
5.0 Some Frontiers 

In this final chapter of the book are gathered together imaging concepts 
that  have been published, but have not yet come into routine industrial use. 
The first part of this chapter develops the mathematical concept of linear 
moveout and how it  relates t o  velocity analysis. Data  can be focused so that  
the interval velocity can be read directly. The latter part of the chapter is 
about multiple reflections. Here too linear moveout helps t o  define the prob- 
lem. You will see basic mathematical tools that  have the power t o  deal with 
multiple reflections and lateral velocity variations. This chapter has many 
data  processing proposals. They are not descriptions of production processes! 

Interpreting Seismic Data 

Initially I regarded this chapter as one for specialists interested mainly in 
devising new processes. Then I realized that  in dealing with things that  don't 
seem t o  work a s  they are expected to, we are really, for the first time, strug- 
gling t o  contend with reality, not with what theory predicts. This can hold 
much interest for skilled interpreters. 

The heart of petroleum prospecting is the interpretation of reflection 
seismic data. What is seismic interpretation? T o  be a "routine interpreter" 
you must know everything on which theory and practice generally agree. To 
be a good interpreter you must know the "noise level" of alternate 
phenomena with similar effects. Anomalies in seismic data  can arise from the 
complexity of the earth itself, from seismic wave propagation in the earth 
(deep, near surface, or out of plane), or from imperfections in recording and 
imaging techniques. T o  make realistic judgements in so wide a realm, you 
must be a seismologist who is part geologist, part engineer, and part 
mathematician. This chapter will not teach you t o  be a good interpreter, but 
i t  will offer you a chance t o  observe some critical thinking about the relation- 
ship of seismic theory to  seismic data. 
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Leaning 

Echo delay is much like depth. We usually measure angles by their 
departure from the vertical ray, while in reality zero-offset data is rarely 
recorded. The best seismic data is usually far from vertical. In this chapter a 
pattern of thinking is developed that is oriented about a selected nonvertical 
ray. Rotation of coordinates does not solve the problem since after rotation, 
the plane on which measurements would be made would no longer be simply 
z = 0. Rotation would also make a mess of the simple seismic velocity func- 
tion v (z ) by making it a strongly two-dimensional function v '(x I,  z I). The 
view of offset presented in Chapter 3 may have seemed rather complete, but 
in fact it was not very general because square roots were expanded about the 
vertical ray. The Stolt stretch development in Section 4.5 illustrated the 
advantage of leaving the hyperbola top and getting out on the flanks. 

Linear moveout (LMO) is the way to  reorient our thinking about non- 
vertical rays. While not widely incorporated in the modern production 
environment, this deeper view of offset is of special interest to researchers. It 
offers an understanding of multiple reflections, a subject untouched in 
Chapter 3. It also offers a better understanding of velocity estimation. 

Stepout Review 

In Section 1.5 a Snell wave was defined as a plane wave that has become 
nonplanar by moving into a velocity-stratified medium v = v (2). A plane 
wave keeps its angle of propagation constant, while a Snell wave keeps its 
stepout dt l dx  a co~lstant function of z. Figure 1 shows a Snell wave 
incident on the earth's surface. The wavefronts at successive times are not 
parallel t o  each other; they are horizontal translations of one another. The 
slowness of horizontal motion is called the stepout. It is measured in units of 
inverse velocity and is given as milliseconds per meter or as seconds per kil* 
meter. The slowness, denoted as p ,  is also called the ray parameter or the 
Snell parameter: 

d t p = - -  - sin 6 z 
dx 

= const (z) 
v(z) 
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FIG. 5.0-1. Wavefront arrival at  earth's surface, showing that observation of 
d t l d x  givestheratio d t ldx  = (sinO)/v. 

5.1 Radial Traces 

Radial trace sections were introduced in Section 3.6 as an alternative to 
constant-offset sections. In Section 3.6 the goal was to  achieve a proper 
migration of nonzero-offset data. We also saw the definition of dip moveout 
(DMO). D M 0  simplifies further analysis because after DM0 we can analyze 
gathers assuming that they come from a horizontally layered earth. 

A radial trace gather is defined by a deformation of an ordinary gather. 
Let the ordinary gather be denoted by P ( x ,  t ). Let the radial parameter be 
denoted by r = x / t  . Then the radial trace gather P f ( r  , t ) is defined by 
the deformation P f ( r  , t ) = P (rt , t ). 

The horizontal location x of the tip of a ray moves according to 
x = v t sin 0. So in a constant-velocity medium, the radial trace with a 
fixed r = x / t  contains all the energy that propagates at  angle 0. 

The constancy of propagation angle within a radial trace should be help- 
ful in the analysis of multiple reflections. It should also be helpful in compen- 
sation for the shot waveform, since the antenna effects of the shot and geo- 
phone arrays are time-invariant. on each radial trace. 

Assuming reflectors at  depth z j  and constant velocity, hyperbolic 

travel-time curves are 
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Let us see what happens to  the hyperbola (1) when the offset x is 
transformed to  the radial parameter r = x / t  . We get an equation for a 
family of curves in the ( r  , t >plane (plotted in figure 1). 

FIG. 5.1-1. Family of hyperbolas before and after transformation to  radial 
space. 

The asymptotes, instead of being along sloping lines x 2  = f v 2 t 2 ,  are 
along vertical lines r = f v. The filled region of the ( r  , t >plane is rec- 
tangular, while the filled region of the (x , t >plane is triangular. 

Figure 2 shows a field profile before and after transformation to  radial 
space. Zero traces were interspersed between live ones t o  clarify the shape of 
the deformation. To understand this deformation, it helps t o  remember that 
a field trace is a curve of constant x = rt  . 

An interesting aspect of the radial-trace transformation is its effect on 
ground roll. A simple model of ground roll is a wave traveling horizontally at  
a constant rate. So on a radial-trace gather the ground roll is found as d.c. 
(zero frequency) on a few radial traces near r = v .  Figure 3 shows an 

approximation to  the idealization. 
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FIG. 5.1-2. Field profile from Alberta (Western Geophysical) interspersed 
with zero traces, shown before and after radial-trace deformation. 

Moveout-Corrected Radial Traces 

Moveout correction may be regarded as a transformation from time t o  
depth. When the moveout correction is properly done, all traces should show 
the same depth-dependent reflectivity. In principle, radial moveout correction 
proceeds by introducing z and eliminating t with the substitution tv = 

d m .  In practice you would prefer a travel-time-depth axis t o  a depth 

axis. So the transformation equation becomes t = . Eliminating 
x with rt we get 

Inspecting (3) we see that  moveout correction in radial-trace coordinates 
is a uniform compression of the time t-axis into a T-axis. The amount of 
compression is fixed when r is fixed. The amount of compression does not 
change with time. The uniformity of the compression is an aid t o  modeling 
and removing the effects of shot waveforms and multiple reflections. It is 
curious t o  note that  moveout correction of radial traces compresses time, 
while moveout correction of constant-offset data stretches time nonuniformly. 
Figure 3 shows a field profile before and after the radial-trace transformation. 
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FIG. 5.1-3. Field profile from Alberta (Western Geophysical) shown before 
and after deformation into radial traces. 

Snell Traces 

The radial-trace coordinate system can be used no matter what the ve- 
locity of the earth. But the coordinate system has a special advantage when 
the velocity is constant, because then it gathers all the energy of a fixed pro- 
pagation angle. The logical generalization t o  stratified media is to  gather all 
the energy with a fixed Snell parameter. A Snell trace is defined (Ottolini) as 
a trajectory on the ( a ,  t )-plane where the stepout p = dt / d x  would be 
constant if the velocity were v ( z  ). Where the velocity increases with depth, 
the Snell traces bend upward. The Snell trace trajectory is readily found by 
integrating the ray equations: 

t = J  d z  
0 v COS 6' 

To  do moveout correction on the Snell traces, introduce the vertical travel- 
time depth t  such that  dz  = v d T. The radial-trace moveout-correction 
equations become 
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Where the earth velocity is stratified, Snell traces have a theoretical 
advantage over radial traces. However they have the disadvantage that the 
curves could become multibranched, so that the transformation would not be 
one-bone. So in practice you might use a simplified velocity model instead 
of your best estimate of the true velocity. 

More philosophically, the transition from constant-o%et traces to  radial 
traces is a big one, whereas the transition from radial traces to Snell traces is 
not so large. Since the use of radial traces is not widespread, we can specu- 
late that  the practical usefulness of Snell traces may be further limited. 

Slant Stack 

Slant stack is a transformation of the offset axis. It is like steering a 
beam of seismic waves. I believe I introduced the term slant stack (Schultz 
and Claerbout [1978]) as a part of a migration method to be described next in 
Section 5.3. I certainly didn't invent the slant-stack concept! It has a long 
history in exploration seismology going back to Professor Rieber in the 1930s 
and to  Professor Riabinkin in the Soviet Union. Mathematically, the slant- 
stack concept is found in the Radon [I9171 transformation. 

The slant-stack idea resembles the Snell trace method of organizing data 
around emergent angle. The Snell trace idea selects data based on a 
hypothetical velocity predicting the local stepout p = dt l d x .  Slant stack 
does not predict the stepout, but extracts it by filtering. Thus slant stack 
does its job correctly whether or not the velocity is known. When the veloci- 
ty  of the medium is known, slant stack enables immediate downward con- 
tinuation even when mixed apparent velocities are present as with diffractions 
and multiple reflections. 
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Slant Stacking and Linear Moveout 

Looking on profiles or gathers for events of some particular stepout 
p = dt l d x  amounts to  scanning hyperbolic events t o  find the places where 

they are tangent t o  a straight line of slope p . The search and analysis will 
be easier if the data  is replotted with linear moveout - tha t  is, if energy 
located a t  offset x = g -s and time t in the ( x ,  t )-plane is moved t o  time 
T = t - px in the ( x ,  T)-plane. This process is depicted in figure 1. The 
linear moveout converts all events stepping out a t  a rate p in (x , t )-space t o  
"horizontal" events in ( x ,  T)-space. The presence of horizontal timing lines 
facilitates the search for and the identification and measurement of the loca- 
tions of the events. 

slope 

P = 

FIG. 5.2-1. Linear moveout converts the task of identifying tangencies t o  
constructed parallel lines t o  the task of locating the tops of convex events. 

After linear moveout T = t - px ,  the components in the data that  have 
Snell parameters near p are slowly variable along the x-axis. T o  extract 
them, apply a low-pass filter on the x-axis, and do so for each value of T, 

The limiting case of low-frequency filtering is extracting the mean. This leads 
t o  the idea of slant stack. 

T o  slant stack, do linear moveout with T = t - px ,  then sum over x .  
This is the same as summing along slanted lines in ( t ,  x)-space. In either 
case, the entire gather P ( x ,  t )  gets converted t o  a single trace that  is a 
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function of T. 

Slant stack assumes that the sum over observed ofkets is an adequate 
representation of integration over all offset. The (slanted) integral over offset 
will receive its major contribution from the zone in which the path of integra- 
tion becomes tangent t o  the hyperboloidal arrivals. On the other hand, the 
contribution to the integral is vanishingly small when the arrival-time curve 
crosses the integration curve. The reason is that propagating waves have no 
zero-frequency component. 

The strength of an arrival depends on the length of the zone of tangency. 
The Fresnel definition of the length of the zone of tangency is based on a 
half-wavelength condition. In an earth of constant velocity (but many flat 
layers) the width of the tangency zone would broaden with time as the hyper- 
bolas flatten. This increase goes as 6, which accounts for half the 
spherical-divergence correction. In other words, slant stacking takes us from 
two dimensions to  one, but a 6 remains t o  correct the conical wavefront 
of three dimensions to the plane wave of two. 

Slant-St ack Gathers are Ellipses. 

A slant stack of a data gather yields a single trace characterized by the 
slant parameter p . Slant stacking at many p -values yields a slant-stack 
gather. (Those with a strong mathematical-physics background will note that 
slant stacking transforms travel-time curves by the Legendre transformation. 
Especially clear background reading is found in Thermodynamics, by H.B. 
Callen, Wiley, 1960, pp. 90-95). 

Let us see what happens t o  the familiar family of hyperbolas 
t ' v 2  = zj2+x2 when we slant stack. It will be convenient to consider the 

circle and hyperbola equations in parametric form, that is, instead of 
t 2 v2=x2+z2 ,  we use z =v t  cos6 and x = vt sin6 or x = Z  tang. 
Take the equation for linear moveout 

and eliminate t and x with the parametric equations. 

z sin 0 - -  Z 
T = z t a n 9  = - cos6 

v cos 6 v v (2) 

Squaring gives the familiar ellipse equation 
n 
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FIG. 5.2-2. Travel-time curves for a data gather on a multilayer earth model 
of constant velocity before and after slant stacking. 

Equation (4) is plotted in figure 2 for various reflector depths a j .  

Two-Layer Model 

Figure 3 shows the travel times of waves in a two-layer model. As is the 
usual case, the velocity is higher in the deeper layer. At  the left are the fa- 
miliar hyperboloidal curves. Strictly, the top curve is exactly a hyperbola 
whereas the lower curve is merely hyperboloidal. The straight line through 
the origin represents energy traveling horizontally along the earth's surface. 
The lower straight line is the head wave. (In seismology it is often called the 
refracted wave, but this name can cause confusion). It represents a ray that  
hits the deeper layer a t  critical angle and then propagates horizontally along 
the interface. 

The right side of the figure shows the travel-time curves after slant 
stacking. Note tha t  curves cross one another in the (x , t )-space but they do 
not cross one another in the (p , 7)-space. The horizontal axis p = dt l dx  
has physical dimensions inverse t o  velocity. Indeed, the velocity of each layer 
may be read from its travel-time curve as the maximum p -value on its ellipse. 
The head waves - which are straight lines in ( a ,  t )-space - are points in 
(p , 7)-space located where the ellipsoids touch. The top curve in (p , T)-space 
is exactly an ellipse, and the lower curve is merely ellipsoidal. 
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FIG. 5.2-3. Identification of precritical reflection ( a  ), postcritical reflection 
( b  ), and head wave ( c  ). 

Interval Velocities from Slant Stacks 

Section 1.5 showed that  downward continuation of Snell waves is purely 
a matter of time shift. The amount of time shift depends only on the angle of 
the waves. For example, a frequency domain equation for the shifting is 

Downward continuing to  the first reflector, we find that the first reflections 
should arrive at  zero time. In migration it is customary to  retard time with 
respect t o  the zero-dip ray. So downward continuation in retarded time 
flattens the first reflection without changing the zer-dip ray. Time shifting 
the data t o  align on the first-layer reflection is illustrated by the third panel 
in figure 4. The first panel shows the velocity model, and the second panel 
shows the slant stacks a t  the surface. After the first reflector is time aligned, 
we have the data that should be observed a t  the bottom of the first layer. 
Now the next deeper curve is an exact ellipse. Estimate the next deeper ve- 
locity from that next deeper ellipse. Continue the procedure to  all depths. 
This method of velocity estimation was proposed and tested by P. Schultz 
[1982]. 

Figure 4 illustrates the difficulty caused by a shallow, high-velocity layer. 
Reflection from the bottom of any deeper, lower-velocity layer gives an incom- 
plete ellipse. It does not connect to  the ellipse above because it seems to  want 
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FIG. 5.2-4. Schultz flattening on successive layers. 

t o  extend beyond. The large p-values (dotted in the figure) are missing 
because they are blocked by the high-velocity (low p ) layer above. The cutoff 
in p happens where waves in the high-velocity layer go horizontally. So 
there are no head waves on deeper, lower-velocity layer bottoms. 

Schultz's method of estimating velocity from an  ellipse proceeds by sum- 
ming on scanning ellipses of various velocities and selecting the one with the 
most power. So his method should not be troubled by shallow high-velocity 
layers. I t  is interesting t o  note that  when the velocity does increase continu- 
ously with depth, the velocity-depth curve can be read directly from the 
rightmost panel of figure 4. The velocity-depth curve would be the line con- 
necting the ends (maximum p ) of the reflections, i.e. the head waves. 

Interface Velocity from Head Waves 

The determination of earth velocity from head waves is an old subject in 
seismology. Velocity measurement from head waves, where i t  is possible, 
refers t o  a specific depth -the depth of the interface- so i t  has even better 
depth-resolving power than an interval velocity (the velocity of a depth inter- 
val between two reflections). 

Traditionally, head-wave velocity analysis involved identification (pic k- 
ing) of travel times. Travel times are hard t o  pick out on noisy data. Clay- 
ton and McMechan [1981] introduced a new method based on the wavefield 
itself, instead of on picked travel times. They did for the velocity analysis of 
head waves what wave-equation migration did for reflections. 

The same idea for getting velocity from back-scattered head waves on 
sections (Section 3.5) can be used on ordinary head waves on common- 
midpoint gathers. On gathers you have the extra information not on a sec- 
tion that  downward continuation focuses energy on zero offset. The focus is 
not a featureless point. Take original data  t o  consist of a head wave only, 
with no reflection. Downward continuation yields a focus a t  zero offset. The 
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FIG. 5.2-5. The upper figure (a contains a synthetic head-wave profile (plot- d ted with linear moveout). The ata  is transformed by slant stack to  the lower 
half of the figure (b). The result of downward continuation of this slant- 
stacked wavefield (b) is shown in figure 6. (Clayton & McMechan) 

focus is a concentrated patch of energy oriented with the same stepout 
dt ldh as the original unfocused head wave. Summing through the focus at  
all possible orientations (slant stack) transforms the data u (h , T) to  dip 
space, say Ti(p , T). The velocity of the earth a t  travel-time depth T is 
found where the seismic energy has concentrated on the ( p ,  T)-plane. The 
velocity is given directly by v (T) = l l p  (7). Given v (T), v ( z  ) is readily 
found. Or the entire calculation could be done in depth z directly instead 
of in travel-time depth T. 

Clayton and McMechan actually do the downward continuation and the 
slant stack in the opposite order. They slant stack first and then downward 
continue. In principle these processes can be done in either order. Remember 
that we are bootstrapping to  the correct earth velocity. Slant stacking does 
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not depend on the earth's velocity, but downward continuation does. Slant 
stacking need be done only once if it is done first, which is why Clayton and 
McMechan do it that way. Figures 5 and 6 show one of their examples. 

FIG. 5.2-6. The result of downward continuation of the slant-stacked 
wavefield in figure 5b with the correct velocity-depth function (the solid line). 
(Clayton & McMechan) 

Compare the method of Clayton and McMechan to  that of Schultz. 
Schultz flattens the reflections by a method that is sensitive t o  the large p 
parts of the ellipse. Clayton and McMechan look only a t  the largest p part of 
the ellipse. Schultz has the advantage that a method based on reflection is 
not troubled by high-velocity layers, but the disadvantage that decision mak- 
ing is required during the descent. Clayton and McMechan present the inter- 
preter with a plane of information from which the interpreter selects the ve- 
locity. Clayton and McMechan's velocity space is a linear, invertible function 
of the data. Section 5.4 will describe a linear, invertible transformation of 
reflection data (not head waves) t o  velocity space. 
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Slant Stack and Fourier Transform 

Let u (x ,  t ) be a wavefield. The slant stack C(p , r) of the wavefield is 
defined mathematically by 

u ( x ,  r +  px)  dx E l  
The integral across x in (6) is done at  constant r, which is a slanting line 
in the (x , t )-plane. 

Slant stack is readily expressed in Fourier space. The definition of the 
two-dimensional Fourier transformation of the wavefield u (x , t ) is 

Recall the definition of Snell's parameter in Fourier space p = k /w and use 
i t  t o  eliminate k from the 2-D Fourier transform (7). 

U(wp, w) = e  jw(' - pz )  u ( x ,  t )  dx dt (8) 

Change the integration variable from t to  r = t - px . 
~ ( w p , w )  = J e i w r [ J  u ( x , r + p x )  dx ] d r  (9) 

Insert the definition (6) into (9). 

Think of U(wp, o) as a one-dimensional function of w that is extracted 
from the ( k ,  w)-plane along the line k = wp . 

The inverse Fourier transform of (10) is 

The result (11) states that a slant stack can be created by Fourier- 
domain operations. First you transform u (x , t ) to  U (k , w). Then extract 
U ( u p ,  w) from U (k , w). Finally, inverse transform from w to  T and 
repeat the process for all interesting values of p . 

Getting U(wp , w) from U(k ,  w) seems easy, but this turns out to be 
the hard part. The line k = u p  will not pass nicely through all the mesh 
points (unless p = A t  / A x )  so some interpolation must be done. As we have 
seen from the computational artifacts of Stolt migration, Fourier-domain 
interpolation should not be done casually. Interpolation advice is found in 
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Section 4.5. 

Both (6) and (11) are used in practice. In (6) you have better control of 
truncation and aliasing. For large datasets, (11) is much faster. 

Inverse Slant Stack 

Tomography in medical imaging is based on the same mathematics as 
inverse slant stack. Simply stated, (two-dimensional) tomography or inverse 
slant stacking is the reconstruction of a function given line integrals through 
it. The inverse slant-stack formula will follow from the definition of two- 
dimensional Fourier integration: 

Substitute k = wp and dk = w dp into (12). Notice that when w is 
negative the integration with dp runs from positive to  negative instead of 
the reverse. To  keep the integration in the conventional sense of negative to 
positive, introduce the absolute value I w 1 .  (More generally, a change of 
variable of volume integrals introduces the Jacobian of the transformation). 
Thus, 

u (x ,  t )  = J e-jwt [I eiwpz U(wp,w) Iwl  dp ] dw (13) 

Obsex-ve that the { ) in (14) contain an inverse Fourier transform of a product 
of three functions of frequency. The product of three functions in the w- 
domain is a convolution in the time domain. The three functions are first 
U(wp, w), which by (11) is the F T  of the slant stack. Second is a delay 
operator e wPZ,  i.e an impulse function of time at  time px . Third is an 

I w I filter. The 1 w 1 filter is called a rho filter. The rho filter does not 
depend on p so we may separate it from the integration over p . Let "*" 
denote convolution. Introduce the delay px as an argument shift. Finally 
we have the inverse slant-stack equation we have been seeking: 

It is curious that the inverse to the slant-stack operation (6) is basically 
another slant-stacking operation (15) with a sign change. 
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Plane-Wave Superposition 

Equation (15)  can be simply interpreted as plane-wave superposition. To  
make this clear, we first dispose of the rho filter by means of a definition. 

% ( P , T )  = rho(r) * T ( p  , T )  (16)  

Equation (16)  will be seen to  be more than a definition. We will see that  

IU ( p  , T )  can be interpreted as the plane-wave spectrum. Substituting the 
definition (16)  into both (15)  and ( 6 )  gives another transform pair: 

T o  confirm that  " U p ,  T )  may be interpreted as the plane-wave spec- 
trum, we take % ( p  , T )  t o  be the impulse function 6 ( p  - p O )  6(7 - rO) and 

substitute it into (17).  The result u ( x  , t ) = 6(t - p O x  - r0) is an impulsive 

plane wave, as expected. 

Reflection Coefficients - Spherical versus Planar 

The amplitudes that you see on the reflected waves on a field profile are 
affected by many things. Assume that  corrections can be made for the spheri- 
cal divergence of the wave, the transmission coefficients through the layers, 
inner bed multiples, etc. What remains are the spherical-wave reflection 
coe$icients. Spherical-wave reflection strengths are not the same as the 
plane-wave reflection coefficients calculated in FGDP or by means of Zoep- 
pritz [1919] equations. Theoretical analyses of reflection coefficient strengths 
are always based on Fourier analysis. Equations (17)  and (18)  provide a link 
between plane-wave reflection coefficients and cylindrical-wave reflection 
coefficients. See page 196 for going from cylinders t o  spheres. 

The Rho Filter 

In practical work, the rho filter is often ignored because it can be 
absorbed into the rest of the filtering effects of the overall data recording and 
processing activity. However, the rho filter is not inconsequential. The 
integrations in the slant stack enhance low frequencies, and the rho filter 
pushes them back t o  their appropriate level. Let us inspect this filter. The 
rho filter has the same spectrum as does the time derivative, but their time 
functions are very different. The finite-difference representation of a time 
derivative is short, only A t  in time duration. Because of the sharp corner 
in the absolute-value function, the rho filter has a long time duration. The 
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Hilbert kernel - l / t  has a Fourier transform i sgn (w). Notice that 
I w 1 = (-iw) X i sgn (w). In the time domain this means that 

d /dt (-llt ) = l / t  2, SO rho(t ) = l / t  2. 

An alternate view is that the rho filter should be divided into two parts, 
with half going into the forward slant stack and the other half into the 
inverse. Then slant stacking would not cause the power spectrum of the data 
to  change. An interesting way to divide the 1 w 1 is 1 w I = 6 6. It 
was shown in Section 4.6 that 6 is a causal time function and 6 is 
anticausal. More details about slant stacks are found in Phinney et al. [I9811 

In practice, slant stack is not so cleanly invertible as 2-D FT, so various 
iteration and optimization techniques are often used. 

EXERCISES 

1. Assume that v ( z  ) = const and prove that the width of a Fresnel zone 
increases in proportion to  6 . 

2. Given v ( z  ), derive the width of the Fresnel zone as a function of t . 

5.3 Snell Waves and Skewed Coordinates 

Slant stacks are closely related to Snell waves. But there is more to  it 
than that. Three different types of gathers (CSP, CGP, and CMP) can be 
slant stacked, and the meaning is different in each case. 

A Snell wave can be synthesized by slant stacking ordinary reflection 
data. Snell waves are described by wave-propagation theory. You can expect 
to  be able to  write a wave equation that really describes the Snell wave 
despite complexities of lateral velocity variation, multiple reflections, shear 
waves, or all these complications at  once. Contrast this to a CDP stack 
where downward continuation is already an approximation even when velocity 
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is constant. Of course we can always return t o  data  analysis in shot-geophone 
space. But the slant stack is a stack, and that  means there is already some 
noise reduction and data  compression. 

Snell Wave Information in Field Data 

The superposition principle allows us t o  create an  impulse function by a 
superposition of sinusoids of all frequencies. A three-dimensional generaliza- 
tion is the creation of a point source by the superposition of plane waves 
going in all directions. Likewise, a plane wave can be a superposition of many 
Huygens secondary point sources. A Snell wave can be simulated by an 
appropriate superposition, called a slant stack, of the point-source data 
recorded in exploration. 

Imagine that  all the shots in a seismic survey were shot off at the same 
time. The downgoing wave would be approximately a plane wave. (Let us 
ignore the reality that  the world is 3-D and not 2-D). The data recorded from 
such an experiment could readily be simulated from conventional data  simply 
by summing the data  field P ( s  , g , t ) over all s . In each common- 
geophone profile the traces would be summed with no moveout correction. 

To  simulate a nonvertical Snell wave, successive shots must be delayed 
(to correspond t o  a supersonic airplane), according t o  some prescribed 
p, = dt I d s .  

What happens if data  is summed over the geophone axis instead of the 
shot axis? The result is point-source experiments recorded by receiver anten- 
nas that  have been highly tuned to  receive vertically propagating waves. 
Time shifting the geophones before summation simulates a receiver antenna 
that  records a Snell wave, say, pg = d t  /dg upcoming a t  an angle 

sin 6' = P g  V -  

Integration over an axis is an  extreme case of low-pass filtering over an 
axis. Between the two extremes of the point-source case and the plane-wave 
case is the case of directional senders and receivers. 

The simple process of propagation spreads out a point disturbance t o  a 
place where, from a distance, the waves appear t o  be nearly plane waves or 
Snell waves. Little patches of data  where arrivals appear t o  be planar can be 
analyzed as though they were Snell waves. 

In summary, a downgoing Snell wave is achieved by dip filtering in shot 
space, whereas an upcoming Snell wave is achieved by dip filtering in geo- 
phone space. 
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Muting and Data Recording 

The basic goal of muting is t o  remove horizontally moving energy. Such 
energy is unrelated t o  a deeper image. Typically muting is performed as 
described in Section 3.5 - tha t  is, a weighting function zeroes data  generally 
beyond some value of ( g  -s ) / t  . There is no question that  muting removes 
much horizontally moving energy, but more can be done. Because of back- 
scattering, horizontally moving energy can often be found inside the mute 
zone. The way t o  get rid of it is t o  use a dip filter instead of a weighting 
function. Before modern high-density recording, slow moving noises were 
often aliased on the geophone cable, so dip filtering wasn't feasible. If the 

emergent angle isn't close enough t o  vertical, that  is, if dt /dg  isn't small 
enough, then the waves can't have come from the exploration target. On 
explosion data, filtering is not so easily applied in shot space as it is in geo- 
phone space because data is not very densely recorded in shot space. Don't 
fall into the trap of thinking that  this dip filtering can be done on a common- 
mid point gather. Back-scattered ground roll has no moveout on a common- 
midpoint gather (see Section 3.2). 

Marine water-bottom scatter is frequently so strong that  it is poorly 
suppressed by conventional processing. In Section 3.2 we saw the reason: 
point scatterers imply hyperbolic arrivals, which have steep dip, hence they 
have the stacking velocities of sediment rather than water. What  is needed 
are two dip filters - one t o  reject waves leaving the shots a t  nonpenetrating 
angles, and the other t o  reject waves arriving a t  the geophones a t  non- 
penetrating angles. 

Present-day field arrays filter on the basis of spatial frequency k z .  More 

high-frequency energy would be left in the da ta  if the recording equipment 
used dip ( k  l w )  filters instead of spatial-frequency k filters. The causal dip 
filters described in Section 2.5 might work nicely. 

Synthesizing the Snell Wave Experiment 

Let us synthesize a downgoing Snell wave with field data, then imagine 
how the upcoming wave will look and how it will carry t o  us information 
about the subsurface. 

Slant stacking will take the survey line data P (s , g , t ), which is a func- 
tion of shot location s , geophone location g , and travel time t , and sum 

over the shot dimension, thereby synthesizing the upcoming wave U(g  , t ), 
which should have been recorded from a downgoing Snell wave. This should 
be the case even though there may be lateral velocity variation and multiple 
reflections. 
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The summation process is confusing because three different kinds of time 
are involved: 

t - - travel time in the point-source field experiments. 

t ' = t - p (g - s ) = interpretation time. The shal- 
lowest reflectors are seen just after t' = 0. 

- 
peeudo - time in the Snell pseudoexperiment with a mov- 

ing source. 

Time in the pseudoexperiment in a horizontally layered earth has the peculiar 
characteristic that  the further you move out the geophone axis, the later the 
echoes will arrive. Transform directly from the field experiment time t t o  
interpretation time t ' by 

Figure 1 depicts a downgoing Snell wave. 

FIG. 5.3-1. Wavefront of a Snell wave that  reflects from two layers, carrying 
information back up t o  g 

Figure 2 shows a hypothetical common-geophone gather, which could be 
summed to  simulate the Snell wave seen a t  location g in figure 1. The 

lateral offset of B from C is identical in figure 1 with that  in figure 2 (at 
two places in figure 2). Repeating the summation for all geophones syn- 
thesizes an  upcoming wave from a downgoing Snell wave. 
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input data sh@?ed for firing after firing 

FIG. 5.3-2. On the left is a common-geophone gather a t  g over two flat 
reflectors. In the center the data  is shifted by linear moveout in preparation 
for the generation of the synthetic Snell wave by summation over shots. On 
the right is shown the Snell wave trace recorded a t  geophone gl. A Snell 
wave seismic section consists of many side-by-side traces like g 

The variable t ' may be called an interpretation coordinate, because 
shallow reflectors are seen just after t ' = 0, and horizontal beds give echoes 
that  arrive with no horizontal stepout, unlike the pseudo-Snell wave. For 
horizontal beds, the detection of lateral location depends upon lateral change 
in the reflection coefficient. In figure 1, the information about the reflection 
strength at B  is recorded rightward a t  g instead of being seen above B ,  
where it would be on conventional stack. The moving of received data  t o  an 
appropriate lateral location is thus an additional requirement for full interpre- 
tation. 

Figure 3 shows the same two flat layers as figures 1 and 2, but there are 
also anomalous reflection coefficients a t  points A , B,  and C.  Point A is 
directly above point B .  The path of the wave reflected a t  B  leads directly 
t o  C and thence t o  g l .  Subsequent frames show the diffraction hyperbolas 

associated with these three points. Notice that  the pseudo-Snell waves 
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model 

gl 

Snell wave 

A C g ,  

partial interpretation full interpretation 

FIG. 5.3-3. Top left is three point scatterers on two reflectors. Top right is 
the expected Snell wave. Bottom left is the Snell wave after linear moveout. 
Bottom right is after transform to  full interpretation coordinates. At  last a ,  
b , and c are located where A , B , and C began. 
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reflecting from the flat layers step out a t  a rate p .  Hyperbolas from the 
scatters A , B , and C come tangent t o  the Snell waves a t  points a , b , 
and c . Notice that  b and c lie directly under g l  because all are 

aligned along a raypath with Snell parameter p . The points A , B ,  and C 
locate the tops of the hyperbolas since the earliest arrival must be directly 
above the point scatterer, no matter what the incident wavefield. Converting 
t o  the interpretation coordinate t ' in the next frame offers the major advan- 
tage that  arrivals from horizontal layers become horizontal. But notice that  
the hyperboloids have become skewed. Limiting our attention t o  the arrivals 
with little stepout, we find information about the anomalous reflection 
coefficients entirely in the vicinities of a , b , and c , which points originally 
lay on hyperbola flanks. These points will not have the correct geometrical 
location, namely that  of A , B and C ,  until the data is laterally shifted to  
the left, to, say, g ' = g - f ( t  I ) .  Then a will lie above b . The correct 

amount of shift f ( t  I )  is a subject that  relates t o  velocity analysis. The ve- 
locity analysis that  pertains t o  this problem will be worked out in the next 
section. 

What's Wrong with Snell Waves? 

Before the DSR was developed, I thought that  the only proper way to  
analyze seismic data  was t o  decompose it into Snell waves. Since a Fresnel 
zone seems t o  be about 10" wide, not many Snell waves should be required. 
The small number of required sections was important because of the limited 
power of computers in the 1970's. I knew tha t  each Snell wave is analyzable 
by a single square-root equation, and that  even multiple reflections can be 
handled by methods described in FGDP and here in Section 5.6. Theoreti- 
cally this approach was a big improvement over CDP stack, which is hardly 
analyzable a t  all. A practical problem for downgoing Snell waves, however, is 
that  they may become complicated early if they encounter lateral velocity 
inhomogeneity shortly after they depart the earth's surface. I no longer 
believe that  Snell waves are a panacea, although I am unsure what their ulti- 
mate role will be. But many waves behave a little like they are Snell waves. 
This motivates the development of a coordinate system that  is ideal for Snell 
waves, and good for waves that  are not far from being Snell waves. 
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Lateral Invariance 

The nice thing about a vertically incident source of plane waves p = 0 
in a horizontally stratified medium is that  the ensuing wavefield is laterally 
invariant. In other words, an observation or a theory for a wavefield would in 
this case be of the form P ( t  ) X const (x ). Snell waves for any particular 
nonzero p -value are also laterally invariant. Tha t  is, with 

5' = x 

lateral invariance is given by the statement 

Obviously, when an apparently two-dimensional problem can be reduced t o  
one dimension, great conceptual advantages result, t o  say nothing of sampling 
and computational advantages. Before proceeding, study equation (3) until 
you realize why the wavefield can vary with x but be a constant function of 
x '  when (2b) says x = x'. 

The coordinate system (2) is a retarded coordinate system, not a moving 
coordinate system. Moving coordinate systems work out badly in solid-earth 
geophysics. The velocity function is never time-variable in the earth, but it 
becomes time-variable in a moving coordinate system. This adds a whole 
dimension t o  computational complexity. 

The goal is t o  create images from data  using a model velocity tha t  is a 
function of all space dimensions. But the coordinate system used will have a 
rejerence velocity that  is a function of depth only. 

Snell Wave Coordinates 

A Snell wave has three intrinsic planes, which suggests a coordinate sys- 
tem. First are the layer planes of constant z , which include the earth's sur- 
face. Second is the plane of rays. Third is the moving plane of the wave- 
front. The planes become curved when velocity varies with depth. 

The following equations define Snell wave coordinates. 

cos 8 z 1 ( 2 , x ,  t )  = Z - 
v 

x ' ( z , x ,  t )  = z t a n 0  + x 

cos 8 t l ( z ,  x ,  t )  = 
sin 8 z - x -  

v v 
+ t 
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Equation (4a) simply defines a travel-time depth using the vertical phase 
velocity seen in a borehole. Interfaces within the earth are just planes of con- 
stant z'. 

Setting x '  as defined by equation (4b) equal t o  a constant, say, xo, 

gives the equation of a ray, namely, (x - x o)/z = - tan 6. Different values 

of x o  are different rays. 

Setting t '  as defined by equation (4c) equal to  a constant gives the 
equation for a moving wavefront. To see this, set t '  = t and note that at  

constant x you see the borehole speed, and a t  constant z you see the air- 
plane speed. 

Mathematically, one equation in three unknowns defines a plane. So, set- 
ting the left side of any of the equations (4a,b,c) to  a constant gives an equa- 
tion defining a plane in (z , x , t )-space. To get some practice, we will look a t  
the intersection of two planes. Staying on a wavefront requires dt '  = 0. 
Using equation (4c) gives 

cos 9 dt '  = 0 = - sin 8 
dz - - dx + dt 

v v (5) 

Combining the constant wavefront equation dt '  = 0 with the constant depth 
equation dz' = dz = 0 gives the familiar relationship 

When coordinate planes are nonorthogonal, the coordinate system is said 
t o  be a$ine. With afine coordinates, such as (4), we have no problem with 
computational tractability, but we often do have a problem with our own con- 
fusion. For example, when we display movies of marine field data, we see a 
sequence of (h , t )-planes. Successive planes are successive shot points. So 

the data is displayed in ( s ,  h )  when we tend to  think in the orthogonal 
coordinates (y  , h ) or (s , g ). With affine coordinates I find it easiest to for- 
get about the coordinate axis, and think instead about the perpendicular 
plane. The shot axis s can be thought of as a plane of constant geophone, 

say, cg . So I think of the marine-data movie as being in (cs , ch , ct )-space. 
In this movie, another plane, really a family of planes, the planes of constant 
midpoints cy , sweep across the screen, along with the "texture" of the data 
(Section 3.0). 

To  define Snell coordinates when the velocity is depth-variable, it is only 
necessary to  interpret (4) carefully. First, all angles must be expressed in 
terms of p by the Snell substitution sin 6 = p v ( z  ). Then z must every- 
where be replaced by the integral with respect t o  z . 
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Snell Waves in Fourier Space 

The chain rule for partial differentiation says that  

In Fourier space, equations (7a) and (7b) may be interpreted as 

Of particular interest is the energy that  is flat after linear moveout (constant 
with x ) .  For such energy d / a x t  = 2 k: = 0. Combining (8a) and (8b) 

gives the familiar equation 

EXERCISES 

1. Explain the choice of sign of the s -axis in figure 1. 

2. Equation (4) is for upgoing Snell waves. What coordinate system would 
be appropriate for downgoing Snell waves? 

3. Express the scalar wave equation in the coordinate system (4). Neglect 
first derivatives. 

4. Express the dispersion relation of the scalar wave equation in terms of 
the Fourier variables (w', ki , kl ). 
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5.4 Interval Velocity by Linear Moveout 

Linear moveout forms the basis for a simple, graphical method for finding 
seismic velocity. The method is particularly useful for the analysis of data 
that  is no longer in a computer, but just exists on a piece of paper. Addition- 
ally, the method offers insights beyond those offered by the usual computer- 
ized hyperbola scan. Using it will help us  rid ourselves of the notion that 
angles should be measured from the vertical ray. Non-zero Snell parameter 
can be the "default." 

Ultimately this method leads t o  a definition of velocity spectrum, a plane 
in which the layout of data, after a linear invertible transformation, shows the 
seismic velocity. 

Graphical Method for Interval Velocity Measurement 

A wave of velocity v from a point source at  location (x , z ) = (0, z, ) 
passes any point (x , z ) at time t where 

In equation (1) x should be replaced by either half-offset h or midpoint y . 
Then t is two-way travel time; the velocity v is half the rock velocity; and 
(z - z, ) is the distance t o  an image source. 

Differentiating (1) with respect t o  t (at constant z ) gives 

Figure 1 shows that  the three parameters required by (3) t o  compute the 
material velocity are readily measured on a common-midpoint gather. 

Equation (3) can be used to  estimate a velocity whether or not the earth 
really has a constant velocity. When the earth velocity is stratified, say, 
v ( z  ), it is easy to  establish that the estimate (3) is exactly the root-mean- 
square (RMS) velocity. First recall that the bit of energy arriving at  the point 
of tangency propagates throughout its entire trip with a constant Snell pa- 
rameter p = dt /dx . 
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FIG. 5.4-1. A straight line, drawn tangent t o  hyperbolic observations. The 
slope p of the line is arbitrary and may be chosen so that  the tangency 
occurs a t  a place where signal-tenoise ratio is good. (Gonzalez) 

The best way to  specify velocity in a stratified earth is t o  give it as some 
function v '(2 ). Another way is to  pick a Snell parameter p and start des- 

cending into the earth on a ray with this p .  As the ray goes into the earth 
from the surface z = 0 at t = 0, the ray will be moving with a speed of, 

say, v (p , t ). It  is an elementary exercise to  compute v (p , t ) from v '(2 ) 
and vice versa. The horizontal distance x which a ray will travel in time t 
is given by the time integral of the horizontal component of velocity, namely, 

Replacing sin 0 by pv and taking the constant p out of the integral 
yields 

Recalling that p = d t  l d x  , insert(5) into (3): 

2 x d x  = -- 
measured t d t  

2 1 
measured = - 5 V (P 7 t )2 d t  

0 

which justifies the assertion that 

- - 
measured - root-mean-square - v~~~ (8) 

Equation (7) is exact. It does not involve a "small offset" assumption or a 
L'straight ray" assumption. 
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Next compute the interval velocity. Figure 2 shows hyperboloidal 
arrivals from two flat layers. Two straight lines are constructed t o  have the 
same slope p . Then the tangencies are measured to  have locations (x l, t l) 

and (x2, t 2). Combining ( 6 )  with (4), and using the subscript j t o  denote 

the j th tangency (xi , t ), gives 

Assume that the velocity between successive events is a constant vinterval ,  

and subtract (9) with j +l from (9) with j to  get 

FIG. 5.4-2. Construction of two parallel lines on a common-midpoint gather 
which are tangent to  reflections from two plane layers. (Gonzalez) 

Solving for the interval velocity gives 

2 - "j+1 - "j - dx 
interval - 

t j  +I - t j  dt 
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So the velocity of the material between the jth and the j +lst 

reflectors can be measured directly using the square root of the product of the 
two slopes in (ll), which are the dashed and solid straight lines in figure 2. 
The advantage of manually placing straight lines on the data, over automated 
analysis, is that you can graphically visualize the noise sensitivity of the meas- 
urement, and you can select on the data the best offsets a t  which t o  make the 
measurement. 

If you do this routinely you quickly discover that the major part of the 
effort is in accurately constructing two lines that are tangent to  the events. 
When you run into difficulty, you will find it convenient to replot the data 
with linear moveout t' = t - px.  After replotting, the lines are no longer 
sloped but horizontal, so that any of the many timing lines can be used. 
Locating tangencies is now a question of finding the tops of convex events. 
This is shown in figure 3. 

FIG. 5.4-3. Measurement of interval velocity by linear moveout. (Gonzalez) 
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In terms of the time t ', equation (11) is 

2 " interval 

Earth velocity is measured on the right side of figure 3 by measuring the slope 
of the dashed line, namely A t l / A x ,  and inserting it into equation (12). 
(The value of p is already known by the amount of linear moveout that  was 
used to  make the plot). 

Common-Midpoint Snell Coordinates 

Common-midpoint slanted wave analysis is a more conservative approach 
to  seismic data analysis than the Snell wave approach. The advantage of 
common-midpoint analysis is that the effects of earth dip tend to  show up 
mainly on the midpoint axis, and the effect of seismic velocity shows up 
mainly on the of ie t  axis. Our immediate goal is t o  define an invertible, 
wave-equation approach to  determination of interval velocity. 

The disadvantage of common-midpoint analysis is that  it is nonphysical. 
A slant stack at  common geophone simulates a downgoing Snell wave, and 
you expect to  be able to  write a differential equation t o  describe it, no matter 
what ensues, be it multiple reflection or lateral velocity variation. A 
common-midpoint slant stack does not model anything that is physically real- 
izable. Nothing says that a partial differential equation exists t o  extrapolate 
such a stack. This doesn't mean that  there is necessarily anything wrong 
with a common-midpoint coordinate system. But it does make us respect the 
Snell wave approach even though its use in the industrial world is not exactly 
growing by leaps and bounds. 

(Someone implementing common-midpoint slant stack would immediately 
notice that it is easier than slant stack on common-geophone data. This is 
because a t  a common midpoint, the tops of hyperboloids must be at  zero 
offset, the location of the Fresnel zone is more predictable, and interpolation 
and missing data problems are much alleviated). 

Seismic data is collected in time, geophone, shot, and depth coordinates 
(t , g , s , z ). A new four-component system will now be defined. Midpoint is 
defined in the usual way: 

Travel-time depth is defined using the vertical phase velocity in a borehole. 
Two-way travel times are used, in order to be as conventional as possible: 
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Next the surface offset h '  is defined. We will not use the old definition of 
offset. For this method, shots and geophones should not go straight down, 
but along a ray. This can be so if h ' is defined as follows: 

With this new definition of h ' the separation of the shot and geophone 
decreases with depth for constant h '. 

Define the LMO tame as the travel time in the point-source experiment 
less the linear moveout. So, a t  any depth, the LMO time is t - p (g -s ). As 
h '  was defined t o  be the surface half-offset, t' is defined t o  be the surface 
LMO time. From the LMO time of a buried experiment, the LMO time a t  
the surface is defined by adding in the travel-time depth of the experiment: 

You may like t o  think of (16) as a "slant" on time retardation for upcoming 
waves, say, t ' = tLMO + zelant / v .  Formally, 

Figure 4 is a geometrical representation of these concepts. 

From the geometry of figure 4 it will be deduced that  a measurement of 
a reflection a t  some particular value of (h', t ') directly determines the veloci- 

ty. Write an equation for the reflector depth: 

t ' h ' 
v [ + p h ' cos 0 = reflector depth = - 

tan 0 

Using Snell's law t o  eliminate angles and solving for velocity gives 

This is consistent with equation (12). 

Gathering the above definitions into a group, and allowing for depth- 
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FIG. 5.4-4. The CMP-LMO coordinate frame geometry. This is a natural 
coordinate system for describing waves that  resemble a reference Snell wave. 

variable velocity by replacing z by the integral over z ,  we get 

cos 0 
t 1 ( t , g 7 s , z )  = t - p ( g  - s ) + 2 j -  d~ 

0 ( 2 0 4  
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Before these equations are used, all the trigonometric functions must be 
eliminated by Snell's law for stratified media, sin 8(z ) = p v ( z  ). Snell's pa- 
rameter p is a numerical constant throughout the analysis. 

The equation for interval velocity determination (12) again arises when 
dt 'ldz from (20a) and dh 'ldz from (20c) are combined: 

dt ' - - - 2 cos 8 
dh ' v tan 8 

Eliminating the trig functions with p v = sin 8 allows us to solve for the 
interval velocity: 

1 , 2  = - 1 
1 dt '  

p + - -  
2 dh' 

At the earth's surface z = 0, seismic survey data can be put into the 
coordinate frame (20) merely by making a numerical choice of p and doing 
the linear moveout. No knowledge of velocity v (z ) is required so far. Then 
we look at  the data for some tops of the skewed hyperbolas. Finding some, 
we use equation (12), (19) or (22) to  get a velocity with which to  begin down- 
ward continuation. 

Waves can be described in either the ( t  , g , s ,  z )  physical coordinates 
or the newly defined coordinates ( t ', y , h ', 7). In physical coordinates the 
image is found at 

t = O  and 9 = s ( 2 3 4 4  

To express these conditions in the Snell coordinates, insert (23) into (20a) and 
(20d). The result is what programmers call the stopping condition: 

This is the depth at  which the velocity information should be best focused in 
the (h I, t '>plane. Next some downward-continuation equations. 

Differential Equations and Fourier Transforms 

The chain rule for partial differentiation gives 
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In our usual notation the Fourier representation of the time derivative at is 

-i w. Likewise, at and the spatial derivatives (ay , ah a,, a. , a8 , az ) are 
associated with 2 (ky , kh 1, k, kg , k8 , k, ). Using these Fourier variables in 
the vectors of (25) and differentiating (20) to  find the indicated elements in 
the matrix of (25), we get 

0 t a n 9  2 cos 9 
v 

Let S be the sine of the takeoff angle at  the source and let G be the 
sine of the emergent angle at  the geophone. If the velocity v is known, then 
these angles will be directly measurable as stepouts on common-geophone 
gathers and common-shot gathers. Likewise, on a constant-offset section or a 
slant stack, observed stepouts relate t o  an apparent dip Y ,  and on a linearly 
moved-out common-midpoint gather, stepouts measure the apparent stepout 
H '. The precise definitions are 

With these definitions (26b) and (26c) become 

The familiar offset stepout angle H is related to  the LMO residual stepout 
angle H' by H' = H - p v .  Setting H' equal to  zero means setting khI  

equal t o  zero, thereby indicating integration over h ', which in turn indicates 
slant stacking data with slant angle p . Small values of H t / v  or kht/w 

refer to  stepouts near t o  p . 

Processing Possibilities 

The double-square-root equation is 
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With substitutions (26a,d), and (27a,b) the DSR equation becomes 

+ [ 1 -  2 p v ( H 1  + Y )  + 2 (H'  2 + Y ) ~  
1 - p  v 

Equation (30) is an exact representation of the double-square-root equa- 
tion in what is called retarded Snell midpoint coordinates. 

The coordinate system (20) can describe any wavefield in any medium. 
Equation (20) is particularly advantageous, however, only in stratified media 

of velocity near v ( z )  for rays that  are roughly parallel t o  any ray with the 
chosen Snell parameter p .  There is little reason t o  use these coordinates 
unless they "fit" the wave being studied. Waves that  fit are those that  are 
near the chosen p value. This means that  H' doesn't get too big. A 
variety of simplifying expansions of (30) are possible. There are many permu- 
tations of magnitude inequalities among the three ingredients pv , H', and 
Y.  You will choose the expansion according t o  the circumstances. The 
appropriate expansions and production considerations, however, have not yet 
been fully delineated. But let us take a look a t  two possibilities. 

First, any dataset can be decomposed by stepout into many datasets, 
each with a narrow bandwidth in stepout space - CMP slant stacks, for 
example. For any of these datasets, H' could be ignored altogether. Then 
(30) would reduce t o  

The above approach is similar to  the one employed by Richard Ottolini in his 
dissertation. 

Next, let us make up an approximation t o  (30) which is separable in Y 
and HI. We will be using separation methodology introduced in Section 3.4. 
Equation (31b) provides the first part. Then take Y = 0 and keep all terms 
up t o  quadratics in H': 
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A separable approximation of (30) is (31b) plus (32). It is no accident 
that  there are no linear powers of H' in (32). The coordinate system was 
designed so that energy near the chosen model Y = 0 and H = pv should 
not drift in the (h ', t '>plane as the downward continuation proceeds. 

The velocity spectrum idea represented by equation (32) is t o  use the H' 
term to  focus the data on the (h ', t ')-plane. After focusing, it should be pos- 
sible to read interval velocities directly as slopes connecting events on the 
gathers. This approach was used in the dissertation of Alfonso Gonzalez 
[1982]. 

EXERCISE 

1. A hyperbola is identified on a zero-offset section. The top is obscured 
but you can measure ( p  , x , t ) at  two places. What is the earth veloci- 

ty? Given the same measurements on a field profile (constant s ) what is 
the earth velocity? 

5.5 Multiple Reflection, Current Practice 

Near the earth's surface are a variety of unconsolidated materials such as 
water, soil, and the so-called weathered zone. The contrast between these 
near-surface materials and the petroleum reservoir rocks below is often severe 
enough to produce a bewildering variety of near-surface resonances. These 
resonance phenomena are not predicted and cannot be explained by the 
methods described in previous chapters. 

Hard Sea Floor Example 

Figure 1 shows textbook-quality multiple reflections from the sea floor. 
2 2 Hyperbolas v t - x 2  = zj2 appear a t  uniform intervals zj = j AZ , 

j =0, 1,2 ,  . - . The data is unprocessed other than by multiplication by a 
spherical divergence correction t .  Air is slower and lighter than water while 
sea-floor sediment is almost always faster and denser. This means that 
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FIG. 5.5-1. Marine profile of multiple reflections from Norway. A t  the right, 
the near trace is expanded. (GECO) 
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successive multiple reflections almost always have alternating polarity. The 
polarity of a seismic arrival is usually ambiguous, but here the waveform is 
distinctive and it clearly alternates in polarity from bounce to  bounce. The 
ratio of amplitudes of successive multiple reflections is the reflection 
coefficient. In figure 1, the reflection coefficient seems to  be about - 0.7. Mul- 
tiply reflected head waves are also apparent, as are alternating polarities on 
them. Since the head-wave multiple reflections occur a t  critical angle, they 
should have a -1.0 reflection coefficient. We see them actually increasing 
from bounce to  bounce. The reason for the increase is that the spherical- 
divergence correction is based on three-dimensional propagation, while the 
head waves are really spreading out in two dimensions. 

Multiple reflections are fun for wave theorists, but they are a serious 
impediment t o  geophysicists who would like t o  see the information-bearing 
primary reflections that they mask. 

Deconvolution in Routine Data Processing 

The water depth in figure 1 is deeper than typical of petroleum prospect- 
ing. Figures 2 and 3 are more typical. In figure 2, the depth is so shallow it 
is impossible t o  discern bounces. With land data the base of the weathered 
zone is usually so shallow and indistinct that it is generally impossible t o  dis- 
cern individual reflections. The word shallow as applied to  multiple reflections 
is defined t o  mean that  the reflections reoccur with such rapidity that they 
are not obviously distinguished from one another. 

Statisticians have produced a rich literature on the subject of deconvolu- 
tion. For them the problem is really one of estimating a source waveform, 
not of removing multiple reflections. There is a certain mathematical limit in 
which the multiple-reflection problem becomes equivalent t o  the source- 
waveform problem. This limit holds when the reverberation is confined to  a 
small physical volume surrounding the shot or the geophone, such as the soil 
layer. The reason that  the source-waveform and multiple-reflection problems 
are equivalent in this limit is that the downgoing wave from a shot is not sim- 
ply intrinsic t o  the shot itself but also includes the local soil resonances. The 
word ghost in reflection seismology refers t o  the reflection of the source pulse 
from the surface (or sometimes from the base of the weathered layer). 
Because the source is so near to these reflectors, we often regard the ghost as 
part of the source waveform too. 

An extensive literature exists on the vertical-incidence model of multiple 
reflections. Among wave-propagation theorists, the removal of all multiples is 
called inversion. It  seems that for inversion theory to be applicable to the 
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real problem, the theory must include a way t o  deal with an unknown, spec- 
trally incomplete, shot waveform. 

Routine work today typically ignores inversion theory and presumes the 
mathematical limit within which multiples may be handled as a shot 
waveform. The basic method was first developed for the industry by 
Schneider, Larner, Burg, and Backus [I9641 of GSI (figure 2). Despite many 
further theoretical developments and the continuing active interest of many 
practical workers, routine deconvolution is little changed. 

FIG. 5.5-2. Field profiles before (left) and after (right) deconvolution. (distri- 
buted by GSI, circa 1965) 

Conventional industrial deconvolution (figure 2) has many derivations 
and interpretations. I will state in simple terms what I believe to  be the 
essence of deconvolution. Every seismogram has a spectrum. The spectrum 
is a product of many causes. Some causes are of fundamental interest. Oth- 
ers are extraneous. It is annoying when a seismogram is resonant just because 
of some near-surface phenomena. Deconvolution is basically a process in 
which strong resonances are measured, and then a filter is designed t o  
suppress them. The filter is designed t o  have a spectrum that  is roughly 
inverse t o  the spectrum of the raw data. Thus the output of the filter is 
roughly white (equal amounts of all frequencies). From the earliest times, 
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seismologists have found that  reflection seismic data  rarely makes sense much 
outside the frequency band 10-100 Hz, so as a final step, frequencies outside 
the band are removed. (The assumption that  the output spectrum should be 
white seems t o  most seismologists t o  be a weak assumption, but practice usu- 
ally shows i t  better than interpreting earth images from raw data). 

Another nonmathematical explanation of why deconvolution is a success 
in practice is that  it equalizes the spectrum from trace t o  trace. I t  balances 
the spectra (Tufekcic et a1 [1981)). Not only is it annoying when a seismo- 
gram is resonant just because of some near-surface phenomena, but  i t  is more 
annoying when the wave spectrum varies from trace t o  trace as the near sur- 
face varies from place t o  place. A variable spectrum makes it hard t o  meas- 
ure stepouts. Notice that  the conventional industrial deconvolution described 
above includes spectral balancing as a byproduct. Figure 3 shows data that  
needs spectral balancing. 

The above interpretation of deconvolution and why it works is different 
from what is found in most of the geophysical literature. Deconvolution is 
often interpreted in terms of the predictability of multiple reflections and the 
nonpredictability of primary reflections. It is shown in FGDP how multiple 
reflections are predicted. They are predicted, not by a strictly convolutional 
model, but approximately so. Prediction by convolution works best when the 
reverberation is all in shallow layers. Then it is like a source waveform. 

Cardiovascular research is well integrated with routine practice, whereas 
pulmonary research is not. I compare this t o  migration and velocity theory 
being a good guide t o  industrial practice, whereas deconvolution theory is less 
so. The larger gap between theory and practice is something t o  be aware of. 
Some fields are more resistant t o  direct attack. In them you progress by more 
indirect routes. This is confusing for the student and demoralizing for the 
impatient. But that  is the way it is. For more details, see Ziolkowski [1984]. 

The next few pages show land data with buried geophones confirming 
that  source waveforms are mainly near-surface reverberation. Then we turn 
t o  departures from the convolutional model. 

A Vertical Seismic Profile (VSP) 

Seismologists always welcome the additional information from a vert ical  
se ismic  profile (VSP) .  A V S P  is some collection of seismograms recorded from 
the surface to  a borehole. Routine well-based measurements such as rock cut- 
tings and electric logs record local information, often just centimeters from 
the well. I t  is nice to  think of the earth as horizontal strata, but this idealiza- 
tion fails at some unknown distance from the well. Surface reflection 
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FIG. 5.5-3. Profile from the North 
Sea. (Western Geophysical) 
Observe strong reverberations with 
a period of about 90 ms. These 
are multiple reflections from the 
sea floor. Note that  the strongest 
signal occurs a t  increasing offset 
with increasing time. This is 
because the strongest multiples are 
often a t  critical angle. The 
strength of the reverberation 
diminishes abruptly 1.8 km behind 
the ship. This implies that  the sea 
floor changes abruptly a t  that  
point. 

seismology, although it is further from the "ground truth7'  of well-bore meas- 
urements, provides the needed information about lateral continuity. But sur- 
face reflection data has resolving-power limitations as well as other uncertain- 
ties. The VSP provides information at an intermediate scale and also pro- 
vides a calibration of the surface seismic method. Unfortunately, VSPs are 
costly and we rarely have them. 

The subject of VSP occupies several books and many research papers. 
(See Ga17perin (19741 and Balch et a1 [1982]). Here we will just look a t  a sin- 
gle VSP to get some idea of source waveforms and multiple reflections. The 
VSP shown in figure 4 is from a typical land area. The multiple reflections 
are not so severe as with the marine data shown elsewhere in this chapter. 
The earliest arrival in figure 4 is the primary downgoing wave. Downgoing 
waves increase their travel time with depth, the slope of the arrival curve giv- 
ing the downward component of velocity. After the first downgoing waves 
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Rrco VSP - P-wave d e t e c t o r  

FIG. 5.5-4. 
the borehol 
travel time 

Vertical seismic profile. The source is a t  the earth's surface near 
e. The horizontal axis is the receiver depth. The vertical axis is 
from zero t o  one second. Amplitudes are scaled by t (ARCO) 

arrive, you can see more downgoing waves with the same velocity. Upgoing 
waves have the opposite slope of the downgoing waves. These are also visible 
in figure 4. 

Since late echoes are weaker than early ones, seismic data is normally 
scaled upwards with time before being displayed. There is no universal agree- 
ment in either theory or practice of what scaling is best. I have usually found 
t 2  scaling t o  be satisfactory for reflection data. (See Section 4.1). Figure 4 
shows tha t  t scaling keeps the first arrival a t  about a constant amplitude 
on the VSP. 

Viewing figure 4 from the side shows that  the downgoing pulse is fol- 
lowed by a waveform that  is somewhat consistent from depth t o  depth. The 
degree of consistency is not easy t o  see because of interference with the 
upcoming wave. As far a s  I can tell from the figure, the downgoing wave a t  
the greatest depth is equal to  that  a t  the shallowest depth. 

Figure 5 shows the same data augmented by some shallow receivers. You 
will notice that  the downgoing wave no longer seems to  be independent of 
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depth. So we can conclude that ,  as a practical matter, the downgoing 
waveform seems t o  be mainly a result of near-surface reverberation. 

Rrco VSP - P-wave d e t e c t o r  

FIG. 5.5-5. The data of figure 4 augmented with shallower receivers. Ampli- 
tudes are scaled by t (ARCO) 

The energy in the first burst in figure 4 is roughly comparable t o  the 
remaining energy. The remaining energy would be less if the VSP were 
displayed without t 1.5 scaling, but since the surface reflection data is nor- 
mally displayed with some such scaling (often t 2),  it makes more sense statist- 
ically t o  speak of the energy on the scaled data. So the reverberating energy 
is roughly comparable to  the first arriving energy. 

Below the near-surface region, the downgoing wave changes slowly with 
depth. Now we should ask how much the downgoing wave would change if 
the experiment were moved laterally. Obviously the borehole will not move 
laterally and we will be limited to  data where only the surface source moves 
laterally. Since near-surface variations often change rapidly in the lateral 
direction, we may fear that  the downgoing waveform also changes rapidly 
with shot location. The reverberation near a shot is repeated similarly near 
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any surface receiver. The resulting composite reverberation is the convolution 
of near-shot reverberation and near-geophone reverberation. So t o  get the 
information needed t o  deconvolve surface seismic data, the VSP should be 
recorded with many surface source locations. 

Unfortunately such offset VSP data  is rarely available. When petroleum 
production declines and expensive secondary recovery methods are contem- 
plated, the cost of VSP will not seem so high. The production lost during 
VSP acquisition may be more easily weighed against future gains. 

Again we should think about the meaning of "bad" data. Seismic data  is 
generally repeatable whenever it is above the level of the ambient microse- 
ismic noise. But often the signals make no sense. The spatial correlations 
mean nothing t o  us. Most data  at late times fits this description. Perhaps 
what is happening is this: (1) The downgoing waveform is getting a long 
trail; (2) the trail is a chaotic function of the surface location; and (3) the 
energy in the trail exceeds the energy in the first pulse. So, with so much ran- 
domness in the downgoing wave, the upcoming wave is necessarily 
incomprehensible. 

Deep Marine Multiples, a Phenomenon of Polar Latitudes 

It has frequently been noted that  sea-floor multiple reflection seems t o  be 
a problem largely in the polar latitudes only - rarely in equatorial regions. 
This observation might be dismissed as being based on the statistics of small 
numbers, but two reasons can be given why the observation may be true. 
Each of these is of interest whether or  not the statistics are adequate. 

I t  happens that  natural gas is soluble in water and raises the temperature 
of freezing, particularly a t  high pressure. Ice formed when natural gas is 
present is called gas hydrate. Thus there can be, under the liquid ocean, 
trapped in the sediments, solid gas hydrate. The gas hydrate stiffens the sedi- 
ment and enhances multiple reflections. 

A second reason for high multiple reflections a t  polar latitudes has t o  do 
with glacial erosion. Ordinarily ocean bottoms are places of slow deposition 
of fine-grained material. Such freshly deposited rocks are soft and generate 
weak multiple reflections. But in polar latitudes the scouring action of gla- 
ciers removes sediment. Where erosion is taking place the freshly exposed 
rock is stronger and stiffer than newly forming sediments. Thus, stronger 
sea-floor reflections. 

Continents erode and deposit a t  all latitudes. However, one might specu- 
late tha t  on balance, continental shelves are created by deposition in low and 
middle latitudes, and then drift t o  high latitudes where they erode. While 
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highly speculative, this theory does provide an  explanation for the association 
of multiple reflections with polar latitudes. 

Water bottom Peg leg lntra bed 

FIG. 5.5-6. Raypaths are displayed for (a) a water-bottom multiple, (b) a 
pegleg multiple family, and (c) a short-path multiple. 

Pegleg and Intrabed Multiple Reflections 

Multiple reflections fall into one of three basic categories - see figure 6. 

Water-bottom multiples are those multiples whose raypaths lie entirely 
within the water layer (figure 6a). Since the sea floor usually has a higher 
reflectivity than deeper geological horizons, water-bottom multiples often have 
strong amplitudes. In deep water these multiples can be very clear and dis- 
tinct. A textbook-quality example is shown in figure 1. 

Pegleg multiple reflections are variously defined by different authors. 
Here pegleg multiples (figure 6b) are defined t o  be those multiples that  
undergo one reflection in the sedimentary sequence and other reflections in the 
near surface. 

To  facilitate interpretation of seismic data, let us review the timing and 
amplitude relations of vertical-incidence multiple reflections in layered media. 
Take the sea-floor tw-way travel time t o  be t l  with reflection coefficient 

c ,. Then the nth  multiple reflection comes a t  time n t with reflection 

strength c T. Presume also a deeper primary reflection at travel-time depth 

t 2  with reflection coefficient c 2 .  The sea-floor peglegs arrive a t  times 

t + n t l. Note that  peglegs come in families. For example, the time 

t + 2t could arise from three paths, t + 2t l ,  t + t + t or 2t + t 2. 

So the n t h  order pegleg multiple echo is really a summation of n + 1 rays, 
and thus its strength is proportional t o  (n + 1) c c y . The sea-floor rever- 

beration is c y , which is not the same function of n as the function that  

describes reverberation on sediments, (n + 1) c y . Ignoring the sea-floor 
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Near Offset Section (As  = 25m ) 

FIG. 5.5-7. Near-offset section - offshore Labrador (Flemish Cap). The 
offset distance is about 9 shotpoints. SF  = sea floor, BMl  = first bottom 
multiple, BM2 = second bottom multiple, P = primary, PM1 = first pegleg 
multiple, and PM2 = second pegleg multiple. (AMOCO-Canada, Morley) 

reverberation itself you can just think of (n + 1) c ; as a shot waveform. 

Every multiple must have a "turn-around" where an upcoming wave 
becomes a downgoing wave. Almost all readily recognized multiples are sur- 
/ace multiples, that  is, they have their turn-arounds a t  the earth's surface. 
Figure 7 shows some clear examples. In land data  the turn-around can be a t  
the  base of the soil layer, which is almost the same as being a t  the earth's sur- 
face. 
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A raypath that  is representative of yet another class of multiples, called 
short-path or intrabed multiples, is shown in figure 6c. Their turn-around is 
not a t  or near the earth's surface. These multiples are rarely evident in field 
data, although figure 8 shows a clear case in which they are. When they are 
identified, it is often because the seismic data is being interpreted using some 
accompanying well logs. The reason that  short-path multiples are so rarely 
observed compared t o  peglegs is that  the reflection coefficients within the sedi- 
mentary sequence are so much lower than on the free surface. The weakness 
of individual short-path multiples may be compensated for, however, by the 
very large numbers in which they can occur. Any time a seismic section 
becomes incomprehensible, we can hypothesize that  the data has become 
overwhelmed by short-path multiples. 

FIG. 5.5-8. A rare case of unambiguous intrabed multiple reflections. The 
data was recorded near Puerto Rico. The inner-bed multiple is between the 
sea fioor and the basement. Thus its travel time is t base + ( t  base  - tpoor) .  
Do you see it? (Western Geophysical) 
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The Need to Distinguish between Types of Sections 

By 1974, wave-equation methods had established themselves as a success- 
ful way t o  migrate CDP-stacked sections. Bolstered by this success, Don 
Riley and I set out t o  apply the wave equation t o  the problem of predictive 
suppression of deep-water multiple reflections. Hypothesizing that  diffraction 
effects were the reason for all the difficulty that  was being experienced then 
with deepwater multiple reflection, we developed a method for the modeling 
and predictive removal of diffracted multiple reflections (see FGDP, Chapter 
11-4). We didn't realize that  in practice the multiple reflection problem 
would be so much more difficult than the primary reflection problem. For pri- 
maries, the same basic migration method works on zero-oflket sections, CDP- 
stacked sections, or  vertical-incidence plane-wave sections. Our multiple- 
suppression method turned out t o  be applicable only t o  vertical plane-wave 
stacks. Don Riley prepared figure 9, which shows some comparisons. 

- P 
5- .8- 

-"I 

1 0 -  1 0  - 

I S -  I S -  

2-D Synthetic 27-Fold CDP Section Near Trace Secrlon 

plane wave source 
field data ~ a m e  d a t a  

FIG. 5.5-9. Diffracted multiple-reflection examples: (a ) 1-D synthetic, ( b  ) 2-D 
synthetic, vertical plane-wave source, (c ) 27-fold CDP data section (GSI), (d ) 
near-trace section. (Riley) 

One thing t o  keep in mind while studying the comparisons in figure 9 is 
that  on the field data there are likely t o  be aspects of propagation in three 
dimensions that  may go unrecognized. The third dimension is always a 
"skeleton in the closet." I t  doesn't usually spoil two-dimensional migration, 
but that  doesn't assure us that  it won't spoil 2-D wave-equation multiple 
suppression. 
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Examples of Shallow-Water Multiples with Focusing 

The exploding-reflector concept does not apply t o  multiple reflections, so 
there is no simple wave-theoretic means of predicting the focusing behavior of 
multiples on  a near-trace section. Luckily multiples on vertical plane-wave 
stacks are analyzable. They may give us some idea about the focusing 
behavior of multiple reflections on other seismic sections. A vertically down- 
going plane wave is simulated by a common-geophone stack without moveout. 
This isn't the same as the familiar CDP stack, but i t  is analyzable with the 
techniques described in Chapters 1 and 2. 

Consider a multiple reflection that  has undergone several surface 
bounces. The seismic energy started out as a downgoing plane wave. I t  
remained unchanged until i ts first reflection from the sea floor. The sea-floor 
bounce imposed the sea-floor topography onto the plane wave. In a computer 
simulation the topography would be impressed upon the plane wave by a step 
with the lens equation. Then the wave diffracted its way up t o  the surface 
and back down t o  the sea floor. In a computer another topographic lens shift 
would be applied. The process of alternating diffraction and lensing would be 
repeated as often as you would care t o  keep track of things. Figure 10 shows 
such a simulation. A striking feature of the high-order multiple reflections in 
figure 10 is the concentration of energy into localized regions. I t  is easy t o  see 
how bounces from concave portions of the sea floor can overcome the ten- 
dency of acoustic energy t o  spread out. These regions of highly concentrated 
energy that  occur late on the time axis do not resemble primaries at all. With 
primaries a localized disturbance tends t o  be spread out  into a broad hyper- 
bola. Primary migration of the highly concentrated bursts of energy seen on 
figure 10 must lead t o  semicircles. Such semicircles are most unlikely geologi- 
cal models - and are all too often predicted by the industry's best migration 
programs. 

The most important thing to  learn from the synthetic multiple reflections 
of figure 10 is that  multiples need not resemble primaries. Semicircles that  
occur on migrated stacks could be residual multiple reflections. Unfor- 
tunately, there is no simple theory that  says whether or not focused multiples 
on vertical wave stacks should resemble those on zero-ofhet sections or CDP 
stacks. Luckily some data exists that  provides an answer. Figure 11 is a 
zero-offset section which establishes that  such focusing phenomena are indeed 
found in qualitative, if not quantitative, form on reflection survey data. 

The marine data  exhibited in figure 11 clearly displays the focusing 
phenomena in the synthetic calculations of figure 10. This suggests that  we 
should utilize our understanding in a quantitative way t o  predict and suppress 
the multiple reflections in order to  get a clearer picture of the earth's 



FRONTIERS 5.5 Multiples - Curren t  Pract ice  

FIG. 5.5-10. Simulated sea- 
floor multiple reflections. The 
vertical exaggeration is 5. Lit- 
tle focusing is evident on the 
gentle sea-floor topography, 
but much focusing is evident 
on high-order multiple 
reflections. At late times 
there is a lack of lateral con- 
tinuity, really unlike primary 
reflection data. 

subsurface. There are several reasons why this would not be easy t o  do. 
First, the Riley theory applies to  vertical wave stacks. These are quantita- 
tively different from common-midpoint stacks. Second, the effective seismic 
sea-floor depth is not a known input: i t  must somehow be determined from 
the data itself. Third, the water depth in figure 11 is so shallow that  indivi- 
dual bounces cannot be distinguished. 

Why Deconvolution Fails in Deep Water 

It has been widely observed that  deconvolution generally fails in deep 
water. A possible reason for this is that  deep water is not the mathematical 
limit a t  which the multiple-reflection problem is equivalent to  the shot- 
waveform problem. But that  is not all. Theory predicts that  under ordinary 
circumstances multiples should alternate in polarity. The examples of figure 1 
and figure 2 confirm it. You will have trouble, however, if you look for alter- 
nating polarity on CDP st.acks. The reason for the trouble also indicates why 
deconvolution tends t o  fail to  remove deep multiples from CDP stacks. 

Recall the timing relationships for multiples a t  zero offset. The rever-  
beration period is a constant function of time. Because of moveout, this is not 
the case a t  any other offset. Normal-moveout correction will succeed in 
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FIG. 5.5-11. Example of focusing effects on multiple reflections in near-trace 
section a t  Chukchi Sea. These effects are obscured by stacking. (U.S. Geologi- 
cal Survey) 

A. Existing structure. 

B. Former structure unevenly eroded away leaving localities of sea floor con- 
vex or  concave. 

C. High order multiple reflections focusing where the sea floor is concave. 

D. Existing structural dip exposed in windows where the multiples are weak 
(i.e., where convex sea floor causes multiple t o  spread rapidly). 
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restoring zero-offset timing relationships in a constant-velocity earth, but 
when the velocity increases with depth, the multiples will have a slower RMS 
velocity than the primaries. So the question is what velocity to use, and 
whether, in typical land and marine survey situations, the residual time shifts 
are greater than a half-wavelength. No equations are needed to  answer this 
question. All that is needed is the general observation that conventional 
common-midpoint stacking suppresses multiples because they have lower velo- 
cities than primaries. This observation implies that normal moveout routinely 
time shifts multiple reflections a half-wavelength or more out of their natural 
zero-offset relationships. 

To make matters worse, the amplitude relationships that we expect at 
zero offset are messed up. Reflection coefficient is a function of angle. But on 
a seismogram from some particular oEset, each multiple reflection will have 
reflected at  a different angle. 

Vertical incidence timing relationships are approximately displayed on 
CDP stacks. The practical difficulty is that the CDP stack does not mimic 
the vertical-incidence situation well enough to enable satisfactory prediction 
of multiples from primaries. 

Before stack, on marine data, moveout could be done with water veloci- 
ty, but then any peglegs would not fit the normal-incidence timing relation- 
ship. Since peglegs are often the worst part of the multiple-reflection prob- 
lem, moveout should perhaps be done with pegleg velocity. No matter how 
you look at  it, all the timing relationships for deep multiple reflections can- 
not be properly adjusted by moveout correction. 

EXERCISE 

1. On some land data it was noticed that a deep multiple reflection arrived 
a short time earlier than predicted by theory. What could be the expla- 
nation? 
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5.6 Multiple Reflection - Prospects 

T o  improve our ability t o  suppress multiples, we t ry  t o  better character- 
ize them. The trouble is that  a realistic model has many ingredients. Few of 
the theories that  abound in the literature have had much influence on routine 
industrial practice. I would put these unsuccessful theories into two 
categories: 

1. Those that  t ry  t o  achieve everything with statistics, oversimplifying 
the complexity of the spatial relations 

2. Those that  t ry  to  achieve everything with mathematical physics, 
oversimplifying the noisy and incomplete nature of the data  

Multiple reflection is a good subject for nuclear physicists, astrophysi- 
cists, and mathematicians who enter our field. Those who are willing t o  take 
up the challenge of trying t o  carry theory through t o  industrial practice are 
rewarded by learning some humility. I'll caution you now that  I haven't 
pulled it all together in this section either! 

Here two approaches will be proposed, both of which attend t o  geometry 
and statistics. Both approaches are new and little tested. Regardless of how 
well they may work, I think you will find that  they illuminate the task. 

The first approach, called CMP slant stack, is a simple one. I t  
transforms data into a form in which all offsets mimic the simple, one- 
dimensional, zero-offset model. The literature about that  model in both 
statistics and mat hematical physics is extensive. 

The second approach is based on a replacement impedance concept. I t  is 
designed t o  accommodate rapid lateral variations in the near surface. I t  is 
easiest t o  explain for a hypothetical marine environment where the sole 
difficulty arises from lateral variation in the sea-floor reflectivity. The basic 
idea is downward continuation of directional shots and directional geophones 
t o  just beneath the sea floor, but no further. This is followed by upward con- 
tinuation through a replacement medium that  has a zero sea-floor reflection 
coefficient. This process won't eliminate all the multiple reflections, but it 
should eliminate the most troublesome ones. 
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Transformation to One Dimension by Slant Stack 

A rich literature (c.f. FGDP) exists on the one-dimensional model of mul- 
tiple reflections. Some authors develop many facets of wave-propagation 
theory. Others begin from a simplified propagation model and develop many 
facets of information theory. These one-dimensional theories are often 
regarded as applicable only a t  zero offset. However, we will see that  all other 
offsets can be brought into the domain of one-dimensional theory by means of 
slant stacking. 

FIG. 5.6-1. Rays at constant-offset (left) arrive with various angles and hence 
various Snell parameters. Rays with constant Snell parameter (right) arrive 
with various offsets. A t  constant p all paths have identical travel times. 

The way t o  get the timing and amplitudes of multiples t o  work out like 
vertical incidence is t o  stop thinking of seismograms as time functions a t  con- 
stant  offset, and start  thinking of constant Snell parameter. In a layered 
earth the complete raypath is constructed by summing the path in each layer. 
At  vertical incidence p = 0, it is obvious that  when a ray is in layer j its 
travel time ti for that  layer is independent of any other layers which may 

also be traversed on other legs of the total journey. This independence of 
travel time is also true for any other fixed p . But, as shown in figure 1, it is 
not true for a ray whose total offset C / ,, instead of its p , is fixed. Like- 

wise, for fixed p , the horizontal distance /, which a ray travels while in 

layer j is independent of other legs of the journey. Thus, in addition, 
t j  + const j , for any layer j is independent of other legs of the journey. 

So t j  ' = ti - p j , is a property of the j th layer and has nothing t o  do with 

any other layers which may be in the total path. Given the layers that  a ray 
crosses, you add up the t j  and the / for each layer, just as you would in 

the vertical-incidence case. Some paths are shown in figure 2. 

T o  see how t o  relate field data  t o  slant stacks, begin by searching on a 
common-midpoint gather for all those patches of energy (tangency zones) 
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FIG. 5.6-2. A two-layer model showing the events ( t  2t t 2, t l+t l). On 
the top is a ray trace. On the left is the usual data  gather. On  the right the 
gather is replotted with linear moveout t '  = t - p f . Plots were calcu- 
lated with (v v 2, l / p  ) in the proportion (1,2,3). Fixing our attention on the 
patches where data is tangent to lines of slope p ,  we see that  the arrival 
times have the vertical-incidence relationships - tha t  is, the reverberation 
period is fixed, and it is the same for simple multiples as it is for peglegs. 
This must be so because the ray trace a t  the top of the figure applies precisely 
t o  those patches of the data where dt /dx = p .  Furthermore, since 
61 = 62, the times ( t  2t 1', t 2'+t 21) also follow the familiar vertical- 
incidence pattern. (Gonzalez) 
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where the hyperboloidal arrivals attain some particular numerical value of 
slope p = dt l d j  . These patches of energy seen on the surface observations 
each tell us where and when some ray of Snell's parameter p has hit the 
surface. Typical geometries and synthetic data are shown in figures 2 and 3. 

Both the ti and the t, ' behave like the times of normal-incident mul- 

tiple reflections. While the lateral location of any patch unfortunately 
depends on the velocity model v ( z  ), slant stacking makes the lateral location 
irrelevant. In principle, slant stacking could be done for many separate values 

of p so that  the ( j  , t )-space would get mapped into a (p , t )-space. The 
nice thing about ( p  , t )-space is that the multiple-suppression problem decou- 
ples into many separate one-dimensional problems, one for each p-value. 
Not only that, but the material velocity is not needed to solve these problems. 
I t  is up to  you t o  select from the many published methods. After suppressing 
the multiples you inverse slant stack. Once back in (f , t )-space you could 
estimate velocity and further suppress multiples using your favorite stacking 
method. 

FIG. 5.6-3. The same geometry as  figure 2 but with more multiple reflections. 

Figure 3 is a "workbook" exercise. By picking the tops of all events on 
the right-hand frame and then connecting the picks with dashed lines, you 
should be able t o  verify that sea-bottom peglegs have the same interval veloc- 
ity as the simple bottom multiples. The interval velocity of the sediment can 
be measured from the primaries. The sediment velocity can also be measured 
by connecting the n th  simple multiple with the n th  pegleg multiple. 
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Transformation t o  one dimension by slant stack for deconvolution is a 
process that  lies on the border between experimental work and industrial 
practice. See for example Treitel et a1 [1982]. Its strength is that  i t  correctly 
handles the angle-dependences that  arise from the source-receiver geometry as 
well as the intrinsic angle-dependence of reflection coefficient. One of its 
weaknesses is that  it assumes lateral homogeneity in the reverberating layer. 
Water is extremely homogeneous, but sediments a t  the water bottom can be 
quite inhomogeneous. 

Near-Surface Inhomogeneity 

Soils have strange acoustic behavior. Their seismic velocities are usually 
less than or equal t o  the speed of sound in water (1500 meters/sec). I t  is not 
uncommon for soil velocity to  be five times slower than the speed of sound in 
water, or as slow as the speed of sound in air (300 meterslsec). Where practi- 
cal, seismic sources are buried under the weathered zone, but the receivers are 
almost always on the surface. About the only time you may encounter buried 
receivers is in a marshy area. There field operations are so difficult that  you 
will have many fewer receivers than normal. 

A source of much difficulty is that  soils are severely laterally inhomogene- 
ous. I t  is not rare for two geophones separated by 10 meters t o  record quite 
different seismograms. In particular, the uphole transit time (the seismic 
travel time from the bottom of a shot hole t o  the surface near the top of the 
hole) can easily exhibit time anomalies of a full wavelength. All this despite a 
flat level surface. How can such severe, unpredictable, travel-time anomalies 
in the weathered zone be understood? By river meanders, tiny shallow gas 
pockets, pocketed carbonates, glacial tills, etc. All these irregularities can be 
found a t  depth too, but they are worse a t  the surface before saturation and 
the pressure of burial reduce the acoustic inhomogeneity. See also Section 
3.7. 

The shallow marine case is somewhat better. Ample opportunities for 
lateral variations still exist - there are buried submarine channels as well as 
buried fossil river channels. But the dominant aspect of the shallow marine 
case becomes the resonance in the water layer. The power spectrum of the 
observed data  will be controlled by this resonance. 

Likewise, with land data, the power spectrum often varies rapidly from 
one recording station t o  the next. These changes in spectrum may be inter- 
preted as changes in the multiple reflections which stem from changes in the 
effective depth or character of the weathered zone. 



FRONTIERS 5.6 Multiples - Prospects 

Modeling Regimes 

Downward-continuation equations contain four main ingredients: the 
slowness of the medium a t  the geophone v ( g  )-I; likewise a t  the shot v ( s  )-I; 
the stepout in offset space k,, /w; and the dip in midpoint space ky /w. 

These four ingredients all have the same physical dimensions, and modeling 
procedures can be categorized according to  the numerical inequalities that  are 
presumed to  exist among the ingredients. One-dimensional work ignores three 
of the four - namely, dip, stepout, and the difference v ( g  )-I - v ( s  )-I. 
CMP slant stack includes the stepout kh /w. Now we have a choice as to  

whether t o  include the dip or the lateral velocity variation. The lateral veloc- 
ity variation is often severe near the earth's surface where the peglegs live. 
Recall the simple idea that  typical rays in the deep subsurface emerge steeply 
at a low-velocity surface. When using continuation equations in the near sur- 
face, we are particularly justified in neglecting dip, that  is v - I  >> ky /w. It 

is nice t o  find this excuse to  neglect dip since our field experiments are so 
poorly controlled in dip out of the plane of the experiment. Offset stepout, on 
the other hand, is probably always much larger in the plane of the survey line 
than out  of it. 

Another important ingredient for modeling or processing multiple 
reflections is the coupling of upcoming and downgoing waves. This coupling 
introduces the reflectivity beneath the shot c ( s  ) and the receiver c ( g  ). An 
important possibility, t o  which we will return, is that  c ( s  ) may be different 
from c ( g  ), even though all the angles may be neglected. 

Subtractive Removal of Multiple Reflections 

Stacking may be thought of as a multiplicative process. Modeling leads 
t o  subtractive processes. The subtractive processes are a supplement t o  stack- 
ing, not an  alternative: After subtracting, you can stack. 

First we t ry  t o  model the multiple reflections, then we t ry  t o  subtract 
them from the data. In general, removal by subtraction is more hazardous 
than removal by multiplication. To  be successful, subtraction requires a 
correct amplitude as well as a timing error of less than a quarter-wavelength. 

Statistically determined empirical constants may be introduced to  
account for discrepancies between the modeling and reality. In statistics this 
is known as regression. For example, knowing that a collection of data points 
should fit a straight line, we can use the method of least-sum-squared- 
residuals t o  determine the best parameters for the line. A careful study of the 
data  points might begin by removing the straight line, much as we intend to  
remove multiple reflections. Naturally an adjustable parameter can help 
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account for the difficulty expected in calculating the precise amplitude for the 
multiples. An unknown timing error is much harder to  model. Because of the 
nonlinearity of the mathematics, a slightly different, more tractable approach 
is t o  take as adjustable parameters the coefficients in a convolution filter. 
Such a filter could represent any scale factor and time shift. I t  is tempting t o  
use a time-variable filter t o  account for time-variable modeling errors. An  
inescapable difficulty with this is that  a filter can represent a lot more than 
just scaling and amplitude. And the more adjustable parameters you use, the 
more the model will be able to  fit the data, whether or not the model is 
genuinely related t o  the data. 

The difficulty of subtracting multiple reflections is really just this: If an 
inadequate job is done of modeling the multiples - say, for example, of 
modeling the geometry or velocity - then you need many adjustable parame- 
ters in the regression. With many adjustable parameters, primary reflections 
get subtracted as well as multiples. Out goes the baby with the bath water. 

Slanted Deconvolution and Inversion 

Because of the wide offsets used in practice, it has become clear that  
seismologists must pay attention to  differences in the sea floor from bounce to  
bounce. A straightforward and appealing method of doing so was introduced 
by Taner [1980] - tha t  was his radial-trace method. A radial trace is a line 
cutting through a common-shot profile along some line of constant r = h / t  . 
Instead of deconvolving a seismogram a t  constant offset, we deconvolve on a 
radial trace. The deconvolution can be generalized t o  a downward- 
continuation process. Downward continuation of a radial trace may be 
approximated by time shifting. Unfortunately, there is a problem when the 
data  on the line consists of both sea-floor multiples and peglegs, because these 
require different trajectories. The problem is resolved, a t  least in principle, by 
means of Snell waves. Estevez, in his dissertation [1977], showed theoretically 
how Snell waves could also be used to  resolve other difficulties, such as 
diffraction and lateral velocity variation (if known). An example illustrating 
the relevance of the differing depths of the sea floor on different bounces, is 
shown in figure 4. 

Incompleteness of the data  causes us t o  have problems with most inver- 
sion methods. Data can be incomplete in time, space, or in its spectrum. 
Any recursive method must be analyzed to  ensure that  an error made at shal- 
low depths will not compound uncontrollably during descent. All data  is 
spectrally incomplete. Also, with all da ta  there is uncertainty about the shot 
waveform. At  the p -values for which pegleg multiples are a problem, the first 
sea-floor bounce usually occurs too close t o  the ship t o  be properly recorded. 
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FIG. 5.6-4. Time of multiple depends on sum of all times. (Estevez [1977]) 

To solve this problem, Taner built a special auxiliary recording system. 

It is an advantage for Snell wave methods that  slant stacking creates 
some signal-to-noise enhancement from the raw field data, but i t  is a disad- 
vantage that  the downward continuation must continue t o  all depths. The 
methods t o  be discussed next are before-stack methods, but they do not 
require downward continuation much below the sea floor. 

The Split Backus Filter 

We are preparing a general strategy, impedance replacement, for dealing 
with surface multiple reflections. This strategy will require heavy artillery 
drawn from both regression theory and wave-extrapolation theory. So as not 
t o  lose sight of the goals, we will begin with an example drawn from an ideal- 
ized geometry. That  reality is not too far from this idealization was demon- 
strated by Larry Morley, whose doctoral dissertation [I9821 illustrates a suc- 
cessful test of this method and describes the impedance-replacement strategy 
in more detail. 

Imagine that  the sea floor is flat. Near the shot the sea-floor reflection 
coefficient is taken as c, . Near the geophone it is taken t o  be c g  . Near the 

geophone the reverberation pattern is 
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where Z is the two-way delay operator for travel t o  the water bottom. (See 
Section 4.6 or  FGDP for 2-transform background). Near the shot there is a 
similar reverberation sequence: 

Ignoring the difference between c, and cg leads t o  the Backus [I9591 rever- 

beration sequence, which is the product of (1) and (2): 

The denominator in (3) is the Backus filter. Applying this filter should 
remove the reverberation sequence. Morley called the filter which results from 
explicitly including the difference a t  the shot and geophone a split Backus 
filter. The depth as well as the reflection coefficient may vary laterally. (The 
effect of dip is second order). Thus the split Backus operator can be taken to  
be 

Inverting (4) into an expression like (3), you will find that  the n th  term splits 
into n terms. This just means that  paths with sea-floor bounces near the 
shot can have different travel times than paths with bounces near the geo- 
phone. 

Figure 5 ,  taken from Morley's dissertation, shows that  split pegleg multi- 
ples are an observable phenomenon. His interpretation of the figure follows: 

[The figure] is a constant-offset section (COS) from the same line for an 
offset halfway down the cable (a separation of 45 shot points with this 
geometry). The first-order pegleg multiple starting a t  2.5 seconds on the 
left and running across t o  3 seconds on the right is "degenerate" (unsplit) 
on the near-trace section but is split on the COS due t o  the sea-floor 
topography. The maximum split is some 200 mils around shot points 
180-200. This occurs, as one might expect, where the sea floor has max- 
imum dip; i.e., where the difference between sea-floor depths a t  the shot 
and geophone positions is greatest. 

Most present processing ignores the Backus filter altogether and solves 
for an independent deconvolution filter for each seismic trace. This intro- 
duces a great number of free parameters. By comparison, a split Backus 
approach should do a better job of preserving primaries. 
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Constant Ofset Section (As = 25m ) 

PMl g 

PMl s 

FIG. 5.6-5. Constant-offset section (COS) from the same line as figure 7 in 
Section 5.5. Offset distance is about 46 shotpoints. Notice that  the first-order 
pegleg multiple is now split into two distinct arrivals, PM 1s and PM 1g . 
(AMOCO Canada, Morley) 

In practice we would expect that  any method based on the split Backus 
concept would need t o  include the effect of moveout. Luckily, velocity con- 
trast would reduce the emerging angle for peglegs. Of course, residual 
moveout problems would be much more troublesome with water-bottom mul- 
tiples. Presumably the process should be applied after normal moveout in 
that  case. Let us take a look a t  the task of estimating a split Backus opera- 
tor. 
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Sea-Floor Consistent Multiple Suppression 

Erratic time shifts from trace to  trace have long been dealt with by the 
so-called surface-consistent statics model. Using this model you fit the 
observed time shifts, say, t ( s  , g ), t o  a regression model t (s , g ) 
t, ( s  ) + tg ( g  ). The statistically determined functions t, ( s  ) and tg ( g  ) can 

be interpreted as being derived from altitude or velocity variations directly 
under the shot and geophone. Taner and Coburn [I9801 introduced the 
closely related idea of a surface-consistent frequency response model that is 
part of the statics problem. We will be interpreting and generalizing that 
approach. Our intuitive model for the data P ( s  , g , a)  is 

The first two factors represent the split Backus filter. The next factor is the 
normal moveout. The factor H (h  , w) is the residual moveout. The factor 
Y ( y  , w) is the depth-dependent earth model beneath the midpoint y . The 

last factor F (w) is some average filter that  results from both the earth and 
the recording system. 

One problem with the split Backus filter is a familiar one - that the 
time delays 4 s  ) and ~ ( g  ) enter the model in a nonlinear way. So to  linear- 
ize it the model is generalized to 

Now S contains all water reverberation effects characteristic of the shot 
location, including any erratic behavior of the gun itself. Likewise, receiver 
effects are embedded in G .  Moveout correction was done to  P ,  thereby 
defining PI. 

Theoretically, taking logarithms gives a linear, additive model: 

The phase of P ', which is the imaginary part of the logarithm, contains 
the travel-time information in the data. This information begins to lose 
meaning as the data consists of more than one arrival. The phase function 
becomes discontinuous, even though the data is well behaved. In practice, 
therefore, attention is restricted to the real part of (7), which is really a state- 
ment about power spectra. The decomposition (7)  is a linear problem, 
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perhaps best solved by iteration because of the high dimensionality involved. 
In reconstructing S and G from power spectra, Morley used the Wiener- 
Levinson technique, explicitly forcing time-domain zeroes in the filters S and 
G t o  account for the water path. He omitted the explicit moveout correc- 
tion in (5), which may account for the fact that  he only used the inner half of 
the cable. 

Replacement-Medium Concept of Multiple Suppression 

In seismology wavelengths are so long that  we tend t o  forget it is physi- 
cally possible t o  have a directional wave source and a directional receiver. 
Suppose we had, or  were somehow able t o  simulate, a source that  radiated 
only down and a receiver that  received only waves coming up. Then suppose 
that  we were somehow able to  downward continue this source and receiver 
beneath the sea floor. This would eliminate a wide class of multiple 
reflections. Sea-floor multiples and peglegs would be gone. That  would be a 
major achievement. One minor problem would remain, however. The data 
might now lie along a line that  would not be flat, but would follow the sea 
floor. So there would be a final step, an  easy one, which would be t o  upward 
continue through a replacement medium that  did not have the strong disrup- 
tive sea-floor reflection coefficient. The process just described would be called 
impedance replacement. It is analogous t o  using a replacement medium in 
gravity data  reduction. It is also analogous t o  time shifting seismograms for 
some replacement velocity. (See Section 3.7). 

The migration operation downward continues an upcoming wave. This is 
like downward continuing a geophone line in which the geophones can receive 
only upcoming waves. In reality, buried geophones see both upcoming and 
downgoing waves. The directionality of the source or receiver is built into the 
sign chosen for the square-root equation that  is used t o  extrapolate the 
wavefield. With the reciprocal theorem, the shots could also be downward 
continued. Likewise shots physically radiate both up and down, but we can 
imagine shots that  radiate either up or down, and mathematically the choice 
is a sign. So the results of four possible experiments a t  the sea floor, all possi- 
bilities of upward and downward directed shots and receivers, can be deduced. 

Extrapolating all this information across the sea-floor boundary requires 
an estimate of the sea-floor reflection coefficient. This coefficient enters the 
calculation as a scaling factor in forming linear combinations of the waves 
above the sea floor. The idea behind the reflection-coefficient estimation can 
be expressed in two ways that  are mathematically equivalent: 
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1. The waves impinging on the boundary from above and below should 
have a cross-correlation that  vanishes a t  zero lag. 

2. There should be minimum power in the wave that  impinges on  the 
boundary from below. 

After the geophones are below, you must start  t o  think about getting the 
shots below. To  invoke reciprocity, it is necessary t o  invert the directionality 
of the shots and receivers. This is why it was necessary t o  include the auxili- 
ary experiment of upward-directed shots and receivers. 

EXERCISES 

1. Refer t o  figure 3. 

a. What graphical measurement shows that  the interval velocity for 
simple sea-floor multiples equals the interval velocity for peglegs? 

b. What graphical measurements determine the sediment velocity? 

c. With respect t o  the velocity of water, deduce the numerical value of 
the (inverse) Snell parameter p . 

d. Deduce the numerical ratio of the sediment velocity to  the water ve- 
locity. 

2. Consider the upcoming wave U  observed over a layered medium of 
layer impedances given by (I1, 12,  13, . . . ), and the upcoming wave 

U' at the surface of the medium (I2, 12, 13, . . . ). Note that  the top 

layer is changed. 

a. Draw raypaths for some multiple reflections that  are present in the 
first medium, but not in the second. 

b. Presuming that  you can find a mathematical process t o  convert the 
wave U t o  the wave U ' ,  what multiples are removed from U' 
that  would not be removed by the Backus operator? 

c. Utilizing techniques in FGDP, chapter 8, derive an equation for U'  
in terms of U ,  11, and Iz that  does not involve 13, I4 . . . . 
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5.7 Profile Imaging 

A field profile consists of the seismograms of one shot and many receivers 
along a line. Migration of a single profile, or of many widely separated 
profiles, demands a conceptual basis that  is far removed from anything dis- 
cussed so far in this book, namely, exploding-reflector and survey-sinking con- 
cepts. Such a conceptual basis exists, predates (Claerbout [1970]), and seems 
more basic than that  of exploding reflectors or survey sinking. I call this older 
imaging concept the U / D  imaging concept. 

The sinking concept seems t o  demand complete coverage in shot- 
geophone space. Exploding reflectors requires many closely spaced shots. On  

the other hand, profile imaging with the U / D  concept has no requirement 
for density along the shot axis. An example of a dataset that  could only be 
handled by the older concept is a sonobuoy. A sonobuoy is a hydrophone 
with a radio transmitter. I t  is thrown overboard, and a ship with an air gun 
sails away, repeatedly firing until the range is too great. The principle of 
reciprocity says that  the data  is equivalent t o  a single source with a very long 
line of geophones. 

While improving technology is leading t o  greater sampling density on the 
geophone axis, we are unlikely t o  see increasing density in shot space. There 
are only twenty-four hours in a day, and we must wait ten seconds between 
shots for the  echoes t o  die down. So, given a certain area t o  survey and a cer- 
tain number of months to  work, we end out  with an  irreducible shotpoint 
density. Indeed, with three-dimensional geometries proving their worth, we 
may see less spatial sampling density. Poor sample density in shot space is a 
small impediment t o  profile methods. 

Unlike the exploding-reflector method and the survey-sinking method, 
U / D  concepts readily incorporate modeling and analysis of multiple 
reflections. Indeed, an ingenious algorithm for simultaneous migration and 
de-reverberation is found in FGDP. In principle i t  can be applied t o  either 
field profiles or slant stacks. 

Wave equation methods have been suggestive of new ways of making 
weathering-layer corrections. Yet none have yet become widely accepted in 
practice, and it is too early t o  tell whether a DSR approach or a profile 
approach will work better. 

All these considerations warrant a review of the profile migration method 
and the U / D  imaging concept. We could easily see a revival of these in 
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one form or another. 

The U  I D  Imaging Concept 

The U / D  imaging concept says that  reflectors exist in the earth a t  
places where the onset of the downgoing wave is time-coincident with an 
upcoming wave. Figure 1 illustrates the concept. 

FIG. 5.7-1. Upcoming and downgoing waves observed with buried receivers. 
A disturbance leaves the surface a t  t =O and is observed passing the buried 
receivers GI...GS a t  progressively later times. At  the depth of a reflector, 
z3, the G 3  receiver records both the upcoming and downgoing waves in 
time coincidence. Shallower receivers also record both waves. Deeper 
receivers record only D  . The fundamental principle of reflector mapping 
states that  reflectors exist where U and D  are time-coincident. (Riley) 

It is easy t o  confuse the survey-sinking concept with the U /D concept 
because of the similarity of the phrases used t o  describe them: "downward 
continue the shots" sounds like "downward continue the downgoing wave." 
The first concept refers t o  computations involving only an upcoming wavefield 

U (s , g , z , t ). The second concept refers t o  computations involving both 
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upcoming U (x , z , t ) and downgoing D (x , z , t ) waves. No particular 
source location enters the U / D  concept; the source could be a downgoing 
plane wave. 

In profile migration methods, the downgoing wave is usually handled 
theoretically, typically as an impulse whose travel time is known analytically 
or  by ray tracing. But this is not important: the downgoing wave could be 
handled the same way as the upcoming wave, by the Fourier or  finite- 
difference methods described in previous chapters. The upcoming wave could 
be expressed in Cartesian coordinates, or in the moveout coordinate system to  
be described below. 

The time coincidence of the downgoing and upcoming waves can be 
quantified in several ways. The most straightforward seems t o  be t o  look a t  
the zero lag of the cross-correlation of the two waves. The image is created 
by displaying the zerelagged cross-correlation everywhere in (x , z )-space. 

The time coincidence of the upcoming wave and the earliest arrival of a 
downgoing wave gives evidence of the existence of a reflector, but in principle, 
more can be learned from the two waves. The amplitude ratio of the upcom- 
ing t o  the downgoing wave gives the reflection coefficient. 

In the Fourier domain, the product U (w, x , z ) b (w, x , z ) represents 
the zero lag of the cross-correlation. The reflection coefficient ratio is given 

by U (w, x , z )/D (w, x , z ). This ratio has many difficulties. Not only may 
the denominator be zero, but it may have zeroes in the wrong part of the 
complex plane. This happens when the downgoing wave is causal but not 
minimum phase. (See Section 4.6 and FGDP). The phase of the complex con- 
jugate of a complex number equals the phase of the inverse of the number. 
Thus the ratio U / D  and the product U both have the same phase. It 
seems you can invent other functional forms that  compromise the theoretical 
appeal of U I D  with the stability of U b. 

Don C. Riley 119741 proposed another form of the U / D  principle, 
namely, that  the upcoming waves must vanish for all time before the first 
arrival of the downgoing wave. Riley's form found use in wave-equation 
dereverberation. 

Migration with Moveout Correction 

If the earth were truly inhomogeneous in all three dimensions, we could 
hardly expect the data  of a single seismic line t o  make any sense a t  all. But 
reflection seismology usually seems t o  work, even when it is restricted t o  a 
single line. This indicates that  the layered model of the earth is a reasonable 
starting point. Thus normal-moveout correction is usually a good starting 
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process. Mathematically, NMO is an excellent tool for dealing with depth 
variation in velocity, but its utility drops in the presence of steep dip or a 
wide dip spectrum. 

My early migration programs were based on concepts derived from single 
profiles. The data and the wave equation were transformed to  a moveout- 
corrected coordinate system. This approach to  migration is well suited to 
data that is sparsely sampled on the geophone axis. When steepness of dip 
becomes the ground on which migration is evaluated, then moveout correction 
offers little advantage; indeed, it introduces unneeded complexity. Whatever 
its merits or drawbacks, NMO commands our attention by its nearly universal 
use in the industrial world. 

Moveout/Radial Coordinates in Geophone Space 

Our theoretical analysis will abandon the geophone axis g in favor of a 

radial-like axis characterized by a Snell parameter p . (This really says noth- 
ing about the implied data processing itself, since it would be simple enough 
t o  transform final equations back to offset). The coordinate system being 
defined will be called a retarded, moveout-corrected, Snell trace, coordinate 
system. Ideal data in this coordinate system in a zero-dip earth is unchanged 
as it is downward continued. Hence the amount of work the differential equa- 
tions have to  do is proportional to  the departure of the data from the ideal. 
Likewise the necessity for spatial sampling of the data increases in proportion 
to  the departure of data from the ideal. Define 

P (sin O)/v , the Snell ray parameter 

any one-way time from the sur- 
face along a ray with parameter 
P 

9 the surface separation of the shot 
from the geophone 

t '  one-way time, surface to  reflector, 
along a ray 

T travel-time depth of buried geo- 
phones, one-way time along a ray 

t travel time seen by buried g e e  
phones 

v (p , tp ) a stratified velocity function 
vt(z ), in the new coordinates 
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The coordinate system is based on the following simple statements: (I) 
travel time from shot to  geophone is twice the travel time from shot to 
reflector, less the time-depth of the geophone; and ( 2 )  the horizontal distance 
traveled by a ray is the time integral of v sin 9 = pv2; (3)  the vertical dis- 
tance traveled by a ray is computed the same way as the horizontal distance, 
but with a cosine instead of a sine. 

Surfaces of constant t '  are reflections. Surfaces of constant p are rays. 
Surfaces of constant T are datum levels. Unfortunately, it is impossible to 
invert the above system explicitly to get ( t  I ,  p , T )  as a function of ( t  , g , z ). 
It is possible, however, to  proceed analytically with the differentials. Form 
the Jacobian matrix 

Performing differentiations only where they lead to obvious simplifications 
gives the transformation equation for Fourier variables: 

It should be noted that (5) is a linear relation involving the Fourier vari- 

ables, but the coefficients involve the original time and space variables. So ( 5 )  
is in both domains at once. This is useful and valid so long as it is assumed 
that second derivatives neglect the derivatives of the coordinate frame itself. 
This assumption is often benign, amounting to something like spherical diver- 
gence correction. 

Here we could get bogged down in detail, were we t o  continue to attack 
the nonzero offset case. Specializing to  zero offset, namely, p = 0, we get 
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Equation (6) may be substituted into the single-square-root equation for 
downward continuing geophones, thereby transforming i t  t o  a retarded equa- 
tion in the new coordinate system. 

Historical Notes on a Mysterious Scale Factor 

My first migrations of reflection seismic data  with the wave equation 
were based on the U / D  concept. The first wave-equation migration pro- 
gram was in the frequency domain and worked on synthetic profiles. Since 
people generally ignored such work I resolved t o  complete a realistic test on 
field data. Frequency-domain methods were deemed "academic." I found I 
could use the bilinear transformation of 2-transform analysis t o  convert the 
15" wave equation t o  the time domain. As a practical matter, i t  was 
apparent that  a profile migration program could be used on a section. But 
the theoretical justification was not easy. At  that  time I thought of the 
exploding-reflector concept as a curious analogy, not as a foundation for the 
derivation. 

The actual procedure by which the first zero-offset section was migrated 
with finite differences was more circuitous and complicated than the procedure 
later introduced by Shenvood (Loewenthal et a1 [1976]) and adopted generally. 
The equation for profile migration in moveout-corrected coordinates has many 
terms. Neglecting all those with offset as a coefficient (since you are trying t o  
migrate a zero-offset section), you are left with an equation that  resembles the 
retarded, 15' extrapolation equation. But there is one difference. The v all 
term is scaled by a mysterious coefficient, [ t ' / (2 t ' -~ ) ]~ .  This is the equation 
I used. As the travel-time depth T increases from zero t o  the stopping depth 
t ', the mystery coefficient increases slowly from 114 t o  1. 

Unfortunately my derivation was so complicated that  few people followed 
it. (You notice that  I do not fully include it here). My 1972 paper includes 
the derivation but by way of introduction it takes you through a conceptually 
simpler case, namely, the seismic section that  results from a downgoing 
plane-wave source. This simpler case brings you quickly t o  the migration 
equation. But the mystery coefficient is absent. Averaged over depth the 
mystery coefficient averages t o  a half. (The coefficient multiplies the second 
x-derivative and arises from Ax decreasing as geophones descend along a 
coordinate ray path toward the shot). Sherwood telephoned me one day and 
challenged me t o  explain why the coeficient could not be replaced by its aver- 
age value, 112. I could give no practical reason, nor can I today. So he aban- 
doned my convoluted derivation and adopted the exploding-reflector model as 
an assumption, thereby easily obtaining the required 112. I felt more 



FRONTIERS 5.7 Profile Imaging 

comfortable about the mystery coefficient later when the survey-sinking con- 
cept emerged from my work with Doherty, Muir, and Clayton. 

My first book, FGDP, describes how the U I D  concept can be used to  
deal with the three problems of migration, velocity analysis, and multiple 
suppression. In only one of these three applications, namely, zero-offset 
migration (really CDP-stack migration), has the wave-equation methodology 
become a part of routine practice. None-the-less, the U / D  concept has 
been generally forgotten and replaced by Sherwood's exploding-reflector con- 
cept. 

5.8 Predictions for the Next Decade 

In the 1960s seismologists learned how to apply time-series optimization 
theory to  seismic data - see FGDP for that. Eventually time series reached 
the point of diminishing returns because its approach to  spatial relations was 
oversimplified. In the 1970s seismologists learned to  apply the wave equation. 
That's what this book has been about. You can see that the job of applying 
the wave equation is not yet complete, but we have come a long way. 
Perhaps we have solved most of our "first-order" problems, and the problems 
that  remain are mainly "second order." For second-order effects to  be 
significant, all the first-order phenomena must be reasonably accounted for. 

Some first-order effects that this book has touched on only lightly relate 
t o  obvious, as well as subtle, imperfections in seismic data. 

Problems in the Database 

We often have a problem of truncation. The recording cable is of course 
finite in length, and perceptible waves generally travel well beyond it. The 
seismic survey itself has finite dimensions. We also have the problem of gaps. 
Gaps in seismic data may occur unpredictably, as when a gun misfires or sur- 
veyors are denied access to parcels of land in the midst of their survey. In 
addition we have the problem of spatial aliasing. Because of improving tech- 
nology, we can expect a substantial reduction in aliasing on the geophone 
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axis, but aliasing on the shot axis will remain. There are only twenty-four 
hours in a day, and we must wait ten seconds between shots for the echoes t o  
die down. So, given a certain area to  survey and a certain number of months 
t o  survey it in, we end out with a certain number of shotpoints per square kil- 
ometer. With marine data, the spacing in the line of the path of the ship 
presents no problems compared t o  the problems presented by data spacing off 
the line. 

Migration provides a mapping from a data space t o  a model space. This 
transformation is invertible (in the nonevanescent subspace). When data is 
missing, the transformation matrix gets broken into two parts. One part 
operates on the known data values, and the other part operates on the miss- 
ing values. Except for a bit of Section 3.5, this book ignores the missing part. 
Although a strategy is presented in 3.5 for handling the missing part, it is 
very costly, and I believe i t  will ultimately be superseded or much improved. 

Noisy data can be defined as data that  doesn't fit our model. If the miss- 
ing data  were replaced by zeroes, for example, the data would be regarded as  
complete, but noisy. Data is missing where the signal-to-noise ratio is known 
t o  be zero. More general noise models are also relevant, but  statistical treat- 
ment of partially coherent multidimensional wave fields is poorly developed 
in both theory and practice. 

My prediction is that  a major research activity of the next decade will be 
t o  try to  learn to  simultaneously handle both the physics and the statistics of 
wavefields. 

Reuniting Optimization Theory and Wave Theory 

Let's take a quick peek beyond this book into the future. A seismic 
image is typically a 1000X1000 plane, derived from a volume of about 1000~ 
interrelated data points. There are unknowns present everywhere, not only in 
the earth model, but also in the data, as noise, as gaps, and as insufficient 
spatial density and extent of data recording. T o  assemble an interpretation 
we must combine principles from physics with principles from statistics. 
Presumably this could be done in some monster optimization formulation. A 
look a t  the theory of optimization shows that  solution techniques converge in 
a number of iterations that  is greater than the number of unknowns. Thus 
the solution t o  the problem, once we learn how t o  pose the problem properly, 
seems t o  require about a million times as much computing power as is avail- 
able. What  a problem! 

But the more you look a t  the problem, the more interesting it becomes. 
First we have an optimization problem. Since we are constrained to  make 
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only a few iterations, say, three, we must go as far as we can in those three 
steps. Now, not only do we have the original optimization problem, but we 
also have the new problem of solving it in an optimum way. First we have 
correlated randomness in the raw data. Then, during optimization, the earth 
model changes in a correlated random way from one iteration t o  the next. 
Not only is the second optimization problem the practical one - it is deeper 
a t  the theoretical level. 

Throw Away Your Paper Sections. 

Current seismic interpretation often amounts t o  taking colored pencils 
and enhancing aspects of a computer-generated image. Seismic interpretation 
is entering an  era in which the interpretation will all be done on a video 
screen. The basic reason is that  a sheet of paper is only two-dimensional, 
while most reflection data  is three-dimensional. Modern 3-D surveys really 
record four-dimensional data. A video screen can show a movie. The 
operator/interpreter can interact with the movie. There are things I would 
like t o  show you, but I cannot show you in a book. Seismic data or even a 
blank sheet of paper has texture. When a textured object moves, you 
immediately recognize it. But I couldn't show it t o  you with pictures in this 
book. (Imagine a sequence of pictures of a blank sheet of paper, each one 
shifted some way from the previous one). The perception of small changes is 
blocked by any eye movement between pictures. Astronomers look for 
changes in the sky by rapidly blinking between looking at photographs taken 
a t  different times. Our eyes are special computers. Movies often show "where 
something comes from," enabling us t o  notice the unexpected in the general 
ambiance. 

Most seismic interpretation is done on stacked sections. The original 
data  is three-dimensional, but one dimension is removed by summation. 
Theoretically, the summation removes only redundancy while i t  enhances the 
signal-to-noise ratio. In reality, things are much more complicated. And much 
more will be perceptible when summations are done by the human eye (just 
by increasing the speed of a movie). There will be two generations of seismic 
interpreters - those who can interpret the prestacked data they see on their 
video screens - and those who interpret only stacked sections. 


