the data from the ideal.
Likewise the necessity for spatial sampling of the data increases in proportion
to the departure of data from the ideal. Define

D (sin 6)/v, the Snell ray parameter

tp any one-way time from the sur-
face along a ray with parameter
D

g the surface separation of the shot
from the geophone

t! one-way time, surface to reflector,
along a ray

T travel-time depth of buried geo-
phones, one-way time along a ray

¢ travel time seen by buried geo-
phones

v(p, L ) a stratified velocity function
v'(z), in the new coordinates
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The coordinate system is based on the following simple statements: (1)
travel time from shot to geophone is twice the travel time from shot to
reflector, less the time-depth of the geophone; and (2) the horizontal distance
traveled by a ray is the time integral of v sin § = pv?; (3) the vertical dis-
tance traveled by a ray is computed the same way as the horizontal distance,
but with a cosine instead of a sine.

t(t'yp,7) = 2¢t' -1 (1)
t! T

g(t'yp,7) = 2p [o(p,t,)dt, —p [v(p,t,)?dt (2)
0 0

T

2(t'p,1) = [ v, t,)Vi-p2o?d, (3)
0
Surfaces of constant ¢’ are reflections. Surfaces of constant p are rays.
Surfaces of constant 7 are datum levels. Unfortunately, it is impossible to
invert the above system explicitly to get (¢’, p,7) as a function of (¢, g, z).
It is possible, however, to proceed analytically with the differentials. Form
the Jacobian matrix

atl ttl gt' ztl at
Bp = by 9y 2, 89 (4)
aT tT gT ZT az

Performing differentiations only where they lead to obvious simplifications
gives the transformation equation for Fourier variables:

__w' 2 gtl 0 —Ww
kp = 0 9p 2 Icg (5)
k., -1 g, 2, k,

It should be noted that (5) is a linear relation involving the Fourier vari-
ables, but the coefficients involve the original time and space variables. So (5)
is in both domains at once. This is useful and valid so long as it is assumed
that second derivatives neglect the derivatives of the coordinate frame itself.
This assumption is often benign, amounting to something like spherical diver-
gence correction.

Here we could get bogged down in detail, were we to continue to attack
the nonzero offset case. Specializing to zero offset, namely, p = 0, we get

g 2 0 0 —w
Icp = 0 2t'-70 lcg (6)
kT -1 0 v Icl2
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Equation (6) may be substituted into the single-square-root equation for
downward continuing geophones, thereby transforming it to a retarded equa-
tion in the new coordinate system.

Historical Notes on a Mysterious Scale Factor

My first migrations of reflection seismic data with the wave equation
were based on the U /D concept. The first wave-equation migration pro-
gram was in the frequency domain and worked on synthetic profiles. Since
people generally ignored such work I resolved to complete a realistic test on
field data. Frequency-domain methods were deemed ‘“academic.” I found I
could use the bilinear transformation of Z-transform analysis to convert the
15° wave equation to the time domain. As a practical matter, it was
apparent that a profile migration program could be used on a section. But
the theoretical justification was not easy. At that time I thought of the
exploding-reflector concept as a curious analogy, not as a foundation for the
derivation.

The actual procedure by which the first zero-offset section was migrated
with finite differences was more circuitous and complicated than the procedure
later introduced by Sherwood (Loewenthal et al [1976]) and adopted generally.
The equation for profile migration in moveout-corrected coordinates has many
terms. Neglecting all those with offset as a coefficient (since you are trying to
migrate a zero-offset section), you are left with an equation that resembles the
retarded, 15° extrapolation equation. But there is one difference. The v & 99
term is scaled by a mysterious coefficient, [t’/(2¢t'-7)]?. This is the equation
I used. As the travel-time depth 7 increases from zero to the stopping depth
t', the mystery coefficient increases slowly from 1/4 to 1.

Unfortunately my derivation was so complicated that few people followed
it. (You notice that I do not fully include it here). My 1972 paper includes
the derivation but by way of introduction it takes you through a conceptually
simpler case, namely, the seismic section that results from a downgoing
plane-wave source. This simpler case brings you quickly to the migration
equation. But the mystery coefficient is absent. Averaged over depth the
mystery coefficient averages to a half. (The coefficient multiplies the second
x-derivative and arises from Az decreasing as geophones descend along a
coordinate ray path toward the shot). Sherwood telephoned me one day and
challenged me to explain why the coefficient could not be replaced by its aver-
age value, 1/2. I could give no practical reason, nor can I today. So he aban-
doned my convoluted derivation and adopted the exploding-reflector model as
an assumption, thereby easily obtaining the required 1/2. I felt more
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comfortable about the mystery coefficient later when the survey-sinking con-
cept emerged from my work with Doherty, Muir, and Clayton.

My first book, FGDP, describes how the U /D concept can be used to
deal with the three problems of migration, velocity analysis, and multiple
suppression. In only one of these three applications, namely, zero-offset
migration (really CDP-stack migration), has the wave-equation methodology
become a part of routine practice. None-the-less, the U /D concept has
been generally forgotten and replaced by Sherwood’s exploding-reflector con-
cept.

5.8 Predictions for the Next Decade

In the 1960s seismologists learned how to apply time-series optimization
theory to seismic data — see FGDP for that. Eventually time series reached
the point of diminishing returns because its approach to spatial relations was
oversimplified. In the 1970s seismologists learned to apply the wave equation.
That’s what this book has been about. You can see that the job of applying
the wave equation is not yet complete, but we have come a long way.
Perhaps we have solved most of our “first-order” problems, and the problems
that remain are mainly ‘‘second order.” For second-order effects to be
significant, all the first-order phenomena must be reasonably accounted for.

Some first-order effects that this book has touched on only lightly relate
to obvious, as well as subtle, imperfections in seismic data.

Problems in the Database

We often have a problem of truncation. The recording cable is of course
finite in length, and perceptible waves generally travel well beyond it. The
seismic survey itself has finite dimensions. We also have the problem of gaps.
Gaps in seismic data may occur unpredictably, as when a gun misfires or sur-
veyors are denied access to parcels of land in the midst of their survey. In
addition we have the problem of spatial aliasing. Because of improving tech-
nology, we can expect a substantial reduction in aliasing on the geophone
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axis, but aliasing on the shot axis will remain. There are only twenty-four
hours in a day, and we must wait ten seconds between shots for the echoes to
die down. So, given a certain area to survey and a certain number of months
to survey it in, we end out with a certain number of shotpoints per square kil-
ometer. With marine data, the spacing in the line of the path of the ship
presents no problems compared to the problems presented by data spacing off
the line.

Migration provides a mapping from a data space to a model space. This
transformation is invertible (in the nonevanescent subspace). When data is
missing, the transformation matrix gets broken into two parts. One part
operates on the known data values, and the other part operates on the miss-
ing values. Except for a bit of Section 3.5, this book ignores the missing part.
Although a strategy is presented in 3.5 for handling the missing part, it is
very costly, and I believe it will ultimately be superseded or much improved.

Noisy data can be defined as data that doesn’t fit our model. If the miss-
ing data were replaced by zeroes, for example, the data would be regarded as
complete, but noisy. Data is missing where the signal-to-noise ratio is known
to be zero. More general noise models are also relevant, but statistical treat-
ment of partially coherent multidimensional wave fields is poorly developed
in both theory and practice.

My prediction is that a major research activity of the next decade will be
to try to learn to simultaneously handle both the physics and the statisties of
wavefields.

Reuniting Optimization Theory and Wave Theory

Let’s take a quick peek beyond this book into the future. A seismic
image Is typically a 1000X1000 plane, derived from a volume of about 1000°
interrelated data points. There are unknowns present everywhere, not only in
the earth model, but also in the data, as noise, as gaps, and as insufficient
spatial density and extent of data recording. To assemble an interpretation
we must combine principles from physics with principles from statistics.
Presumably this could be done in some monster optimization formulation. A
look at the theory of optimization shows that solution techniques converge in
a number of iterations that is greater than the number of unknowns. Thus
the solution to the problem, once we learn how to pose the problem properly,

seems to require about a million times as much computing power as is avail-
able. What a problem!

But the more you look at the problem, the more interesting it becomes.
First we have an optimization problem. Since we are constrained to make
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only a few iterations, say, three, we must go as far as we can in those three
steps. Now, not only do we have the original optimization problem, but we
also have the new problem of solving it in an optimum way. First we have
correlated randomness in the raw data. Then, during optimization, the earth
model changes in a correlated random way from one iteration to the next.
Not only is the second optimization problem the practical one — it is deeper
at the theoretical level.

Throw Away Your Paper Sections.

Current seismic interpretation often amounts to taking colored pencils
and enhancing aspects of a computer-generated image. Seismic interpretation
is entering an era in which the interpretation will all be done on a video
screen. The basic reason is that a sheet of paper is only two-dimensional,
while most reflection data is three-dimensional. Modern 3-D surveys really
record four-dimensional data. A video screen can show a movie. The
operator/interpreter can interact with the movie. There are things I would
like to show you, but I cannot show you in a book. Seismic data or even a
blank sheet of paper has texture. When a textured object moves, you
immediately recognize it. But I couldn’t show it to you with pictures in this
book. (Imagine a sequence of pictures of a blank sheet of paper, each one
shifted some way from the previous one). The perception of small changes is
blocked by any eye movement between pictures. Astronomers look for
changes in the sky by rapidly blinking between looking at photographs taken
at different times. Our eyes are special computers. Movies often show ‘“‘where
something comes from,” enabling us to notice the unexpected in the general
ambiance.

Most seismic interpretation is done on stacked sections. The original
data is three-dimensional, but one dimension is removed by summation.
Theoretically, the summation removes only redundancy while it enhances the
signal-to-noise ratio. In reality, things are much more complicated. And much
more will be perceptible when summations are done by the human eye (just
by increasing the speed of a movie). There will be two generations of seismic
interpreters — those who can interpret the prestacked data they see on their
video screens — and those who interpret only stacked sections.
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