
3.0 Offset, Another Dimension 

Earlier chapters have assumed that  the shot and the geophone are 
located in the same place. The reality is that  there is often as much as a 3- 
km horizontal separation between them. The 3-km offset is comparable t o  the 
depth of many petroleum reservoirs. 

Offset is another dimension in the analysis of data. At  the time of writ- 
ing, this dimension is often represented in field operations by about 48 chan- 
nels. No one seems t o  believe, however, that  48 channels is enough. Record- 
ing systems with as many as 1024 channels are coming into use. 

The offset dimension adds three important aspects t o  reflection seismol- 

ogy. First, it enables us t o  routinely measure the velocity of seismic waves in 
rocks. This velocity has been assumed t o  be known in the previous chapters 
of this book. Second, it gives us data redundancy: it gives independent meas- 
urements of quantities that  should be the same. Superposition of the meas- 
urements (stacking) offers the potential for signal enhancement by destructive 
interference of noise. Third (a disadvantage), since the offset is nonzero, pro- 
cedures for migration take on another element of complexity. By the end of 
this chapter we will be trying t o  deal with three confusing subjects a t  the 
same time - dip, offset, and lateral velocity variation. 

Theoretically it seems that  offset should offer us the possibility of identi- 
fying rocks by observing the reflection coefficient as a function of angle, both 
for P waves and for P-to-S converted waves. The reality seems to  be 
that  neither measurement can be made reliably, if a t  all. See Section 1.4 for a 
fuller discussion of converted waves, an interesting subject for research, with a 
large potential for practical rewards. See also Ostrander [1984] and Tatham 
and Stoffa [1976]. The reasons for the difficulty in measurement, and the 
resolution of the difficulty, are, however, not the goal of this book. This goal 
is instead t o  enable us t o  deal effectively with that  which is routinely observ- 
able. 
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Stacking Diagrams 

First, define the midpoint y between the shot and geophone, and define 
h t o  be half the horizontal offset between the shot and geophone: 

The reason for using half the offset in the equations is t o  simplify and sym- 
metrize many later equations. Offset is defined with g - s rather than with 
s - g so that  positive offset means waves moving in the positive x direc- 
tion. In the marine case, this means the ship is presumed t o  sail negatively 
along the x-axis. In reality the ship may go either way, and shot points may 
either increase or decrease as the survey proceeds. In some situations you can 
clarify matters by setting the field observer's shot-point numbers t o  negative 
values. 

Data is defined experimentally in the space of ( s ,  g ). Equation ( I )  
represents a change of coordinates t o  the space of (y  , h ) .  Midpoint-offset 
coordinates are especially useful for interpretation and data processing. Since 
the data  is also a function of the travel time t ,  the full dataset lies in a 
volume. Because i t  is so difficult to  make a satisfactory display of such a 
volume, what is customarily done is t o  display slices. The names of slices 
vary slightly from one company to  the next. The following names seem to  be 
well known and clearly understood: 

( Y  , h =O, t ) 
( Y ,  h =h min 7 ) 
( y ,  h=const ,  t )  

( Y ,  h = h m a x ,  t )  
(y =const ,  h ,  t )  
(s =const,  g ,  t )  
( s ,  g =const,  t )  
( s ,  g ,  t =const)  
( h ,  y ,  t=cons t )  

zero-offset section 
near-trace section 

constant-offset section 
far-trace section 

common-midpoint gather 
field profile (or common-shot gather) 
common-geop hone gat her 
time slice 
time slice 

A diagram of slice names is in figure 1. Figure 2 shows three slices from 
t,he data volume. The first mode of display is "engineering drawing mode." 
The second mode of display is on the faces of a cube. But notice that  
although the data is displayed on the surface of a cube, the slices themselves 
are taken from the interior of the cube. The intersections of slices across one 
another are shown by dark lines. 



OFFSET 9.0 Offset, Another Dimension 

a 

0 ,.' oh' 
5 

8 

3 
field profile @I or common 

a a 

a 

a a 

a 

shot gather 

FIG. 3.0-1. Top shows field recording of marine seismograms from a shot a t  
location s t o  geophones a t  locations labeled g . There is a horizontal 
reflecting layer to  aid interpretation. The lower diagram is called a stacking 
diagram. (It is not a perspective drawing). Each dot in this plane depicts a 
possible seismogram. Think of time running out from the plane. The center 
geophone above (circled) records the seismogram (circled) that  may be found 
in various geophysical displays. Labels in the diagram below give common 
names for the displays. 

A common-depth-point (CDP) gather is defined by the industry and by 
common usage t o  be the same thing as a common-midpoint (CMP) gather. 
But in this book a distinction will be made. A CDP gather wiil be considered 
t o  be a CMP gather with its time axis stretched according t o  some velocity 
model, say, 

 co con st, h ,  d t 2 - 4 h 2 / v 2 )  common-depth-pointgather 
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FIG. 3.0-2. Slices 
"engineering drawi 
shown as faces on 
movie program). 

from a cube of data from the Grand Banks. Left is 
ng" mode. A t  the right slices from within the cube are 
the cube. (Data from Amoco. Display via Rick Ottolini's 

This offset-dependent stretching makes the time axis of the gather become 
more like a depth  axis, thus providing the D in CDP. The stretching is 
called normal  moveou t  correction (NMO). Notice that  as the velocity goes to  
infinity, the amount of stretching goes t o  zero. 

In industrial practice the data is not routinely displayed as a function of 
offset. Instead, each CDP gather is summed over offset. The resulting sum is 
a single trace. Such a trace can be constructed a t  each midpoint. The collec- 
tion of such traces, a function of midpoint and time, is called a CDP stack. 
Roughly speaking, a CDP stack is like a zero-offset section, but it has a less 
noisy appearance. 

The construction of a CDP stack requires that  a numerical choice be 
made for the moveout-correction velocity. This choice is called the stacking 
velocity. The stacking velocity may be simply someone's guess of the earth's 
velocity. Or  the guess may be improved by stacking with some trial velocities 
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t o  see which gives the strongest and least noisy CDP stack. More on stacking 
in Section 3.5. 

Figure 3 shows typical land and marine profiles (common-shot gathers). 
The land data has geophones on both sides of the source. The arrangement 
shown is called an uneven split spread. The energy source was a vibrator. 
The marine data  happens t o  nicely illustrate two or three head waves (see 
Sections 3.5 and 5.2). The marine energy source was an air gun. These field 
profiles were each recorded with about 120 geophones. 

Offset (km) 
3 2 1 

FIG. 3.0-3. Field profiles. Left is a land profile from West Texas. Right is a 
marine profile off the Aleutian Islands. (Western Geophysical). 

What is "Poor Quality" Data? 

Vast regions of the world have good petroleum potential but are hard t o  
explore because of the difficulty of obtaining good quality reflection seismic 
data. The reasons are often unknown. What  is "poor quality" data? From 
an experimental view, almost all seismic data is good in the sense that  it is 
repeatable. The real problem is that  the data  makes no sense. 

Take as an earth model a random arrangement of point reflectors. Its 
migrated zero-offset section should look random too. Given the repeatability 
that  is experienced in data collection, data with a random appearance implies 
a random jumble of reflectors. With only zero-offset data little else can be 
deduced. But with the full range of offsets a t  our disposal, a more thoughtful 
analysis can be tried. This chapter provides some of the required techniques. 
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An interesting model of the earth is a random jumble of point scatterers 
in a constant-velocity medium. The data would be a random function of time 
and a random function of the horizontal location of the shot-geophone mid- 
point. But after suitable processing, for each midpoint, the data should be a 
perfectly hyperbolic function of shot-geophone offset. This would determine 
the earth velocity exactly, even if the random scatterers were distributed in 
three dimensions, and the survey were only along a surface line. 

This particular model could fail t o  explain the "poor quality" data. In 
that  case other models could be tried. The effects of random velocity varia- 
tions in the near surface or the effects of multiple reflections could be 
analyzed. Noise in seismology can usually be regarded as a failure of analysis 
rather than as something polluting the data. It is the offset dimension that 
gives us the redundancy we need to  try to figure out what is really happening. 

Texture of Horizontal Bedding, Marine Data 

Gravity is a strong force for the stratification of rocks, and in many 
places in the world rocks are laid down in horizontal beds. Yet even in the 
most ideal environment the bedding is not mirror smooth; it has some tex- 
ture.  We begin the study of offset with synthetic data that mimics the most 
ideal environment. Such an environment is almost certainly marine, where 
sedimentary deposition can be slow and uniform. The wave velocity will be 
taken to  be constant, and all rays will reflect as from horizontally lying mir- 
rors. Mathematically, texture is introduced by allowing the reflection 
coefficients of the beds to be laterally variable. The lateral variation is 
presumed to  be a random function, though not necessarily with a white spec- 
trum. Let us examine the appearance of the resulting field data. 

Randomness is introduced into the earth with a random function of mid- 
point y and depth z .  This randomness is impressed on some geological 
"layer cake" function of depth z .  For every point in (y  , 2)-space, a hyper- 
bola of the appropriate random amplitude must be superposed in the space of 
offset h and travel time t . 

What does the final data space look like? This question has little mean- 
ing until we decide how the three-dimensional data volume will be presented 
to  the eye. Let us view the data much as it is recorded in the field. For each 
shot point we see a frame in which the vertical axis is the travel time and the 
horizontal axis is the distance from the ship down the towed hydrophone 
cable. The next shot point gives us another frame. Repetition gives us a 
movie. And what does the movie show? 

A single frame shows hyperbolas with imposed texture. The movie shows 
the texture moving along each hyperbola to  increasing offsets. (I find that no 
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# Synthetic marine data  tape movie generation 
integer kbyte,it,nt,ih,nh,is,ns,iz,nz,itO,iy 
real p(512),b(512),refl(25116),z(25),geo1(25),random 
open(3,file=*plotn ,status='new',acce~=1direct',form='unformatted',recl=l) 
n t  = 512; nh = 48; ns = 10; nz = 25;kbyte = 1 
do iz=l,nz # Reflector depth 

z(iz) = nt*random() # random() is on the interval (O.,l.) 
do iz=l,nz # Reflector strength with depth. 

geol(iz) = 2.*random()-1. 
do is = 1,ns # Give texture t o  the Geology 

do iz = 1,nz 
refl(iz,is) = (I.+rand~m())*~eol(iz) 

do i t  = 1,nt # Prepare a wavelet 
b(it) = exp(-it*.08)*sin(.5*it-.5) 

do is = ns,l,-1 { # Shots. Run backwards. 
do ih = 1,nh { # down cable h = (g-s)/2 

iy = (is-l)+(ih-1) # y = midpoint 
iy = 1 + (iy-ns*(iy/ns)) # periodic with midpoint 
do i t  = 1,nt 

p(it) = 0. 
do iz  = 1,nz { # Add in a hyperbola for each layer 

it0 = sqrt( z(iz)**2 + 100.*(ih-1)**2 ) 
do i t  = 1,nt-it0 { # Add in the wavelet 

~ ( i t+ i t 0 )  = p(it+itO) + refl(iz,iy)*b(it) 

1 
1 

write(3,&c=kbyte) (p(it),it=l,nt); kbyte = kbyte+nt*4 
1 

1 
Stop; end 

FIG. 3.0-4. Computer program t o  make synthetic field tapes in an ideal ma- 
rine environment. 

sequence of still pictures can give the impression that  the movie gives). 
Really the ship is moving; the texture of the earth is remaining stationary 
under it. This is truly what most marine data looks like, and the computer 
program of figure 4 simulates it. Comparing the simulated data to  real 
marine-data movies, I am impressed by the large amount of random lateral 
variation required in the simulated data to  achieve resemblance t o  field data. 
The randomness seems too great to  represent lithologic variation. Apparently 
i t  is the result of something not modeled. Perhaps i t  results from our incom- 
plete understanding of the mechaLism of reflection from the quasi-random 
earth. Or perhaps it is an effect of the partial focusing of waves sometime 
after they reflect from minor topographic irregularities. A full explanation 
awaits more research. 
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Texture of Land Data: Near-Surface Problems 

Reflection seismic data recorded on land frequently displays randomness 
because of the irregularity of the soil layer. Often it is so disruptive that  the 
seismic energy sources are deeply buried (at much cost). The geophones are 
too many for burial. For  most land reflection data, the texture caused by 
these near-surface irregularities exceeds the texture resulting from the 
reflecting layers. 

To  clarify our thinking, an ideal mathematical model will be proposed. 
Let the reflecting layers be flat with no texture. Let the geophones suffer ran- 
dom time delays of several time points. Time delays of this type are called 
statics. Let the shots have random strengths. For this movie, let the data 
frames be common-midpoint gathers, tha t  is, let each frame show data in 
( h  , t )-space a t  a fixed midpoint y . Successive frames will show successive 
midpoints. The study of figure 1 should convince you that  the travel-time 
irregularities associated with the geophones should move leftward, while the 
amplitude irregularities associated with the shots should move rightward. In 
real life, both amplitude and time anomalies are associated with both shots 
and geophones. 

EXERCISES 

1. Note that  figure 1 is drawn for a shot interval A s  equal t o  half the geo- 
phone interval Ag . Redraw figure 1 for A s  = Ag . Common- 
midpoint gathers now come in two types. Suggest two possible 
definitions for "near-offset section." 

2. Modify the program of figure 4 t o  produce a movie of synthetic midpoint 
gathers with random shot amplitudes and random geophone time delays. 
Observing this movie you will note the perceptual problem of being able 
t o  see the leftward motion along with the rightward motion. Try to  
adjust anomaly strengths so that  both left-moving and right-moving pat- 
terns are visible. 

Your mind will often see only one, 
blocking out the other, similar t o  
the way you perceive a 3-D cube, 
from a 2-D projection of its edges. 

3. Define recursive dip filters t o  pass and reject the various textures of shot, 
geophone, and midpoint. 
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3.1 Absorption and a Little Focusing 

Sometimes the earth strata lie horizontally with little irregularity. There 
we may hope to  ignore the effects of migration. Seismic rays should fit a sim- 
ple model with large reflection angles occurring a t  wide o e e t s .  Such data 
should be ideal for the measurement of reflection coefficient as a function of 
angle, or for the measurement of the earth acoustic absorptivity I / & .  In his 
doctoral dissertation, Einar Kjartansson reported such a study. The results 
were so instructive that  the study will be thoroughly reviewed here. I don't 
know to  what extent the Grand Isle gas field (Pan [1983]) typifies the rest of 
the earth, but i t  is an excellent place t o  begin learning about the meaning of 
shot-geophone offset. 

The Grand Isle Gas Field: A Classic Bright Spot 

The dataset Kjartansson studied was a seismic line across the Grand Isle 
gas field, off the shore of Louisiana, and was supplied by the Gulf Oil Com- 

pany. The data  contain several classic "bright spots" (strong reflections) on 
some rather flat undisturbed bedding. Of interest are the lateral variations in 
amplitude on reflections a t  a time depth of about 2.3 seconds. (See figure 3). 
I t  is widely believed that  such bright spots arise from shallow gas-bearing 
sands. 

Theory predicts that  reflection coefficient should be a function of angle. 
For an anomalous physical situation like gas-saturated sands, the function 
should be distinctive. Evidence should be found on common-midpoint gathers 
like those shown in figure 1. Looking a t  any one of these gathers you will 
note that  the reflection strength versus offset seems to  be a smooth, sensibly 
behaved function, apparently quite measurable. Using layered media theory, 
however, it was determined that  only the most improbably bizarre medium 
could exhibit such strong variation of reflection coefficient with angle, particu- 
larly a t  small angles of incidence. (The reflection angle of the energy arriving 
at wide offset a t  time 2.5 seconds is not a large angle. Assuming constant ve- 
locity, arccos(2.3/2.6) = 28"). Compounding the puzzle, each common- 
midpoint gather shows a diflerent smooth, sensibly behaved, measurable 
function. Furthermore, these midpoints are near one another, ten shot points 
spanning a horizontal distance of 820 feet. 
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FIG. 3.1-1. Top left is shot point 220; top right is shot point 230. No pro- 
cessing has been applied to  the data  except for a display gain proportional to  
time. Bottom shows shot points 305 and 315. (Kjartansson, Gulf) 



OFFSET 3.1 Absorption and a Little Focusing 

Kjartansson's Model for Lateral Variation in Amplitude 

The Grand Isle data is incomprehensible in terms of the model based on 
layered media theory. Kjartansson proposed an  alternative model. Figure 2 
illustrates a geometry in which rays travel in straight lines from any source t o  
a flat horizontal reflector, and thence to  the receivers. The only complications 
are "pods" of some material that  is presumed t o  disturb seismic rays in some 
anomalous way. Initially you may imagine that  the pods absorb wave energy. 
(In the end it will be unclear whether the disturbance results from energy 
focusing or absorbing). 

The model above produces the disturbed data space sketched below. 

Yo 

FIG. 3.1-2. IC,jartansson's model. Anomalous material in pods A, B, and C 
may be detected by its effect on reflections from a deeper layer. 
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Pod A is near the surface. The seismic survey is affected by i t  twice - 
once when the pod is traversed by the shot and once when i t  is traversed by 
the geophone. Pod C is near the reflector and encompasses a small area of it. 
Pod C is seen a t  all offsets h but only a t  one midpoint, yo .  The raypath 

depicted on the top of figure 2 is one that  is affected by all pods. I t  is a t  mid- 
point y o  and a t  the widest offset h mm. Find the raypath on the lower 

diagram in figure 2. 

Pod B is part way between A and C. The slope of affected points in the 
( y  , h )-plane is part way between the slope of A and the slope of C. 

Figure 3 shows a common-offset section across the gas field. The offset 
shown is the fifth trace from the near offset, 1070 feet from the shot point. 
Don't be tricked into thinking the water was deep. The first break a t  about 
.33 seconds is wide-angle propagation. 

The power in each seismogram was computed in the interval from 1.5 t o  
3 seconds. The logarithm of the power is plotted in figure 4a as a function of 
midpoint and offset. Notice streaks of energy slicing across the ( y  , h )-plane 
a t  about a 45" angle. The strongest streak crosses a t  exactly 45" degrees 
through the near offset at  shot point 170. This is a missing shot, as is clearly 
visible in figure 3. Next, think about the gas sand described as pod C in the 
model. Any gas-sand effect in the data  should show up as a streak across all 
offsets a t  the midpoint of the gas sand - tha t  is, horizontally across the page. 
I don't see such streaks in figure 4a. Careful study of the figure shows that  
the rest of the many clearly visible streaks cut the plane a t  an angle notice- 
ably less than f 45". The explanation for the angle of the streaks in the 
figure is that  they are like pod B. They are part way between the surface and 
the reflector. The angle determines the depth. Being closer t o  45" than to  
On, the pods are closer t o  the surface than t o  the reflector. 

Figure 4b shows timing information in the same form that  figure 4a 
shows amplitude. A CDP stack was computed, and each field seismogram 
was compared to  it. A residual time shift for each trace was determined and 
plotted in figure 4b. The timing residuals on one of the common-midpoint 
gathers is shown in figure 5. 

The results resemble the amplitudes, except that  the results become noisy 
when the amplitude is low or where a "leg jump" has confounded the meas- 
urement. Figure 4b clearly shows that  the disturbing influence on timing 
occurs a t  the same depth as that  which disturbs amplitudes. 

The process of inverse slant stack, t o  be described in Section 5.2 enables 
us t o  determine the depth distribution of the pods. This distribution is 
displayed in figures 4c and 4d. 
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FIG. 3.1-5. Midpoint gather 220 (same as in figure l b )  after moveout. Shown 
is a one-second window centered a t  2.3 seconds, time shifted according t o  an 
NMO for an event a t  2.3 seconds, using a velocity of 7000 feet/sec. (Kjar- 
t ansson) 

Rotten Alligators 

The sediments carried by the Mississippi River are dropped a t  the delta. 
There are sand bars, point bars, old river bows now silted in, a crow's foot of 
sandy distributary channels, and between channels, swampy flood plains are 
filled with decaying organic material. The landscape is clearly laterally vari- 
able, and eventually it will all sink of its own weight, aided by growth faults 
and the weight of later sedimentation. After it is buried and out  of sight the 
lateral variations will remain as pods that  will be observable by the seismolo- 
gists of the future. These seismologists may see something like figure 6. Fig- 
ure 6 shows a three dimensional seismic survey, that  is, the ship sails many 
parallel lines about 70 meters apart. The top plane, a slice a t  constant time, 
shows buried river meanders. The data shown in figure 6 is described more 
fully by its donors, Dahm and Graebner 119821. 

Focusing or Absorption? 

Highly absorptive rocks usually have low velocity. Behind a low velocity 
pod, waves should be weakened by absorption. They should also be 
strengthened by focusing. Which effect dominates? How does the 
phenomenon depend on spatial wavelength? A full reconstruction of the phy- 
sical model remains to  be done. Maybe you can figure i t  out knowing that  
black on figure 4c denotes low amplitude or high absorption, and black on 
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FIG. 3.1-6. Three-dimensional seismic data (Geophysical Services Inc.) from 
the Gulf of Thailand. Data planes from within the cube are displayed on the 
faces of the cube. The top plane shows ancient river meanders now sub- 
merged. 

figure 4d denotes low velocities. 

EXERCISE 

1. Consider waves converted from pressure P waves t o  shear S waves. 
Assume an S-wave speed of about half the P-wave speed. What  would 
figure 2 look like for these waves? 
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3.2 Introduction to Dip 

The study of seismic travel-time dependence upon source-receiver offset 
begins by calculating the travel times for rays in some ideal environments. 

Sections and Gathers for Planar Reflectors 

The simplest environment for reflection data is a single horizontal 
reflection interface, which is shown in figure 1. As expected, the zero-offset 
section mimics the earth model. The common-midpoint gather is a hyperbola 
whose asymptotes are straight lines with slopes of the inverse of the velocity 

v l .  The most basic data processing is called common-depth-point stack: or 

CDP stack. In it, all the traces on the common-midpoint (CMP) gather are 
time shifted into alignment and then added together. The result mimics a 
zero-offset trace. The collection of all such traces is called the CDP-stacked 
section. In practice the CDP-stacked section is often interpreted and 
migrated as though it were a zero-offset section. In this chapter we will learn 
to  avoid this popular, oversimplified assumption. 

FIG. 3.2-1. Simplest earth model. 
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The next simplest environment is t o  have a planar reflector that  is 
oriented vertically rather than horizontally. This is not typical, but is 
included here because the effect of earth dip is more comprehensible in an 
extreme case. Now the wave propagation is along the air-earth interface. T o  
avoid confusion the reflector may be inclined a t  a slight angle from the verti- 
cal, as in figure 2. 

FIG. 3.2-2. Near-vertical reflector, a gather, and a section. 

Model 
(almost vertical contact) 

Figure 2 shows that  the travel time does not change as the offset 
changes. I t  may seem paradoxical that  the travel time does not increase as 
the shot and geophone get further apart. The key t o  the paradox is that  mid- 
point is held constant, not shotpoint. As ofbet increases, the shot gets further 
from the reflector while the geophone gets closer. Time lost on one path is 
gained on the other. 

A planar reflector may have any dip between horizontal and vertical. 
Then the common-midpoint gather lies between the common-midpoint gather 
of figure 1 and that  of figure 2. The zero-offset section in figure 2 is a straight 
line, which turns out t o  be the asymptote of a family of hyperbolas. The 
slope of the asymptote is the inverse of velocity v 

- Y  
\ 
\ 
\ 

1 
2 

- s o  t t 

Common-Midpoint Gather 

at Y o  

The Dipping Bed 

Zero-Oflset Section 

While the travel-time curves resulting from a dipping bed are simple, 
they are not simple t o  derive. Before the derivation, the result will be stated: 
for a bed dipping a t  angle a from the horizontal, the travel-time curve is 
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For  a = 45", equation (I) is the familiar Pythagoras cone - it is just like 
2 t = z + x2. For other values of a, the equation is still a cone, but a less 

familiar one because of the stretched axes. 

For a common-midpoint gather a t  y = y in (h , t >space, equation (1) 

looks like t = t: + 4 h  2/v 2pparenl . Thus the common-midpoint gather 

contains an exact hyperbola, regardless of the earth dip angle a. The effect 
of dip is t o  change the asymptote of the hyperbola, thus changing the 
apparent velocity. The result has great significance in applied work and is 
known as Levin's dip correction (19711: 

- " earth 
apparent - cos(a) 

(See also Slotnick [1959]). In summary, dip increases the stacking velocity. 

FIG. 3.2-3. Rays from a common-midpoint gather. 

Figure 3 depicts some rays from a common-midpoint gather. Notice that  
each ray strikes the dipping bed a t  a different place. So a common-midpoint 
gather is not a common-depth-point gather. To  realize why the reflection 
point moves on the reflector, recall the basic geometrical fact that  an angle 
bisector in a triangle generally doesn't bisect the opposite side. The reflection 
point moves up dip with increasing offset. 

Finally, equation (1) will be proved. Figure 4 shows the basic geometry 
along with an "image" source on another reflector of twice the dip. For con- 
venience, the bed intercepts the surface a t  y o  = 0. The length of the line 

s 'g in figure 4 is determined by the trigonometric Law of Cosines t o  be 

t 2 v 2  = ~ 2 + ~ 2 - 2 s  g cos2n 
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t 2 v 2  = (Y - h ) 2 + ( ~  + h ) 2 - 2 ( y  - h ) ( y  + h ) c o s 2 a  

t 2 v 2  = 2 ( y 2 + h 2 ) - 2 ( y 2 - h 2 ) ( c o s 2 a - s i n 2 a )  

t 2 v 2  = 4 y 2 s i n 2 a  + 4h'cos'a 

which is equation (1). 

FIG. 3.2-4. Travel time from image source a t  s ' to  g may be expressed by 
the law of cosines. 

Another facet of equation (1) is that  it describes the constant-offset sec- 
tion. Surprisingly, the travel time of a dipping planar bed becomes curved a t  
nonzero offset - it too becomes hyperbolic. 

The Point Response 

Another simple geometry is a reflecting point within the earth. A wave 
incident on the point from any direction reflects waves in all directions. This 
geometry is particularly important because any model is a superposition of 
such point scatterers. Figure 5 shows an example. The curves in figure 5 
include flat spots for the same reasons that  some of the curves in figures 1 and 
2 were straight lines. 

The point-scatterer geometry for a point located a t  (x , z ) is shown in 
figure 6. 

The equation for travel time t is the sum of the two travel paths 
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FIG. 3.2-5. Response of two point scatterers. Note the flat spots. 

Model 
( two point scat terers)  

5 .,o 

FIG. 3.2-6. Geometry of a point scatterer. 

Cheops' Pyramid 

Because of the importance of the point-scatterer model, we will go t o  
considerable lengths to  visualize the functional dependence among t ,  z ,  x ,  
s , and g  in equation (3) .  This picture is more difficult - by one dimension 
- than is the conic section of the exploding-reflector geometry. 

To  begin with, suppose that  the first square root in (3) is constant 
because everything in it is held constant. This leaves the familiar hyperbola 
in ( g  , t )-space, except that  a constant has been added t o  the time. Suppose 
instead that  the other square root is constant. This likewise leaves a hyper- 
bola in (s , t )-space. In (s , g )-space, travel time is a function of s plus a 
function of g  . I think of this as  one coat hanger, which is parallel to  the s - 
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a t  Y o  

t 

Constant-Offset  Sect ion 
for  h ,  

A 
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axis, being hung from another coat hanger, which is parallel t o  the g -axis. 

FIG. 3.2-7. Left is a picture of the travel-time mountain of equation (3) for 
fixed x and z .  The darkened lines are constant-offset sections. Right is a 
cross section through the mountain for large t (or small x ). (Ottolini) 

A view of the travel-time mountain on the (s , g )-plane or the ( y  , h )- 
plane is shown in figure 7a. Notice that  a cut through the mountain a t  large 
t is a square, the corners of which have been smoothed. A constant value of 
t is the square contoured in (s , g )-space, as in figure 7b. Algebraically, the 
squareness becomes evident for a point reflector near the surface, say, z --to. 
Then (3) becomes 

v t = I s - x  I + J g - x  1 (4) 

The center of the square is located a t  (s , g )=(x, x) .  Taking travel time t 
t o  increase downward from the horizontal plane of (s , g )-space, the square 
contour is like a horizontal slice through the Egyptian pyramid of Cheops. 
T o  walk around the pyramid a t  a constant altitude is t o  walk around a 
square. Alternately, the altitude change of a traverse over g a t  constant s 
is simply a constant plus an absolute-value function, as  is a traverse of s at  
constant g .  
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More interesting and less obvious are the curves on common-midpoint 
gathers and constant-offset sections. Recall the definition that the midpoint 
between the shot and geophone is y . Also recall that h is half the horizon- 
tal offset from the shot to the geophone. 

9 - 6  h = -  
2 (5b) 

A traverse of y at constant h is shown in figure 7. At the highest eleva- 
tion on the traverse, you are walking along a flat horizontal step like the flat- 
topped hyperboloids of figure 5. Some erosion to smooth the top and edges of 
the pyramid gives a model for nonzero reflector depth. 

For rays that are near the vertical, the travel-time curves are far from 
the hyperbola asymptotes. Then the square roots in (3) may be expanded in 
Taylor series, giving a parabola of revolution. This describes the eroded peak 
of the pyramid. 

Random Point Scatterers 

Figure 8 shows a synthetic constant-offset section (COS) taken from an 
earth model containing about fifty randomly placed point scatterers. Late 
arrival times appear hyperbolic. Earlier arrivals have flattened tops. The ear- 
liest possible arrival corresponds to a ray going horizontally from the shot to 
the geophone. 

FIG. 3.2-8. Constant-offset section over random point scatterers. 
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Figure 9 shows a synthetic common-shot profile (CSP) from the same earth 
model of random point scatterers. Each scatterer produces a hyperbolic 
arrival. The hyperbolas are not symmetric around zero offset; their locations 
are random. They must, however, all lie under the lines I g-s I = v t .  
Hyperbolas with sharp tops can be found a t  late times as well as early times. 
However, the sharp tops, which are from shallow scatterers near the geo- 
phone, must lie near the lines I g -s I = vt . 

S 

FIG. 3.2-9. Common-shot profile 
over random point scatterers. 

Figure 1Oa shows a synthetic common-midpoint gather (CMP) from an 
earth model containing about fifty randomly placed point scatterers. Because 
this is a common-midpoint gather, the curves are symmetric through zero 
offset. (The negative offsets of field data are hardly ever plotted). Some of 
the arrivals have flattened tops, which indicate scatterers that  are not directly 
under the midpoint. 

Normal-moveout (NMO) correction is a stretching of the data  t o  t ry  t o  
flatten the hyperbolas. This correction assumes flat beds, but i t  also works 
for point scatterers that  are directly under the midpoint. Figure l ob  shows 
what happens when normal-moveout correction is applied on the random 
scatterer model. Some reflectors are flattened; others are "overcorrected." 

Forward and Backward Scattering: Larner's Streaks 

At  some locations, near-surface waves overwhelm the deep reflections of 
geologic interest. Compounding our difficulty, the near-surface waves are usu- 
ally irregular because the earth is comparatively more irregular a t  its surface 
than deeper down. On land, these interfering waves are called ground roll. 
At  sea, they are called water waves (not t o  be confused with surface waves on 
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h 

FIG. 3.2-10. Common-midpoint gather on earth of randomly located point 
scatterers (left). The same gathers after NMO correction (right). 

water). 

A model for such near-surface noises is suggested by the vertical 
reflecting wall in figure 2. In this model the waves remain close t o  the sur- 
face. Randomly placed vertical walls could result in a zero-offset section that  
resembles the field data of figure 11. Another less extreme model for the sur- 
face noises is the flat-topped curves in the random point-scatterer model. 

In the random point-reflector model the velocity was a constant. In real 
life the earth velocity is generally slower for the near-surface waves and faster 
for the deep reflections. This sets the stage for some unexpected noise 
amplification. 

CDP stacking enhances events with the stacking velocity and discrim- 
inates against events with other velocities. Thus you might expect that  stack- 
ing at deeper, higher velocity would discriminate against low-velocity, near- 
surface events. Near-surface noises, however, are not reflections from horizon- 
tal layers; they are more like reflections from vertical walls or steeply dipping 
layers. But equation (2) shows that  dip increases the apparent velocity. So it 
is not surprising that  stacking a t  deep-sediment, high velocities can enhance 
surface noises. Occurrence of this problem in practice was nicely explained 
and illustrated by Larner et  al. [I9831 

Velocity of Sideswipe 

Shallow-water noise can come from waves scattering from a sunken ship 
or from the side of an island or iceberg several kilometers t o  the side of the 
survey line. Think of boulders strewn all over a shallow sea floor, not only 
along the path of the ship, but also off t o  the sides. The travel-time curves 
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FIG. 3.2-11. CDP stack with water noise from the Shelikof Strait, Alaska. 
(by permission from Geophysics, Larner et al. [1983]) 

for reflections from the boulders nicely matches the random point-scatterer 
model. Because of the long wavelengths of seismic waves, our sending and 
receiving equipment does not enable us t o  distinguish waves going up and 
down from those going sideways. 

Imagine one of these shallow scatterers several kilometers t o  the side of ' 

the ship. More precisely, let the scatterer be on the earth's surface, perpen- 
dicular t o  the midpoint of the line connecting the shot point t o  the geophone. 
A common-midpoint gather for this scatterer is a perfect hyperbola, as from 
the deep reflector contributions on figure 9. Since it is a water-velocity hyper- 
bola, this scatterered noise should be nicely suppressed by CDP stacking with 
the higher, sediment velocity. So the "streaking" scatterers mentioned earlier 
are not sidescatter. The "streaking" scatterers are those along the survey 
line, not those perpendicular t o  it. 

The Migration Ellipse 

Another insight into equation (3) is to  rega.rd the offset h and the total 
travel time t as fixed constants. Then the locus of possible reflectors turns 

out t o  describe an ellipse in the plane of (y-yo, z ) .  The reason it is an 
ellipse follows from the geometric definition of an ellipse. To  draw an ellipse, 
place a nail or tack into s on figure 6 and another into g . Connect the 

tacks by a string that  is exactly long enough t o  go through (y o, z ). An 
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ellipse going through (yo, z )  may be constructed by sliding a pencil along 
the string, keeping the string tight. The string keeps the total distance tv 
constant. 

Recall (Section 1.3) that  one method for migrating zero-offset sections is 
t o  take every data  value in (y , t )-space and use i t  t o  superpose an appropri- 
ate semicircle in (y , z )-space. For nonzero offset the circle should be general- 
ized t o  an ellipse (figure 1.3-1). 

It is not easy t o  show that  equation (3) can be cast in the standard 
mathematical form of an ellipse, namely, a stretched circle. But the result is 
a simple one, and an important one for later analysis, so here we go. Equa- 
tion (3) in (y , h )-space is 

T o  help reduce algebraic verbosity, define a new y equal t o  the old one 
shifted by yo. Also make the definitions 

- 
'rock - 2 d  = ' half ( 7 4  

a = z 2  + (y + h )2  (7b) 

b = z 2  + (y - h )2  ( 7 4  

a - b  = 4 y h  ( 7 4  

With these definitions, (6) becomes 

2 d  = J a + &  (8) 

Square t o  get a new equation with only one square root. 

4 d 2  - (a + b )  = 2 6 6  (9) 

Square again t o  eliminate the square root. 

1 6 d 4  - 8 d 2 ( a  + b )  + (a + b ) 2  = 4 a  b (lea) 

1 6 d 4  - 8 d 2 ( a  + b )  + (a - b ) 2  = 0 (lob) 

Introduce definitions of a and 6 .  

1 6 d 4  - 8 d 2 [ 2 z 2 + 2 y 2 + 2 h 2 ]  + 1 6 y 2 h 2  = 0 (11) 

Bring y and z to  the right. 

2 2 d 4 -  d 2 h 2  = d 2 ( . z 2 + y 2 ) -  y h ( 1 2 4  

d 2 ( d 2 - h 2 )  = d 2 z 2 + ( d 2 - h 2 ) y 2  (12b) 
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Finally, recalling all earlier definitions, 

Fixing t ,  equation (13) is the equation for a circle with a stretched z-axis. 
Our algebra has confirmed that  the "string and tack" definition of an  ellipse 
matches the "stretched circle" definition. An ellipse in model space is the 
earth model given the observation of an impulse on a constant-offset section. 

FIG. 3.2-12. Migration ellipse. 
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3.3 Survey Sinking with 
the Double-Square-Root Equation 

Exploding-reflector imaging will be replaced by a broader imaging con- 
cept, survey sinking. A new equation called the double-square-root (DSR) 
equation will be developed t o  implement survey-sinking imaging. The function 
of the DSR equation is t o  downward continue an entire seismic survey, not 
just the geophones but also the shots. After deriving the DSR equation, the 
remainder of this chapter will be devoted to  explaining migration, stacking, 
migration before stack, velocity analysis, and corrections for lateral velocity 
variations in terms of the DSR equation. 

Peek ahead a t  equation (9) and you will see an equation with two square 
roots. One represents the cosine of the wave arrival angle. The other 
represents the take08 angle a t  the shot. One cosine is expressed in terms of 
k g ,  the Fourier component along the geophone axis of the data  volume in 

( s  , g , t )-space. The other cosine, with k, , is the Fourier component along 

the shot axis. 

Our field seismograms lie in the (s , g )-plane. To  move onto the ( y  , h )- 
plane inhabited by seismic interpreters requires only a simple rotation. The 
data  could be Fourier transformed with respect t o  y and h ,  for example. 
Then downward continuation would proceed with equation (17) instead of 
equation (9). 

The DSR equation depends upon the reciprocity principle which we will 
review first. 

Seismic Reciprocity in Principle and in Practice 

The principle of reciprocity says that  the same seismogram should be 
recorded if the locations of the source and geophone are exchanged. A physi- 
cal reason for the validity of reciprocity is that  no matter how complicated a 
geometrical arrangement, the speed of sound along a ray is the same in either 
direction. 
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Mathematically, the reciprocity principle arises because the physical 
equations of elasticity are self adjoint. The meaning of the term self adjoknt is 
illustrated in FGDP where it is shown that  discretized acoustic equations yield 
a symmetric matrix even where density and compressibility are space variable. 
The inverse of any such symmetric matrix is another symmetric matrix called 
the impulse-response matrix. Elements across the matrix diagonal are equal 
t o  one another. Each element of any pair is a response t o  an impulsive 
source. The opposite element of the pair refers t o  the interchanged source 
and receiver. 

FIG. 3.3-1. Constant-offset section from the Central Valley of California. 
(Chevron) 

A tricky thing about the reciprocity principle is the way antenna pat- 
terns must be handled. For example, a single vertical geophone has a natural 
antenna pattern. I t  cannot see horizontally propagating pressure waves nor 
vertically propagating shear waves. For reciprocity t o  be applicable, antenna 
patterns must not be interchanged when source and receiver are interchanged. 
The antenna pattern must be regarded as  attached t o  the medium. 
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I searched our data library for split-spread land data  that  would illus- 
t rate reciprocity under field conditions. The constant-offset section in figure 1 
was recorded by vertical vibrators into vertical geophones. The survey was 
not intended t o  be a test of reciprocity, so there likely was a slight lateral 
offset of the source line from the receiver line. Likewise the sender and 
receiver arrays (clusters) may have a slightly different geometry. The earth 
dips in figure 1 happen t o  be quite small although lateral velocity variation is 
known t o  be a problem in this area. 

o 1.0 2.0 3.0 4.0 

FIG. 3.3-2. Overlain reciprocal seismograms. 

In figure 2, three seismograms were plotted on top of their reciprocals. 
Pairs were chosen a t  near o&et, a t  mid range, and a t  far offset. You can see 
that  reciprocal seismograms usually have the same polarity, and often have 
nearly equal amplitudes. (The figure shown is the best of three such figures I 
prepared). 

Each constant time slice in figure 3 shows the reciprocity of many 
seismogram pairs. Midpoint runs horizontally over the same range as in figure 
1. O&et is vertical. Data is not recorded near the vibrators leaving a gap in 
the middle. To  minimize irrelevant variations, moveout correction was done 
before making the time slices. (There is a missing source that  shows up on 
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the left side of the figure). A movie of panels like figure 3 shows that  the 
bilateral symmetry you see in the individual panels is characteristic of all 
times. Notice however that  there is a significant departure from reciprocity 
on the one-second time slice around midpoint 120. 

FIG. 3.3-3. Constant time slices a t  1 second and 2.5 seconds. 

In the laboratory, reciprocity can be established t o  within the accuracy of 
measurement. This can be excellent. (See White's example in FGDP). In the 
field, the validity of reciprocity will be dependent on the degree that  the 
required conditions are fulfilled. A marine air gun should be reciprocal to  a 
hydrophone. A land-surface weight-drop source should be reciprocal to  a 
vertical geophone. But a buried explosive shot need not be reciprocal t o  a 
surface vertical geophone because the radiation patterns are different and the 
positions are slightly different. Fenati and Rocca [I9841 studied reciprocity 
under varying field conditions. They reported that  small positioning errors in 
the placement of sources and receivers can easily create discrepancies larger 
than the apparent reciprocity discrepancy. They also reported that  theoreti- 
cally reciprocal experiments may actually be less reciprocal than presumably 
nonreciprocal experiments. 

Geometrical complexity within the earth does not diminish the applica- 
bility of the principle of linearity. Likewise, geometrical complexity does not 
reduce the applicability of reciprocity. Reciprocity does not apply t o  sound 
waves in the presence of wind. Sound goes slower upwind than downwind. 
But this effect of wind is much less than the mundane irregularities of field 
work. Just the weakening of echoes with time leaves noises that  are not 
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reciprocal. Henceforth we will presume that  reciprocity is generally applicable 
t o  the analysis of reflection seismic data. 

The Survey-Sinking Concept 

The exploding-reflector concept has great utility because it enables us to  
associate the seismic waves observed a t  zero offset in many experiments (say 
1000 shot points) with the wave of a single thought experiment, the 
exploding-reflector experiment. The exploding-reflector analogy has a few 
tolerable limitations connected with lateral velocity variations and multiple 
reflections, and one major limitation: it gives us no clue as to  how t o  migrate 
data  recorded a t  nonzero offset. A broader imaging concept is needed. 

Start from field data where a survey line has been run along the x-axis. 
Assume there has been an infinite number of experiments, a single experiment 
consisting of placing a point source or shot a t  s on the x-axis and record- 
ing echoes with geophones a t  each possible location g on the x-axis. So the 
observed data is an upcoming wave that  is a two-dimensional function of s 

and g , say P (s , g , t ). (Relevant practical questions about the actual 
spacing and extent of shots and geophones are deferred until Sections 3.6 and 
4.3). 

Previous chapters have shown how to  downward continue the upcoming 
wave. Downward continuation of the upcoming wave is really the same thing 
as downward continuation of the geophones. It is irrelevant for the continua- 
tion procedures where the wave originates. I t  could begin from an exploding 
reflector, or it could begin a t  the surface, go down, and then be reflected back 
upward. 

T o  apply the imaging concept of survey sinking, it is necessary t o  down- 
ward continue the sources as well as  the geophones. We already know how to  
downward continue geophones. Since reciprocity permits interchanging geo- 
phones with shots, we really know how to  downward continue shots too. 

Shots and geophones may be downward continued t o  different levels, and 
they may be at different levels during the process, but for the final result they 
are only required to  be a t  the same level. That  is, taking z, t o  be the depth 

of the shots and zg t o  be the depth of the geophones, the downward- 

continued survey will be required a t  all levels z =z, =zg . 
The image of a reflector a t  ( x ,  z )  is defined t o  be the strength and 

polarity of the echo seen by the closest possible source-geophone pair. Taking 
the mathematical limit, this closest pair is a source and geophone located 
together on the reflector. The travel time for the echo is zero. This survey- 
sinking concept of imaging is summarized by 
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Image (x , z ) = Wave ( s  =x , g =x , z , t =0) (1) 

For good quality data, i.e. data that  fits the assumptions of the downward- 
continuation method, energy should migrate t o  zero offset a t  zero travel time. 
Study of the energy that  doesn't do so should enable improvement of the 
model. Model improvement usually amounts t o  improving the spatial distri- 
bution of velocity. 

Review of the P araxial Wave Equation 

In Section 1.5 an equation was derived for paraxial waves. The assump- 
tion of a single plane wave means that  the arrival time of the wave is given 

by a single-valued t (x , z ). On a plane of constant z , such as the  earth's 
surface, Snell's parameter p is measurable. It is 

a t  - - sin 0 - - - - 
d x  v P 

In a borehole there is the constraint that  measurements must be made at  a 
constant x , where the relevant measurement from an upcoming wave would 
be 

Recall the time-shifting partial-differential equation and its solution U as 

some arbitrary functional form f : 

The partial derivatives in equation (3a) are taken t o  be a t  constant x ,  just as 
is equation (2b). After inserting (2b) into (3a) we have 

Fourier transforming the wavefield over (x , t ), we replace d l d t  by - i o. 
Likewise, for the traveling wave of the Fourier kernel exp(- i ot + ik, x ), 
constant phase means that  d t  / a x  = k, lw.  With this, (4a) becomes 

The solutions t o  (4b) agree with those t o  the scalar wave equation unless v 



OFFSET 9.3 Survey Sinking with the DSR 

is a function of z ,  in which case the scalar wave equation has both upcom- 
ing and downgoing solutions, whereas (4b) has only upcoming solutions. 
Chapter 2 taught us how to  go into the lateral space domain by replacing ikz 
by d l d x .  The resulting equation is useful for superpositions of many local 
plane waves and for lateral velocity variations v (x ). 

The DSR Equation in Shot-Geophone Space 

Let the geophones descend a distance dzg into the earth. The change 

of the travel time of the observed upcoming wave will be 

Suppose the shots had been let off a t  depth dz, instead of a t  z =O. Like- 

wise then, 

Both (5a) and (5b) require minus signs because the travel time decreases as 
either geophones or shots move down. 

Simultaneously downward project both the shots and geophones by an 
identical vertical amount dz = dz = dz, . The travel-time change is the 

9 
sum of (5a) and (5b), namely, 

d t 
d t  = - a t  

dzg + - dz, = 
a t  

ja., +dl) dz 8% 82.9 

This expression for d t  / d z  may be substituted into equation (3a): 

Three-dimensional Fourier transformation converts upcoming wave data 
u ( t  , s , g ) t o  U (w, k, , kg ). Expressing equation (8) in Fourier space gives 

Recall the origin of the two square roots in equation (9). One is the cosine of 
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the arrival angle a t  the geophones divided by the velocity at the geophones. 
The other is the cosine of the takeoff angle a t  the shots divided by the veloci- 
t y  a t  the shots. With the wisdom of previous chapters we know how to  go 
into the lateral space domain by replacing ikg by d ldg  and ik, by alas. 
To  incorporate lateral velocity variation v (x ), the velocity a t  the shot loca- 
tion must be distinguished from the velocity a t  the geophone location. Thus, 

Equation (10) is known as the double-square-root (DSR) equation in 
shot-geophone space. I t  might be more descriptive t o  call it the survey- 
sinking equation since it pushes geophones and shots downward together. 
Recalling the section on splitting and full separation (Section 2.4) we realize 
that  the two square-root operators are commutative (v (s ) commutes with 
d l d g  ), so i t  is completely equivalent to  downward continue shots and g e e  
phones separately or together. This equation will produce waves for the rays 
that  are found on zero-offset sections but are absent (Section 1.1) from the 
exploding-reflector model. 

The DSR Equation in Midpoint-Offset Space 

By converting the DSR equation t o  midpoint-offset space we will be able 
t o  identify the familiar zero-offset migration part along with corrections for 
offset. The transformation between (g , s ) recording parameters and (y , h ) 
interpretation parameters is 

Travel time t may be parameterized in (g , s)-space or (y , h)-space. 
Differential relations for this conversion are given by the chain rule for deriva- 
tives: 

d t - - d t  dy d t  dh - -- + - -  = 
8 9  d y d g  dh dg (124  
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Having seen how stepouts transform from shot-geophone space to  
midpoint-offset space, let us next see that  spatial frequencies transform in 
much the same way. Clearly, data could be transformed from ( s ,  g >space t o  
(y , h )-space with (11) and then Fourier transformed t o  (kg, k )- s p ace. The 

question is then, what form would the double-square-root equation (9) take in 
terms of the spatial frequencies (ky , kh )? Define the seismic data  field in 

either coordinate system as 

This introduces a new mathematical function U 1  with the same physical 
meaning as U  but, like a computer subroutine or function call, with a 

different subscript look-up procedure for (y , h ) than for (s , g ). Applying 
the chain rule for partial differentiation t o  (13) gives 

and utilizing (11) gives 

In Fburier transform space where d / d x  transforms t o  ik,, equation (IS), 

when i and U = U 1  are cancelled, becomes 

Equation (16) is a Fourier representation of (15). Substituting (16) into (9) 
achieves the main purpose of this section, which is t o  get the double-square- 
root migration equation into midpoint-offset coordinates: 

Equation (17) is the takeoff point for many kinds of common-midpoint 
seismogram analyses. Some convenient definitions that simplify its 
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appearance are 
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Chapter 1 showed that  the quantity v kz /w can be interpreted as the angle 

of a wave. Thus the new definitions S and G are the sines of the takeoff 
angle and of the arrival angle of a ray. When these sines are a t  their limits of 
f 1 they refer t o  the steepest possible slopes in (s , t > or (g , t )-space. Like- 
wise, Y may be interpreted a s  the dip of the data as seen on a seismic sec- 
tion. The quantity H refers t o  stepout observed on a common-midpoint 
gather. With these definitions (17) becomes slightly less cluttered: 

Most present-day before-stack migration procedures can be interpreted 
through equation (19). Further analysis of i t  will explain the limitations of 
conventional processing procedures as well as suggest improvements in the 
procedures. 

EXERCISE 

I. Adapt equation (17) t o  allow for a difference in velocity between the shot 
and the geophone. 
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3.4 The Meaning of the DSR Equation 

The double-square-root equation contains most nonstatistical aspects of 
seismic data processing for petroleum prospecting. This equation, which was 
derived in the previous section, is not easy to  understand because it is an 
operator in a four-dimensional space, namely, ( z  , s , g , t ). We will approach 
it through various applications, each of which is like a picture in a space of 
lower dimension. In this section lateral velocity variation will be neglected 
(things are bad enough already!). Begin with 

Zero-Offset Migration (H = 0) 

One way t o  reduce the dimensionality of ( lb )  is simply t o  set H=O. 
Then the two square roots become the same, so that  they can be combined t o  
give the familiar paraxial equation: 

In both places in equation ( 2 )  where the rock velocity occurs, the rock velocity 
is divided by 2. Recall that  the rock velocity needed t o  be halved in order for 
field data  t o  correspond t o  the exploding-reflector model. So whatever we did 
by setting H=O, gave us the same migration equation we used in Chapter 1. 
Setting H = 0 had the effect of making the survey-sinking concept function- 
ally equivalent t o  the exploding-reflector concept. 

Zero-Dip Stacking (Y = 0) 

When dealing with the offset h it is common to  assume tha t  the earth 
is horizontally layered so that  experimental results will be independent of the 
midpoint y . With such an earth the Fourier transform of all data over y 
will vanish except for ky = 0, or, in other words, for Y = 0. The two 
square roots in ( I )  again become identical, and the resulting equation is once 
more the paraxial equation: 
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Using this equation t o  downward continue hyperboloids from the earth's sur- 
face, we find the hyperboloids shrinking with depth, until the correct depth 
where best focus occurs is reached. This is shown in figure 1. 

FIG. 3.4-1. With an earth model of three layers, the common-midpoint gath- 
ers are three hyperboloids. Successive frames show downward continuation to  
successive depths where best focus occurs. 

The waves focus best a t  zero offset. The focus represents a downward- 
continued experiment, in which the downward continuation has gone just to  a 
reflector. The reflection is strongest a t  zero travel time for a coincident 
source-receiver pair just above the reflector. Extracting the zero-offset value 
a t  t = 0 and abandoning the other offsets is a way of eliminating noise. 
(Actually i t  is a way of defining noise). Roughly i t  amounts t o  the same 
thing as the conventional procedure of summation along a hyperbolic trajec- 
tory on the original data. Naturally the summation can be expected to  be 
best when the velocity used for downward continuation comes closest to  the 
velocity of the earth. Later, offset space will be used t o  determine velocity. 
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Conventional Processing - the Separable Approximation 

The DSR operator is now defined as the parenthesized operator in 
equation (I b): 

DSR(Y,H)  = d m +  J ~ - ( Y + H ) ~  (4) 

In Fourier space, downward continuation is done with the operator 
exp(i wv-I DSR z ). 

There is a serious problem with this operator: i t  is not separable into a 
sum of an offset operator and a midpoint operator. Nonseparable means that  
a Taylor series for (4) contains terms like y2 H ~ .  Such terms cannot be 
expressed as a function of Y plus a function of H. Nonseparability is a 
data-processing disaster. I t  implies that  migration and stacking must be done 
simultaneously, not sequentially. The only way t o  recover pure separability 
would be t o  return t o  the space of S and G .  (That is a drastic alternative, 
far from conventional processing. We will return t o  it later). 

Let us review the general issue of separability. The obvious way t o  get a 

separable approximation of the operator dl - x2 - y2 is t o  form a ~ a ~ l ' o r  
series expansion, and then drop all the cross terms. A more clever approxima- 

tion is d3 + 4 3  - 1, which fits all Y exactly when X = 0 
and all X exactly when Y = 0. Applying this idea (though not the same 
equation) to  the DSR operator gives 

Notice that  a t  H = 0 (5) becomes equal t o  the DSR operator. A t  Y=O 
(5) also becomes equal to  the DSR operator. Only when both H and Y 
are nonzero does SEP depart from DSR . 

The splitting of (5) into a sum of three operators offers an advantage like 
the one offered by the 2-D Fourier kernel exp(iky y + ikh h ) ,  which has a 

phase that  is the sum of two parts. It means that  Fourier integrals may have 
either y or h nested on the inside. So downward continuation with SEP 
could be done in (kh , ky )-space as implied by ( lb) ,  or we could choose to  

Fourier transform t o  (h , ky ), (kh , y ), or (y  , h ) by appropriate nesting 

operations. 

It is convenient t o  give familiar names to the three terms in (5b). The 
first is associated with time-tedepth conversion, the second with migration, 
and the third with normal moveout. 
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The approximation ( 5 )  can be interpreted a s  "standard processing." The 
first stage in standard processing is NMO correction. In (5) the NMO 
operator downward continues all offsets a t  the earth's surface, t o  all offsets a t  
depth. Selecting zero offset is no more than abandoning all other offsets. Like 
stacking over offset, selecting zero offset reduces the amount of data  under 
consideration. 

Ordinarily the abandoned offsets are not migrated. (Alternately, a clever 
procedure for changing stacking velocities after migration involves migrating 
several offsets near zero offset). 

Since all terms in the SEP operator are interchangeable, i t  would seem 
wasteful t o  use i t  t o  migrate all of&ets before stack. The result of doing so 
should be identical t o  after-stack migration. 

Various Meanings of H = 0 

Recall the various forms of the stepout operator: 

Reciprocity suggests that  travel time is a symmetrical function of offset; 
thus dt l d h  vanishes a t  h = 0. In that  sense it seems appropriate t o  apply 
equation (2) t o  zero-offset sections. More precisely, the ray-trace expression 
dt / d h  strictly applies only when a single plane wave is present. Spherical 
wavefronts are made from the superposition of plane waves. Then the 
Fourier interpretation of H is slightly different and more appropriate. To  
set w = 0 would be t o  select a zero frequency component, a simple integral 
of a seismic trace. T o  set kh = 0 would be t o  select a zero spatial- 

Forms of stepout operator 2H / v  

frequency component, that  is, an integration over offset. Conventional stack- 
ing may be defined as integration (or summation) over offset along a hyper- 
bolic trajectory. Simply setting kh = 0 is selecting a hyperbolic trajectory 

that  is flat, namely, the hyperbola of infinite velocity. Such an  integration 
will receive its major contribution from the top of the data hyperboloid, 
where the data events come tangent t o  the horizontal line of integration. (For 
some historical reason, such a data summation is often called vertical stack). 
Of the total contribution t o  the integral, most comes from a zone near the 
top, before the stepout equals a half-wavelength. The width of this zone, 

ray trace 

dt - 
dh 

Fourier 

kh - 
w 

PDE 

t 
d ad = J dt - 

-0 
d h  
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which is called a Fresnel zone, is the major factor contributing t o  the integral. 
The Fresnel zone concept was introduced in Section 1.2. The Fresnel zone 
has been extracted from a field profile in figure 2. 

Offset (km) 
-2 - 1 0 1 2 

FIG. 3.4-2. (left) A land profile from Denmark (Western Geophysical) with 
the Fresnel zone extracted and redisplayed (right). 

The definition of the Fresnel zone involves a frequency. For practical 
purposes we may just look a t  zero crossings. Examining figure 2 near one 
second we see a variety of frequencies. In the interval between t =1.0 and 
t =1.1 I see about two wavelengths of low frequencies and about 5 
wavelengths of high frequencies. The highest frequencies are the main con- 
cern, because they define the limit of seismic resolution. The higher frequency 
has about 100 half wavelengths between time zero and a time of one second. 
As a rough generality, this observed value of 100 applies t o  all travel times. 
That  is, a t  any travel time, the highest frequency that  has meaningful spatial 
correlations is often observed t o  have a half period of about 1/100 of the total 
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travel time. We may say that  the quality factor Q of the earth's sedimen- 
tary crust is often about 100. So the angle that  we are typically thinking 
about is cos 8" = .99. 

Theoretically, the main differences between a zero-offset section and a 
vertical stack are the amplitude and a small phase shift. In practical cases 
they are unlikely to  migrate in a significantly different way. I t  would be nice 
if we could find an equation to  downward continue data  that  is stacked a t  
velocities other than infinite velocity. 

The partial-differential-equation point of view of setting H = 0 is 
identical with the Fourier view when the velocity is a constant function of the 
horizontal coordinate; but otherwise the PDE viewpoint is a slightly more 
general one. T o  be specific, but not cluttered, equation (1) can be expressed 
in 15-degree, retarded, space-domain form. Thus, 

- - 

Integrate this equation over offset h . The integral commutes with the 
differential operators. Recall that  the integral of a derivative is the difference 
between the function evaluated a t  the upper limit and the function evaluated 
a t  the lower limit. Thus, 

The wave should vanish a t  infinite offset and so should its horizontal offset 
derivative. Thus the last term in (7a) should vanish. So, setting H = 0 has 
the meaning 

(Paraxial operator) (vertical stack) = 0 (7b) 

A problem in the development of (7b) was that ,  twice, it was assumed 
that  velocity is independent of offset: first, when the thin-lens term was omit- 
ted from (6), and second, when the offset integration operator was inter- 
changed with multiplication by velocity. If the velocity depends on the hor- 
izontal x-axis, then it certainly depends on both midpoint and offset. In con- 
clusion: If velocity changes slowly across a Fresnel zone, then setting H = 0 
provides a valid equation for downward continuation of vertically stacked 
data. 

C lay ton ' s  Cos ine  Cor r ec t i ons  

A tendency exists t o  associate the sine of the earth dip angle with Y 
and the sine of the shot-geophone offset angle with H. While this is roughly 



OFFSET 3.4 Meaning of the DSR Equation 

valid, there is an important correction. Consider the dipping bed shown in 
figure 3. 

FIG. 3.4-3. Geometry of a dip- 
ping bed. Note that  the line 
bisecting the angle 2P does not 
pass through the midpoint 
between g and s . (Clayton) 

The dip angle of the reflector is a, and the offset is expressed as the 
offset angle ,f?. Clayton showed, and it will be verified, that  

Y = sin a cos p ( 8 4  

H = sin p cos a (gb) 

For small positive or negative angles the cosines can be ignored, and it is 
then correct t o  associate the sine of the earth dip angle with Y and the sine 
of the offset angle with H. At  moderate angles the cosine correction is 
required. A t  angles exceeding 45" the sensitivities reverse, and conventional 
wisdom is exactly opposite t o  the truth. The reader should be wary of infor- 
mal discussions that  simply associate Y with dip and H with velocity. 
"Larner's streaks" in Section 3.2 were an example of mixing the effects of dip 
and offset. Indeed, a t  steep dips the usual procedure of using H to  deter- 
mine velocity should be changed somehow to  use Y. 

Next, (8) will be proven. The source takeoff angle is y, ,  and the 

incident receiver angle is 7 g .  First, relate Î, and 7g t o  a and 8. 
Adding up the angles of the smaller constructed triangle gives 

Adding up the angles around the larger triangle gives 



OFFSET 9.4 Mean ing  of the DSR E q u a t i o n  

To associate the angles at  depth, a and P, with the stepouts d t  I d s  and 
dt  l d g  a t  the earth's surface requires taking care with the signs, noting that 
travel time increases as the geophone moves right and decreases as the shot 
moves right. Recall from Section 3.3 equations (16) and (18), the definitions 
of apparent angles Y and H,  

Y - H  = 
k8 s = - -  - d t 

2,- = - sin 7, = 
LJ d s  sin(a - p) 
v k 

Y + H  = G = 2 - - v -  = 
d t + sin yg = 

0 dg sin(a + p) 
Adding and subtracting this pair of equations and using the angle sum for- 
mula from trigonometry gives Clayton's cosine corrections (8): 

1 1 
Y = - sin(& + p) + - sin(a- p) = 

2 2 
sin a cos P 

1 1 H  = - sin(a + p) - - sin(a - p) = 
2 

sin p cos a 
2 

Snell-Wave Stacks and CMP Slant Stacks 

Setting the takeoff angle S to zero also reduces the double-square-root 
equation to  a single-square-root equation. The meaning of S = 0 is that 
k8 = 0 or equivalently that the data should undergo a summation (without 

time shifting) over shot s .  Such a summation simulates a downgoing plane 
wave. The imaging principle behind the summation would be to  look at  the 
upcoming wave a t  the arrival time of the downgoing wave (Section 5.7). As 
explained further in Sections 5.2 and 5.3, S could also be set equal a constant, 
t o  simulate a downgoing Snell wave. 

A Snell wave is a generalization of a downgoing plane wave a t  nonverti- 
cal incidence. The shots are not fired simultaneously, but sequentially at  an 
inverse rate of d t  / d s  = S /v. This could be simulated with field data by 
summing across the ( t  , s )plane along a line of slope d t  I d s .  Setting S to 
be some constant, say S = v d t  I d s ,  also reduces the double-square-root 
equation to  a paraxial wave equation, just the equation needed to  downward 
continue the downgoing Snell wave experiment. Snell waves could be con- 
structed for various p = d t  I d s  values. Each could be migrated and 
imaged, and the images stacked over p .  These ideas have been around 
longer than the DSR equation, yet they have gained no popularity. What 
could be the reason? 
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A problem with Snell wave simulation is that  the wavefield is usually 
sampled a t  coarse intervals along a geophone cable, which itself never seems 
t o  extend as far as the waves propagate. Crafty techniques t o  interpolate and 
extrapolate the data are frustrated by the fact that  on a common-geophone 
gather, the top of the hyperbola need not be a t  zero offset. For  dipping beds 
the earliest arrival is often off the end of the cable. So the data  processing 
depends strongly on the missing data. 

These difficulties provide an ecological niche for the common-midpoint 
slant stack, namely, H = p v . (A fuller explanation of slant stack is in Sec- 
tion 5.2). A t  common midpoint the hyperbolas go through zero offset with 
zero slope. The data  are thus more amenable t o  the interpolation and extrap- 
olation required for integration over a slanted line. Setting H = p v yields 

This has not reduced the DSR equation t o  a paraxial wave equation, but it 
has reduced the problem to  a form manageable with the available techniques, 
such as the Stolt or phase-shift methods. Details of this approach can be 
found in the dissertation of Richard Ottolini [1982]. 

Why Not Downward Continue in (S,G)-Space? 

If the velocity were known and the only task were t o  migrate, then there 
would be no fundamental reason why the downward continuation could not 
be done in (S, G )-space. But the velocity really isn't well known. The sensi- 
tivity of migration t o  velocity error increases rapidly with angle, and angle 
accuracy is the presumed advantage of (S  , G )-space. Furthermore, the finite 
extent of the recording cable and the tendency t o  spatial aliasing create the 
same problems with (S, G)-space migration as are experienced with Snell 
stacks. I see no fundamental reason why ( S ,  G )-space migration should be 
any better than CMP slant stacks, and the aliasing and truncation situations 
seem likely t o  be worse. Less ambitious and more practical approaches t o  the 
wide-angle migration problem are found later in this chapter. 

On the other hand, lateral velocity variation (if known) could demand 
that  migration be done in (s , g )-space. 

Still another reason t o  enter shot-geophone space would be that  the shots 
were far from one another. Then the data would be aliased in both midpoint 
space and offset space. See Section 5.7. 
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3.5 Stacking and Velocity Analysis 

Hyperbolic stacking over offset may be the most important computer pro- 
cess in the prospecting industry. It is more important than migration because 
it reduces the data base from a volume in (s , g , t >space to  a plane in 
( y  , t )-space. At the present time few people who interpret seismic data have 
computerized seismic data movies, so most interpreters must have their data 
stacked before they can even look at  it. Migration merely converts one plane 
t o  another plane. Furthermore, migration has the disadvantage that it some- 
times compounds the mess made by near-surface lateral velocity variation and 
multiple reflections. Stacking can compound the mess too, but in bad areas 
nothing can be seen until the data is stacked. In addition to  its other drawing 
points, stacking gives as a byproduct estimates of rock velocity. 

Historically, stacking has been done using ray methods, and it is still 
being done almost exclusively in this way. Migration, on the other hand, is 
more often done using wave-equation methods, that is to  say, by Fourier or 
finite-difference methods. Both migration and stacking are hyperbola- 
recognition processes. The advantages of wave-equation methods in migration 
have been many. Shouldn't these advantages apply equally t o  stacking? It  
would seem so, but current industrial practice does not bear this out. The 
reasons are not yet clear. So the latter part of this section really belongs to  a 
research monograph with the facetious title "Theory That Should Work Out 
Soon." More advanced ideas of velocity estimation are in Sections 5.0-5.4. 
Wave-equation stacking and velocity-determination methods are ingenious. 
Perhaps they have not yet been satisfactorily tested, or perhaps they are just 
imperfectly assembled. The reader can guess, and time will tell. 

One possible reason why much of this theory is not in routine industrial 
use is that the issue of stacking to  remove redundancy may be more appropri- 
ately a statistical problem than a physical one. To allow for this contingency 
I have included a bit on "wave-equation moveout," a way of deferring statisti- 
cal analysis until after downward continuation. Another possibility is that 
the problems of missing data off the ends of the recording cable and spatial 
aliasing within the cable may be more flexibly attacked by ray methods than 
by wave-equation methods. For this contingency I have included a brief sub- 
section on data restoration. Whatever the case, the data-manipulation pro- 
cedures in this chapter should be helpful. 



OFFSET 9.5 Stacking and Velocity Analysis 

Normal Moveout (NMO) 

Normal  moveout correction (NMO) is a stretching of the time axis t o  
make all seismograms look like zero-offset seismograms. NMO was first dis- 
cussed in Section 3.0. In its simplest form, NMO is based on the Pythagorean 

2 2 2 2  relation tNm = t - x /v . In a constant velocity earth, the NMO correc- 

tion would take the asymptote of the hyperbola family and move it up to  
t = 0. This abandons anything on the time axis before the first arrival, and 
stretches the remainder of the seismogram. The stretching is most severe 
near the first arrival, and diminishes at  later times. In the NMO example in 
figure 1 you will notice the low frequencies caused by the stretch. 

NMO correction may be done to common-shot field profiles or t o  CMF 
gathers. NMO applied to  a field profile makes it resemble a small portion of a 
zero-offset section. Then geologic structure is prominently exhibited. NMO 
on a CMP gather is the principal means of determining the earth's velocity- 
depth function. This is because CMP gathers are insensitive to  earth dip. 

Mathematically, the NMO transformation is a linear operation. It may 
seem paradoxical that  a non-uniform axis-stretching operation is a linear 
operation, but axis stretching does satisfy the mathematical conditions of 
linearity. Do not confuse the widespread linearity condition with the less 
common condition of time invariance. Linearity requires only that  for any 
decomposition of the original data P into parts (say P and P2) the sum 

of the NMOed parts is equal the NMO of the sum. Examples of decomposi- 
tions include: (1) separation into early times and late times, (2) separation 
into even and odd time points, (3) separation into high frequencies and low 
frequencies, and (4) separation into big signal values and small ones. 

To envision NMO as a linear operator, think of a seismogram as a vector. 
The NMO operator resembles a diagonal matrix, but the matrix contains 
interpolation filters along its diagonal, and the interpolation filters are shifted 
off from the diagonal t o  create the desired time delay. 

Conventional Velocity Analysis 

A conventional velocity analysis uses a collection of trial velocities. Each 
trial velocity is taken to  be a constant function of depth and is used to  
moveout correct the data. Figure 2 (left) exhibits the CMP gather of figure 1 
(left) after moveout correction by a constant velocity. Notice that the events 
in the middle of the gather are nearly flattened, whereas the early events are 
undercorrected and later events are overcorrected. This is typical because the 
amount of moveout correction varies inversely with velocity (by Pythagoras), 
and the earth's velocity normally increases with depth. A measure of the 
goodness of fit of the NMO velocity to  the earth velocity is found by summing 
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FIG. 3.5-1. CMP gather (Western Geophysical) from the Gulf coast shown at  
the left was NMO corrected and displayed a t  the right. 

the CDP gather over offset. Presumably, the better the velocities match, the 
better (bigger) will be the sum. The process is repeated for many velocities. 
The amplitude of the sum, contoured as a function of time and velocity, is 
shown in figure 2 (right). 

In practice additional steps may be taken before summing. The traces 
may be balanced (scaled t o  be equal) in their powers and in their spectra (see 
deconvolution in Section 5.5). Likewise the amplitude of the sum may be nor- 
malized and smoothed. (See Taner and Koehler (19691). Also the data may 
be edited and weighted as explained in the next subsection. 
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Kilometers Velocity (kmlsec) 

FIG. 3.5-2. NMO a t  constant velocity with velocity analysis. (Hale) 

The velocity giving the best stack is an average of the earth's velocity 
above the reflector. The precise definition of this average is deferred till Sec- 
tion 5.4. 

Mutes and Weights 

An important part of conventional processing is the definition of a mute. 
A mute is a weighting function used to  suppress some undesirable portions of 
the data. Figure 3 shows an example of a muted field profile. Weights and 
mutes have a substantial effect on the quality of a stack. So it is not surpris- 
ing that  in practice, they are the subject of much theorizing and experimenta- 
tion. 
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FIG. 3.5-3 
right it is 
arrivals). 

. Left is a land profile from Alberta (Western Geophysical). On the 
muted to  remove ground roll (at center) and head waves (the first 

Often the mute is a one-dimensional function of r = h I t .  Reasons can 
be given to  mute data at  both large and small values of r . 

At small values of r , energy is found that remains near the shot, such as  
falling dirt or water or slow ground roll. 

At large values of r , there are problems with the first arrival. Here the 
NMO stretch is largest and most sensitive to  the presumed velocity. The first 
arrival is often called a head wave or refraction. Experimentally, a head wave 
is a wave whose travel time appears to be a linear function of distance. 
Theoretically, a head wave is readily defined for layered media. The head 
wave has a ray that propagates horizontally along a layer boundary. In prac- 
tice, a head wave may be weaker or stronger than the reflections. A strong 
head wave may be explained by the fact that reflected waves spread in three 
dimensions, while head waves spread in only two dimensions. 

Muting may be regarded as weighting by zero. More general weights 
may be chosen to  produce the most favorable CDP stack. A sophisticated 
analysis would certainly include noise and truncation. Let us do a simplified 
analysis. It leads to  the most basic weighting function. 

Ordinarily we integrate over offset along a hyperbola. Instead, think of 
the three-dimensional problem. You really wish to  integrate over a hyperbola 
of revolution. Assume that  the hyperboloid is radially symmetric. Weighting 
the integrand by h allows the usual line integral to simulate integration over 
the hyperboloid of revolution. A second justification for scaling data by offset 
h before stacking is that there is less velocity information near zero offset, 
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where there is little moveout, and more velocity information at wider offset 
where A t  /Ah is larger. 

NMO Equations 

The earth's velocity typically ranges over a factor of two or more within 
the depth range of a given data set. Thus the Pythagorean analysis needs 
reexamination. In practice, depth variable velocity is often handled by insert- 
ing a time variable velocity into the Pythagorean relation. (The classic refer- 
ence, Taner and Koehler [1969], includes many helpful details). This approxi- 
mation is much used, although it is not difficult t o  compute the correct 
nonhyperbolic moveout. Let us see how the velocity function v (2) is 
mathematically related to  the NMO. Ignoring dip, NMO converts common- 
midpoint gathers, one of which, say, is denoted by P ( h ,  t ) ,  t o  an earth 
model, say, 

Q ( h , z )  = earth (z ) X const (h ) (1) 

Actually, Q (h , z ) doesn't turn out t o  be a constant function of h , but that  
is the goal. 

The NMO procedure can be regarded as a simple copying. Conceptually, 
it is easy t o  think of copying every point of the (h , t )-plane t o  its appropriate 
place in the (h , z )plane. Such a copying process could be denoted as 

Care must be taken t o  avoid leaving holes in the ( h ,  z)-plane. It is better to  
scan every point in the output ( h  , z)-plane and find its source in the (h , t )- 
plane. With a table t (h , z ) ,  data can be moveout corrected by the copying 
operation 

Using the terminology of this book, the input P (h , t ) t o  the moveout 
correction is called a CMP gather, and the output Q is called a CDP gather. 

In practice, the first step in generating the travel-time tables is t o  change 
the depth-variable z t o  a vertical travel-time-variable T. So the required 
table is t ( h ,  T). To  get the output data for location (h , T) you take the 

input data a t  location (h , t ). The most straightforward and reliable way to  
produce this table seems t o  be t o  march down in steps of z ,  really T ,  and 
trace rays. That  is, for various fixed values of Snell's parameter p , you 

compute t (p , T) and h (p , T) from v (7) by integrating the following equa- 
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tions over 7: 

d t dz dt - = -- = v 1 - 1 
d r d r  dz v cos 8 - 4- (4) 

dh dz dh - = -- = p v ( T ) ~  
v tan 9 = 

d r d r  dz d- 
(In equations (4) and (5) dt /dz and dh /dz are based on rays, not wave- 
fronts). Given t (p , r) and h ( p  , r), iteration and interpolation are required 
t o  eliminate p and find t (h , r). I t  sounds awkward - and i t  is - because 
at wide angles there usually are head waves arriving in the middle of the 
reflections. But once the job is done you can save the table and reuse it many 
times. The multibranching of the travel time curves at wide offset motivates 
a wave-equat ion based velocity analysis. The greatest velocity sensitivity 
occurs just where the classic hyperbolic assumption and the single-arrival 
assumption break down. 

Linearity Allows Postponing Statistical Estimation 

The linearity of wave-equation data processing allows us t o  decompose a 
dataset into parts, process the parts separately, then recombine them. The 
result is the same as if they were never separated. 

For example, suppose a CMP gather is divided into two parts, say, inner 
traces A and outer traces B . Let (A , 0) denote a CMP gather where the 
outer traces have been replaced by zeroes. Likewise, (0, B )  could be 
another copy of the gather where the inner traces have been replaced by 
zeroes. We could downward continue ( A  , 0 )  and separately downward con- 
tinue (0, B). After downward continuation, (A , 0 )  and (0, B )  could be 
added. Alternately, we could pause, do some thinking about statistics, and 
then choose t o  combine them with some weighting function. Figure 4 shows a 
dataset of three traces decomposed into three datasets, one for each trace. 
Semicircles depict the separate downward continuation of each trace. Each 
semicircle goes through zero ofbet, giving the appropriately stretched, NMOed 
trace. 

The idea of using a weighting function is a drastic departure from our 
previous style of analysis. It represents a disturbing recognition that  we have 
been neglecting something important in all scientific analysis, namely, statis- 
tics! What are the ingredients that  go into the choice of a weighting func- 
tion? They are many. Signal and noise variances play a role. Some channels 
may be noisy or absent. When final display is contemplated, it is necessary to  
consider human perception and the need t o  compress the dynamic range, so 
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FIG. 3.5-4. A three-trace CMP gather decomposed by traces. A t  the left, 
impulses on the data are interpolated, depicting a hyperbola. A t  the right, 
data  points are expanded into migration semicircles, each of which goes 
through zero offset a t  the apex of the hyperbola. 

that  small values can be perceived. Dynamic-range compression must be con- 
sidered not only in the obvious ( h  , t )-space, but also in frequency space, dip 
space, or any other space in which the wavefields may get too far out of bal- 
ance. 

There are many ways t o  decompose a dataset. The choice depends on 
your statistical model and your willingness t o  repeat the processing many 
times. Perhaps the parts of the data gather should be decomposed not by 
their h values but by their values of r = h / t  . Clearly, there is a lot t o  
think about. 

Lateral Interpolation and Extrapolation of a CMP Gather 

Practical problems dealing with common-midpoint gathers arise because 
of an insufficient number of traces. Truncation problems are those that  arise 
because the geophone cable has a fixed length that  is not as long as the dis- 
tance over which seismic energy propagates. Figure 5 shows why cable trun- 
cations are a problem for conventional, ray-trace, stacking methods as well as 

for wave-equation methods. Aliasing problems are those that  arise because 
shots and geophones are not close enough together. Spatial aliasing of data 
on the offset axis seems t o  be a more serious problem for wave-equation 
methods than it is for ray-trace methods. The reason is that  normal-moveout 
correction reduces the spatial frequencies. Gaps in the data, resulting from 
practical problems with the geophones, cable, and access t o  the terrain, are 
also frequently a snag. 

Here these problems will all be attacked together with a systematic 
approach t o  estimating missing traces. The technique t o  be described is the 
simplest member of a more general family of missing data estimation pro- 
cedures currently being developed a t  the Stanford Exploration Project. 
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FIG. 3.5-5. Normal moveout a t  the earth velocity brings the cable trunca- 
tions on good events t o  a good place, causing no problems. The cable trunca- 
tions of diffractions and multiples, however, move t o  a' and c I ,  where they 
could be objectionable. Such corruption could make folly of sophisticated 
time-series analysis of the waveform found on a CDP stack. 

First do normal-moveout correction, that  is, stretch the time axis to  
flatten hyperbolas. The initial question is what velocity t o  use for the 
normal-moveout correction. For trace interpolation the appropriate moveout 
velocity turns out t o  be that  of the dominating energy o n  the gather. On a 
given dataset this velocity could be primary velocity a t  some times and multi- 
ple velocity a t  other times. The reason for such a nonphysical velocity is this: 
the strong events must be handled well, in order t o  save the weak ones. 
Truncations of weak events can be ignored as a "second-order" problem. The 
practical problem is usually to  suppress strong water-velocity events in the 
presence of weak sedimentary reflections, particularly a t  high frequencies. In 
principle, we might be seeking weak P - S V  waves in the presence of strong 
P -P waves. 

After NMO, the residual energy should have little dip, except of course 
where missing data, now replaced by zeroes, forces the existing data  t o  be 
broad-banded in spatial frequency. In order t o  improve our view of this badly 
behaved energy, we pass the data through a "badpass" filter, such as the 
high-pass recursive dip filter discussed in Section 2.5. 
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Notice that  this filter greatly weakens the energy with small k ,  tha t  is, the 
energy that  was properly moveout corrected. On the other hand, near the 
missing traces, notice that  the spectrum should be broad-band with k and 
that  such energy passes through the filter with almost unit gain. 

The output from the "badpass" filter is now ready t o  be subtracted from 
the data. The subtraction is done selectively. Where recorded data exists, 
nothing is subtracted. This completes the first iteration. Next the steps are 
repeated, and iterated. Convergence is finally achieved when nothing comes 
out of the badpass filter a t  the locations where data  was not recorded. An 
example of this process can be found in figure 6. 

Offset (feet) 
-10000 -5000 0 5000 10000 

FIG. 3.5-6. Field profile from Alaska with missing channels on the left 
Western Geophysical), restored by iterative spatial filtering on the right. 

[Harlan) 
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The above procedure has ignored the possibility of dip in the midpoint 
direction. The effect of dip on moveout is taken up in Section 3.6. 

This procedure is also limited because i t  ignores the possibility that  
several velocities may be simultaneously present on a dataset. T o  really do a 
good job of extending such a dataset may require a parsimonious model and a 
velocity spectral concept such as the ones developed next and in Section 5.4. 

In and Out of Velocity Space 

Summing a common-midpoint gather on a hyperbolic trajectory over 
offset yields a stack called a constant-velocity or a C V  stack. A velocity 
space may be defined as a family of CV stacks, one stack for each of many 
velocities. CV stacking is a transformation from offset space t o  velocity 
space. CV stacking creates a ( t  , v >space velocity panel from a ( t  , h )-space 
common-midpoint gather. Conventional industrial velocity estimation 
amounts t o  CV stacking supplemented by squaring and normalizing. Linear 
transformations such as CV stack are generally invertible, but the transfor- 
mation t o  velocity space is of very high dimension. Forty-eight channels and 
1000 time points make the transformation 48,00@dimensional. With present 
computer technology, matrices this large cannot be inverted by algebraic 
means. However, there are some excellent approximate means of inversion. 

For unitary matrices, the transpose matrix equals the inverse matrix. In 
wave-propagation theory, a transpose operator is often a good approximation 
t o  an inverse operator. Thorson [I9841 pointed out that  the transpose opera- 
tion t o  CV stacking is just about the same thing as CV stacking itself. To  do 
the operation transposed t o  CV stacking, begin with a velocity panel, tha t  is, 
a panel in (t  , v)-space. T o  create some given offset h ,  each trace in the 
( t  , v)-panel must be first compressed t o  undo the original NMO stretch. 
That  is, events must be pushed from the zero-offset time that  they have in 
the ( t ,  v t pane l  t o  the time appropriate for the given h .  Then stack the 
( t  , v )-panel over v t o  produce the seismogram for the given h . Repeat the 
process for all desired values of h . The program for transpose CV stack is 
like the program for CV stack itself, except that  the stretch formula is 
changed t o  a compensating compression. 

The inversion of a CV stack is analogous t o  inversion of slant stack or 
Radon transformation (Section 5.2). That  is, the CV stack is almost its own 
inverse, but you need t o  change a sign, and a t  the end, a filtering operation, 
like rho filtering, is also needed to  touch up the spectrum, thereby finishing 
the job. I t  is the rho filtering that  distinguishes inverse CV stack from the 
transpose of CV stack. 
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The word transpose refers t o  matrix transpose. It is difficult to  visualize 
why the word transpose is appropriate in this case because we are discussing 
data spaces that are two-dimensional and operators that are four-dimensional. 
But if you will map these two- and four-dimensional objects t o  familiar one- 
and two-dimensional objects by a transformation, such as equations (25) and 
(26) in Section 2.2, then you will see that the word transpose is entirely 
appropriate. The rho-type filtering required for CV stacks is slightly more 
complicated than ordinary rho filtering - refer to Thorson's thesis. 

D LU U L TD 
offset (km)  offset (km)  velocity ( kml sec )  velocity ( kml sec )  

FIG. 3.5-7. Panel D a t  the left is a CMP gather from the Gulf of Mexico 
Western Geophysical . The second panel (LU) is reconstructed data obtained I rom the third panel 1 U) by inverse NMO and stack. The last panel (LTD) is 

a CV stack of the first panel. (Thorson) 

Figure 7 shows an example of Thorson's velocity space inversion. Panel 
D is the original common-midpoint gather. Next is panel LU, the approxi- 
mate reconstruction of D from velocity space. The hyperbolic events are 
reconstructed much better than the random noise. The random noise was not 
reconstructed so well because the range of velocities in the CV stack was lim- 
ited between water velocity and 3.5 km/sec. The next two panels (U) and 
(LTD) are theoretically related by the "rho" filtering. LTD is the CV stack of 
D. LU is the transpose CV stack of U. 
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It is worth noting that  there is a substantial amount of work in comput- 
ing a velocity panel. A stack must be computed for each velocity. Velocity 
discrimination by wave-equation methods will be described next and in Sec- 
tion 5.4. The wave-equation methods are generally cheaper, though not fully 
comparable in effect. 

The (z,t)-plane Method 

In the 15" continuation equation Uzt = - 1 / 2  v Uhh , scaling the depth 
z is indistinguishable from scaling the velocity. Thus, downward continua- 
tion with the wrong velocity is like downward continuation t o  the wrong 
depth. Stephen M. Doherty [I9751 used this idea in a velocity-estimation 
scheme - see figure 8. 

FIG. 3.5-8. Two displays of the ( z ,  t )-plane a t  zero offset. The earth model 
is eight uniformly spaced reflectors under a water layer (a family of hyper- 
boloids in (h , t ) a t  z =O). The left display is the zero-offset trace. The 
amplitude maximum a t  the focus is not visually striking, but the phase shift 
is apparent. The right display is the z-derivative of the envelope of the zero- 
offset trace.. A linear alignment along z l=vt '  is more apparent. (Doherty) 
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The idea is t o  downward continue with a preliminary velocity model and 
t o  display the zero-offset trace, a function of t ' ,  a t  all travel-time depths T. 

If the maximum amplitude occurs a t  t '  = T, then your preliminary model is 
good. If the maximum is shifted, then you have some analysis t o  do before 
you can say what velocity should be used on the next iteration. 

Splitting a Gather into High- and Low-Velocity Components 

A process will be defined that  can partition a CMP gather, both 
reflections and head waves, into one part with RMS velocity greater than that  
of some given model T ( z  ) and another part with velocity less than V ( z  ). 

After such a partitioning, the low-velocity noise could be abandoned. Or  
the earth velocity could be found through iteration, by making the usual 
assumption that  the velocity spectrum has a peak a t  earth velocity. As will 
be seen later, various data interpolation, lateral extrapolation, and other sta- 
tistical procedures are also made possible by the linearity and invertibility of 
the partitioning of the data  by velocity. 

The procedure is simple. Begin with a common-midpoint gather, zero 
the negative offsets, and then downward continue according t o  the velocity 
model V ( z  ). The components of the data with velocity less than V ( z  ) 
will overmigrate through zero offset t o  negative offsets. The components of 
the data with velocity greater than V ( z )  will undermigrate. They will 
move toward zero offset but they will not go through. So the low-velocity 
part is a t  negative offset and the high-velocity part is a t  positive offset. If you 
wish, the process can then be reversed t o  bring the two parts back t o  the 
space of the original data. 

Obviously, the process of multiplying data by a step function may create 
some undesirable diffractions, but then, you wouldn't expect t o  find an 
infinitely sharp velocity cutoff filter. Clearly, the false diffractions could be 
reduced by using a ramp instead of a step. An alternative t o  zeroing negative 
h would be to  go into (kh , w)-space and zero the two quadrants of sign 

disagreement between kh and w. 

This partitioning method unfortunately does not, by itself, provide a ve- 
locity spectrum. Energy away from h =O is unfocused and not obviously 
related t o  velocity. The need for a velocity spectrum motivates the develop- 
ment of other processes. 

Reflected Head Waves on Sections 

It is common for an interpreter looking a t  a stacked section to  identify a 
reflected head wave. Experimentally it is just a hyperbolic asymptote seen in 
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( 3 ,  t )-space. Theoretically, it is a ray that  moves away from a source along a 
horizontal interface until i t  encounters an irregularity, a fault perhaps, from 
which it reflects and returns toward the source. Reflected head waves are 
sometimes called reflected refractions. This event provides an easy velocity 
estimate, namely, v = 2 dy /dt . From a processing point of view, such a ve- 
locity measurement is unexpected, because automatic processing extracts all 
velocity information in offset space, a space which many interpreters prefer t o  
leave inside the computer. Of course, for a reflected head wave t o  be 
identified, a special geological circumstance must be present - a scatterer 
strong enough t o  have its hyperbolic asymptote visible. The point scatterer 
must also be strong enough t o  get through the typical suppression effects of 
shot and geophone patterns and CDP stacking. The most highly suppressed 
events, water velocity and ground roll, are just those whose velocities are 
most often apparent on stacked sections. (Recall Larner's streaks). Some 
strong reflected refraction energy was present on the common-shot profile 
shown in Section 3.2. 

Velocity estimates made from reflections are averages of all the layers 
above the reflection point. T o  get depth resolution, it is necessary t o  subtract 
velocity estimates of different depth levels (Section 5.4). Because of the sub- 
traction, accuracy is lost. So with reflected waves, there is naturally a trade- 
off between accuracy and depth resolution. On  the other hand, velocity esti- 
mates from head waves naturally have a high resolution in depth. 

Processing seems t o  ignore or discriminate against the backscattered head 
wave, yet i t  is often seen and used. There must be an explanation. Perhaps 
there is also a latent opportunity. From a theoretical point of view, Clayton's 
cosines showed that  a t  wide angles the velocity and dip sensitivity of mid- 
point and offset are exchanged. At  late times another factor becomes 
significant: the aperture of a cable length can be much less than the width of 
a migration hyperbola. So, although it is easy to  find an asymptote in mid- 
point space, there is little time shift a t  the end of the cable in offset space. 

What processing could take advantage of lateral reflectivity and could 
enhance, instead of suppress, our ability t o  determine velocity in this way? 
Start by stacking a t  a high velocity. Then use the idea tha t  a t  any depth z ,  
the power spectrum of the data  U(w, k,) should have a cutoff a t  the evanes- 

cent stepout p ( r  ) = ky /w = l / v  ( z  ). This would show up in a plot of the 

power spectrum U *  U ,  or better yet of the dip spectrum, as a function of 
depth. Perhaps it would be still better t o  visually inspect the seismic section 
itself after filtering in dip space about the expected velocity. 

The wave-extrapolation equation is an all-pass filter, so why does the 
power spectrum change with depth? It changes because a t  any depth z it is 
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FIG. 3.5-9. The dip-spectrum method of velocity determination. T o  find the 
velocity at any depth, seek the steepest dip on the section a t  tha t  depth. On 
the left, at the earth's surface, you see the surface ground roll. In frames B 
and C the slowest events are the asymptotes of successively faster hyperbolas. 

necessary t o  exclude all the seismic data before t =O. This data  should be 
zeroed before computing the dip spectrum. The procedure is depicted in 
figure 9. 

To  my knowledge this method has never been tried. I believe i t  is worth 
some serious testing. Even in the most layered of geological regions there are 
always faults and irregularities t o  illuminate the full available spectrum. 
Difficulty is unlikely t o  come from weak signals. More probably, the potential 
for difficulty lies in near-surface velocity irregularity. 

EXERCISES 

1. Assume that  the data P (y , h , t ) is constant with midpoint y . Given 
a common-midpoint gather P (h , t , z =O), define a Stolt-type integral 
transformation from P ( h  , t , z =0) t o  P (h =0, t , z ) based on the 
double-square-root equation: 

As with. Stolt migration, your answer should be expressed as a 2-D 
inverse Fourier transform. 

2. Start with a CDP gather u (h , t ) defined (by reciprocity) a t  both posi- 
tive and negative values of h . Describe the effect of the following opera- 
tions: Fourier transform t o  U (kh , w); multiply by 1 + sgn ( w )  sgn (kh  ); 
transform back t o  (h , t )-space. 
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FIG. 3.5-E2. What is this? 

3.6 Migration with Velocity Estimation 

We often face the three complications dip, offset, and unknown velocity 
at  the same time. The double-square-root equation provides an attractive 
avenue when the velocity is known, but when it isn't, we are left with veloci- 
ty-estimation procedures, such as that  in the previous section, which assume 
no dip. In this section a means will be developed of estimating velocity in the 
presence of dip. 

D ip  Moveout  - Sherwood's Devilish 

Recall (from Section 3.2) Levin's expression for the travel time of the 
reflection from a bed dipping at  angle cx from the horizontal: 

t 2 v 2  = 4 ( y - y o ) 2 s i n 2 a + 4 h 2 c o s 2 a  (1) 

In ( h  , t )-space this curve is a hyperbola. Scaling the velocity by cos a 
makes the travel-time curve identical to the travel-time curve of the dip-free 
case. This is the conventional approach to  stacking and velocity analysis. It 
is often satisfactory. Sometimes it is unsatisfactory because the dip angle is 
not a single-valued function of space. For example, near a fault plane there 
will be diffractions. They are a superposition of all dips, each usually being 
weaker than the reflections. Many dips are present in the same place. They 
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blur the velocity estimate and the stack. 

In principle, migration before stack - some kind of implementation of 
the full DSR equation - solves this general problem. But where do we get 
the velocity t o  use in the migration equations? Although migration is some- 
what insensitive t o  velocity when only small angles are involved, migration 
becomes sensitive to  velocity when wide angles are involved. 

The migration process should be thought of as being interwoven with the 
velocity estimation process. J.W.C. Sherwood [1976] showed how the two 
processes, migration and velocity estimation, should be interwoven. The 
moveout correction should be considered in two parts, one depending on 
offset, the NMO, and the other depending on dip. This latter process was 
conceptually new. Sherwood described the process as a kind of filtering, but 
he did not provide implementation details. He called his process Devilish, an 
acronym for "dipping-event velocity inequalities licked." The process was 
later described more functionally by Yilmaz as prestack partial migration, but 
the process has finally come t o  be called simply dip moveout (DMO). We will 
first see Sherwood's results, then Rocca's conceptual model of the D M 0  pro- 
cess, and finally two conceptually distinct, quantitative specifications of the 
process. 

Figure 1 contains a panel from a stacked section. The panel is shown 
several times; each time the stacking velocity is different. I t  should be noted 
that  a t  the low velocities, the horizontal events dominate, whereas a t  the high 
velocities, the steeply dipping events dominate. After the Devilish correction 
was applied, the data  was restacked as before. Figure 2 shows that  the stack- 
ing velocity no longer depends on the dip. This means that  after Devilish, 
the velocity may be determined without regard t o  dip. In other words, events 
with all dips contribute to  the same consistent velocity rather than each dip- 
ping event predicting a different velocity. So the Devilish process should pro- 
vide better velocities for data  with conflicting dips. And we can expect a 
better final stack as well. 

Rocca's Smear Operator 

Fabio Rocca developed a clear conceptual model for Sherwood's dip 
corrections. Figure 3 illustrates Rocca's concept of a prestack partial- 
migration operator. Imagine a constant-offset section P ( t  , y , h =h o) con- 

taining an impulse function a t  some particular ( to ,  yo). The earth model 
implied by this data is a reflector shaped like an ellipse, with the shot point a t  
one focus and the receiver a t  the other. Starting from this earth model, a 
zero-offset section is made by forward modeling - tha t  is, each point on the 
ellipse is expanded into a hyperbola. Combining the two operations - 
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stacking 
velocity 

high velocities junction low velocities 
f-------. * ___C 

FIG. 3.6-1. Conventional stacks with varying velocity. (distributed by Digi- 
con, Inc.) 

constant-offset migration and zero-offset diffraction - gives the Rocca opera- 
tor. 

The Rocca operator is the curve of osculation in figure 3, i.e., the smile- 
shaped curve where the hyperbolas reinforce one another. If the hyperbolas in 
figure 3 had been placed everywhere on the ellipse instead of a t  isolated 
points, then the osculation curve would be the only thing visible (and you 
wouldn't be able t o  see where it came from). 

The analytic expression for the travel time on the Rocca smile is the end 
of a narrow ellipse, shown in figure 4. We will omit the derivation of the 
equation for this curve which turns out t o  be 

The Rocca operator appears to  be velocity independent, but it is not com- 
pletely so because the curve cuts off at dt /dy = 2 / v .  
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stacking 
velocity 

high velocities function low velocities - * ___jC 

0 
.. 

FIG. 3.6-2. Devilish stacks with varying velocity. (distributed by Digicon, 
Inc.) 

The Rocca operator transforms a constant-offset section into a zero-offset 
section. This transformation achieves two objectives: first, i t  does normal- 
moveout correction; second, it does Sherwood's dip corrections. The operator 
of figure 3 is convolved across the midpoint axis of the constant-offset section, 
giving as output a zero-offset section a t  just one time, say, t o .  For each t o  

a different Rocca operator must be designed. The outputs for all t o  values 

must be superposed. Figure 5 shows a superposition of several Rocca smiles 
for several values of t o .  

This operator is particularly attractive from a practical point of view. 
Instead of using a big, wide ellipse and doing the big job of migrating each 
constant-offset section, only the narrow, little Rocca operator is needed. From 
figure 5 we see that  the energy in the dip moveout operator concentrates nar- 
rowly near the bottom. In the limiting case that  h / v t O  is small, the energy 

all goes to  the bottom. When all the energy is concentrated near the bottom 
point, the Rocca operator is effectively a delta function. After compensating 
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FIG. 3.6-3. Rocca's prestack partial-migration operator is a superposition of 
hyperbolas, each with its top on an ellipse. Convolving (over midpoint) 
Rocca's operator onto a constant-o&et section converts the constant-offset 
section into a zero-offset section. (Gonzalez) 

FIG. 3.6-4. Rocca's smile. (Ronen) 
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FIG. 3.6-5. Point response of dip moveout (left) compared t o  constant-offset 
migration (right). (Hale) 

each offset t o  zero offset, velocity is determined by the normal-moveout resi- 
dual; then data is stacked and migrated. 

The narrowness of the Rocca ellipsoid is an advantage in two senses. 
Practically, it means that  not many midpoints need to  be brought into the 
computer main memory before velocity estimation and stacking are done. 
More fundamentally, since the operator is so compact, i t  does not do a lot t o  
the data. This is important because the operation is done at an  early stage, 
before the velocity is well known. So it may be satisfactory t o  choose the ve- 
locity for the Rocca operator as a constant, regional value, say, 2.5 km/sec. 

An expression for the travel-time curve of the dip moveout operator 
might be helpful for Kirchhoff-style implementations. More t o  the point is a 
Fourier representation for the operator itself, which we will find next. 

Hale's Constant-Offse t  Dip M o v e o u t  

Hale [1983] found a Fourier representation of dip moveout. Refer to  the 
defining equations in table 1. 

T o  use the dip-dependent equations in table 1, i t  is necessary t o  know 
the earth dip a. The dip can be measured from a zero-offset section. On the 
zer+offset section in Fourier space, the sine of the dip is vk, j f w .  To stress 

that  this measurement applies only on the zero-offset section, we shall always 
write wo. 

kY sin cu = - 
2 wo 
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TABLE 3.6-1. Equations for normal moveout and dip moveout. Substituting 
the D M 0  equation into the NMO equation yields Levin's dip-corrected NMO. 

NMO 

Levin's NMO 

D M 0  

In the absence of dip, NMO should convert any trace into a replica of the 
zero-offset trace. Likewise, in the presence of dip, the combination of NMO 
and DM0 should convert any constant-offset section t o  a zero-offset section. 
Pseudo-zero-offset sections manufactured in this way from constant-offset sec- 
tions will be denoted by p O(t O, h , y ). First take the midpoint coordinate y 

over t o  its Fourier dual ky . Then take the Fourier transform over time let- 

ting wo be Fourier dual to  t 0. 

Change the variable of integration from t t o  t, . 

t - t t n  

t -t t 

tn -+ tO 

dto i w  t t 
pO(w0, h 7 ky ) = J dt, 7 e o O ( f l n ) ~ O ( t O ( t n ) r h , k y )  (5) 

t = ,/- 
t = Jt ,2 + 4h 2v -2cos2a 

t, = Jt - 4h 'v -2sin2a 

Express the integrand in terms of NMOed data  Pn . This is done by means 

of P n ( t f l , h ,  ky )  = Po(tO(tf l) ,  h ,  ky). 

As with Stolt migration, the Jacobian of the transformation, dto/dtn scales 
things but doesn't do time shifts. The D M 0  is really done by the exponential 
term. 

Omitting the Jacobian (which does little), the over-all process may be 
envisioned with the program outline: 
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CMP Stack without Dip Moveout 

Migrated Stack without Dip Moveout 

CMP Stack with Dip Moveout 

Migrated Stack with Dip Moveout 

FIG. 3.6-6. Processing with dip moveout. (Hale) 
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P (k, = FT [P (Y 11 
Pn (tn = NMO [P ( t )I 
for all k, { # three nested loops, interchangeable 
for all h { # three nested loops, interchangeable 
for all wo { # three nested loops, interchangeable 

sum = 0 
for all t, { 

sum = s u m  + exp 1 i w o  I 1 

Po(wo, h , k, ) = sum 

Notice that  the exponential in the inner loop in the program does not 
depend on velocity. The velocity in the D M 0  equation in table 1 disappears 
on substitution of sin a from equation (3). So dip moveout does not depend 
on velocity. 

The procedure outlined above requires NMO before DMO. T o  reverse 
the order would be an approximation. This is unfortunate because we would 
prefer t o  do the costly, velocity-independent D M 0  step once, before the itera- 
tive, velocity-estimating NMO step. 

Ottolini's Radial Traces 

Ordinarily we regard a common-midpoint gather as a collection of seismic 
traces, that  is, a collection of time functions, each one for some particular 
offset h . But this ( h  , t ) data  space could be represented in a different 
coordinate system. A system with some nice attributes is the radial-trace sys- 
tem introduced by Turhan Taner. In this system the traces are not taken a t  
constant h , but a t  constant angle. The idea is illustrated in figure 7. 

Besides having some theoretical advantages, which will become apparent, 
this system also has some practical advantages, notably: (1) the traces neatly 
fill the space where data is nonzero; (2) the traces are close together a t  early 
times where wavelengths are short, and wider apart where wavelengths are 
long; and (3) the energy on a given trace tends to  represent wave propagation 
at a fixed angle. The last characteristic is especially important with multiple 
reflections (Section 5.6). But for our purposes the best attribute of radial 
traces is still another one. 

Richard Ottolini noticed that  a point scatterer in the earth appears on a 
radial-trace section as an exact hyperbola, not a flat-topped hyperboioid. 
The travel-time curve for a point scatterer, Cheops' pyramid, can be written 
as a "string length" equation, or a stretched-circle equation (Section 3.2). 
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FIG. 3.6-7. Inside the data 
volume of a reflection seismic 
traverse are planes called radial- 
trace sections. A point scatterer 
inside the earth puts a hyperbola 
on a radial-trace section. 

Making the definition 

2 h 
sin + = - 

v t 

and substituting into equation (13) of Section 3.2, yields 

Scaling the z-axis by cos ll, gives the circle and hyperbola case all over 
again! Figure 8 shows a three-dimensional sketch of the hidden hyperbola. 

We will see that  the radial hyperbola of figure 8 is easier t o  handle than 
the flat-topped hyperboloid that  is seen a t  constant h .  Refer t o  the equa- 
tions in table 2. 

The second equation in table 2 is the usual exploding reflector equation 
for zero-ofket migration. I t  may also be obtained from the DSR by setting 
H = 0. As written it contains the earth velocity, not the half velocity. 
Equation (8) says that  hyperbolas of differing + values are related t o  one 
another by scaling the z-axis by cos +. According to  Fourier transform 
theory, scaling z by a cos 1C, divisor will scale Ic, by a cos + multiplier. 
This means the first equation in table 2 can be used for migrating and 
diffracting hyperbolas on radial-trace sections. Eliminating Ic, from the first 
and second equations yields the middle equation w+wo in table 2. This mid- 
dle equation combines the operation of migrating all offsets (really any radial 
angle) and then diffracting out t o  zero offset. Thus the total effect is that  of 
o$set continuation, i.e. NMO and DMO. The last two equations in table 2 
are a decomposition of the middle equation w+wo into two sequential 
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FIG. 3.6-8. An unexpected hyperbola in Cheops' pyramid is the diffraction 
hyperbola on a radial-trace section. (Harlan) 

TABLE 3.6-2. Equations defining dip moveout and ordinary moveout in 
radial trace coordinates. 

migration 

zero-offset diff. 

DMO+NMO 

radial D M 0  

radial NMO 

processes, w - w ,  and w, +wo. These two processes are like D M 0  and 

NMO, but the operations occur in radial space. Radial NMO is a simple 
time-invariant stretch; hence the notation w, . 

Unlike the constant-offset case, dip moveout is now done before the 
stretching, velocity-estimating step. Let us confirm that  the dip moveout is 
truly velocity-independent. Substitute (7) into the radial D M 0  transforma- 
tion in table 2 to  get the equation for transformation from time to  stretched 

w+kz 

k; -'ao 

w+w0 

w+w, 

WS +Wo 

k: + kZ2cos2$ = 4w2/v2 

ky2 + kz2 = 4w$/v2 

.25 v 2ky2sin2$ + w;cos2$ = w 2 

.25 v 2k,2sin2$ + W: = w2 

w0 cos $ = w, 
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We observe that  the velocity v has dropped out  of (9). Thus dip moveout 
in radial coordinates doesn't depend on velocity. Dip-moveout processing 
w+w, does not require velocity knowledge. Radial coordinates offer the 
advantage that  this comparatively costly process is done before the velocity is 
estimated us +wo. 

The dip-moveout process, u+ws, can be conveniently implemented with 
a Stolt-type algorithm using (9). 

The foregoing analysis has assumed a constant velocity. A useful practi- 
cal approximation might be to  revert t o  a v ( 2 )  analysis after the dip 
moveout, just before conventional velocity analysis, stack, and zero-offset 
migration. 

Both the radial-trace method and Hale's constant-offset method handle 
all angles exactly in a constant-velocity medium, But neither method treats 
velocity stratification exactly nor is i t  clear that  this can be done - since nei- 
ther method is rooted in the DSR. Yilmaz I19791 rooted his D M 0  work in the 
DSR, so his method can be expected t o  be exact for velocity stratification, but 
Yilmaz could not avoid angle-dependent approximations. So there remains 
theoretical work to  be done. 

Anti-Alias Characteristic of Dip Moveout 

You might think that  if (y , h , t )-space is sampled along the y-axis a t  a 
sample interval A y , then any final migrated section P (y , z ) would have a 

spatial resolution no better than Ay . This is not the case. 

The basic principle at work here has been known since the time of Shan- 
non. If a time function and its derivative are sampled a t  a time interval 2 A t ,  
they can both be fully reconstructed provided that  the original bandwidth of 
the signal is lower than 1/(2At ). More generally, if a signal is filtered with 
m independent filters, and these m signals are sampled a t  an interval 
m A t ,  then the signal can be recovered. 

Here is how this concept applies t o  seismic data. The basic signal is the 
earth model. The various filtered versions of it are the constant-offset sec- 
tions. Recall that  the CDP reflection point moves up dip as the offset is 
increased. Further details can be found in a paper by Bolondi, Loinger, and 
Rocca [1982], who first pointed out the anti-alias properties of dip moveout. 
A t  a time of increasing interest in 3-D seismic data, special attention should 
be paid t o  the anti-alias character of dip moveout. 
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EXERCISE 

1. Describe the effect of the Jacobian in Hale's dip moveout process. 

Lateral Velocity Variation in Bigger Doses 

To the interpreting geologist, lateral velocity variation produces a 
strange distortion in the seismic section. And the distortion is worse than it 
looks. The geophysicist is faced with the challenge of trying to deal with 
lateral velocity variation in a quantitative manner. First, how can reliable 
estimates of the amount of lateral velocity variation be arrived at? Then, do 
we dare use these estimates for reprocessing data? 

Our studies of dip and offset have resulted in straightforward p r e  
cedures to handle them, even when they are simultaneously present. Unfor- 
tunately, increasing lateral velocity variation leads to  increasing confusion - 
confusion we must try to  overcome. Strong lateral velocity variation overlies 
the largest oil field in North America, Prudhoe Bay. Luckily, however, we 
have many idealized examples that are easy t o  understand. Any "ultimate" 
theory would have to  explain these examples as limiting cases. 

Let us review. The double-square-root equation presumably works if the 
square roots are expanded and if we accept the usual limitation of accuracy 
with angle. Our problem with the DSR is that it merely tells us how to 
migrate and stack once the velocity is known. Kjartansson's method of deter- 
mining the distribution of (some function of) v (x , z ) assumes straight rays, 
no dip, and a single, planar reflector. On the other hand, stacking along with 
prestack partial migration allows any scattering geometry but enables deter- 
mination of v ( z )  only under the presumption that there is no lateral varia- 
tion of velocity. Clearly, there are many gaps. We begin with comprehensi- 
ble, special cases but ultimately sink into a sea of confusion. 

Replacement Velocity: Freezing the Water 

Sometimes you are lucky and you know the velocity. Maybe you know it 
because you are dealing with synthetic data. Maybe you know it because you 
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have already drilled 300 shallow holes. Or maybe you can make a good esti- 
mate because you have a profile of water depth and you are willing to  guess 
a t  the sediment velocity. Often the velocity problem is really a near-surface 
problem. Perhaps you have been dragging your seismic streamer over the 
occasional limestone reefs in the Red Sea. 

Assuming that  you know the velocity and that  the lateral variations are 
near the surface, then you should think about the idea of a replacement  veloc- 
i ty .  For  example, suppose you could freeze the water in the Red Sea, just 
until it is hard enough that  the ice velocity and the velocity of the limestone 
reefs are equal. That  would remove the unnecessary complexity of the 
reflections from deep targets. Of course you can't freeze the Red Sea, but you 
can reprocess the data t o  t ry  to  mimic what would be recorded if you could. 

First, downward continue the data t o  some datum beneath the lateral 
variations. Then upward continue i t  back t o  the surface through the homo- 
geneous replacement medium. 

While in principle the DSR could be used for this job, in practice it 
would be expensive and impractical. The best approach is t o  study the two 
operations - going down, then going up - in combination. Since the two 
operations are largely in opposition t o  each other, whatever is done t o  the 
data  should be just a function of the difference. For example, the equation 

combines the downward continuation with the upward continuation and 
makes little change t o  the wavefield P when the velocities are nearly the 
same. Equation (I) is basically a time-shifting equation. There is an industry 
process known as stat ic corrections. The word stat ic implies time-invariant 
- the amount of time shift does not depend on time. When the appropriate 
corrections are merely static shifts, then the earth model has lateral velocity 
variations in the near surface only. This is often the case. Equation ( I )  also 
has the ability t o  do time-variable time shifts because v ( s  ) and v (g ) can 
be any function of depth z . Because of the wide-offset angle normally used, 
i t  is desirable t o  extend (1) to  a wider angle. Such extensions are found in 
Lynn (19791. Lynn also shows how partial differential equations can be writ- 
ten t o  describe the influence of lateral velocity variation on stacking velocity. 
Berryhill [I9791 illustrated the use of the Kirchhoff method for an  irregular 
datum. 

In practice, the problem of estimating lateral velocity variations is usu- 
ally more troublesome than the application of these velocities during migra- 
tion. Static time shifts are estimated from a variety of measurements 
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including the elevation survey, travel times from the bottoms of shot holes t o  
the surface, and crosscorrelation of reflection seismograms. Wiggins et  al. 
(19761 provide an analysis t o  determine the static shifts from correlation meas- 
urements. 

FIG. 3.7-1. Data (left) from Philippines with dynamic corrections (right). (by 
permission from Geophysics, Dent [1983]) 

Where the lateral variation runs deeper the time shifts become time- 
dependent. This is called the dynamic time-shift problem. T o  compute 
dynamic time shifts, dip is assumed to  be zero. Rays are traced through a 
presumed model with laterally variable velocity. Rays are also traced through 
a reference model with laterally constant velocity. The difference of travel 
times of the two models defines the dynamic time shifts. See figure 1. Where 
the lateral variation runs deeper still, the problem looks more like a migration 
problem. Figure 2 illustrates a process called R E V E A L  by Digicon, Inc., who 
have not revealed whether a time-shift method or a wave-equation method 
was used. 

Lateral Shift of the Hyperbola Top 

Figure 3 shows a point scatterer below a dipping interface. As  usual 
there is a higher velocity below. This is a simple prototype for many lateral- 
velocity-variation problems. Surface arrival times will be roughly hyperbolic 
with distortion because of the velocity jump at the interface. The minimum 
travel time (hyperboloid top) has been displaced from its usual location 
directly above the point scatterer. Observe that  



OFFSET 5.7 Lateral Velocity Variation 
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BEFORE REVEAL 

.o 

AFTER REVEAL 

FIG. 3.7-2. Example of processing with a replacement velocity. Observe that  
deeper bedding is now flatter and more continuous. (distributed by Digicon, 
Inc .) 

1. At  minimum time, the ray emerges going straight up. 

2. Minimum time is on the high-velocity side of the point scatterer. 

3. Minimum time is displaced further from the scatterer as offset 
increases. 

The travel-time curve is roughly hyperbolic, but the asymptote on the right 
side gives the velocity of the medium on the right side, and the asymptote on 
the left approximately gives the velocity on the left. 

Let T (x) denote the travel time from the point scatterer t o  the surface 
point x. The travel time for a constant-offset section is then t ( y  ) = 

T (y +h ) + T (y -h ). To find the earliest arrival, set dt ldy  = 0. This 
proves that  the slope a t  a on figure 3 is the negative of the slope a t  b . This 
shows why the displacement of the top of the hyperboloid from the scatterer 
increases with ofbet. 

Lateral velocity variation causes hyperbolas t o  lose their symmetry. 
Computationally, it is the lens term that  tilts hyperbolas, causing their tops 
t o  move laterally. 
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/ V  just 

FIG. 3.7-3. Rays emerging from a point scatterer beneath a velocity wedge 
ravel-time curve (right). The slope at  a is the negative of that  a t  

The midpoint between a and b is a t  the top of the h > O  curve. 

Phantom Diffractor 

A second example of lateral velocity variation is figure 4, also taken from 
Kjartansson's dissertation. The physical model shown on the inset in figure 4 
is three constant velocity wedges separated by broken line segments represent- 
ing reflectors. The bottom edge of the model also represents a reflector. The 
wavefield in figure 4 was made using the exploding-reflector calculation, which 
Kjartansson regarded as a reasonable approximation t o  a zero-offset section. 
Notice that  under the tip of the 4 km/sec wedge is a small diffraction on the 
bottom horizontal reflector. Because such a diffraction has nothing to  do with 
the flat reflector on which it is seen, it is termed a "phantom" diffraction. 
Phantom diffractions are not easy t o  recognize, but they do occur. In reality, 
the  "bright spots" in Section 3.1 were probably phantom diffractions. I t  has 
been reported tha t  phantom diffractions provide a means of prospecting for 
small, high-velocity, carbonate reefs. 

Wavefront Healing 

Figure 5 (also in FGDP) shows another example of ray bending. The 
first frame on the left shows a plane wave just after it has been distorted into 
a wavy shape by the thin-lens term. After this the thin-lens term vanishes. 
Later frames show the effect of increasing amounts of diffraction. 
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FIG. 3.7-4. The model in the upper panel was taken from Western 
Geophysical's Depth Migration brochure. The model is not physical because 
of the segmenting of the interface; however, the segments make i t  a good case 
for the study of lateral shifts. The synthetic data  is in the lower panel (from 
Kjartansson). The phantom diffraction is on the latest arrival just below the 
tip of the wedge. 
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S t a r t  

I-" Direct ion  of Propagation e 

FIG. 3.7-5. The first frame on the left shows a plane wave just after it has 
been distorted into a wavy shape by the thin-lens term. After this the thin- 
lens term vanishes. Subsequent frames show the effect of increasing amounts 
of diffraction. Notice the lengthening of the wave packet and the healing of 
the first arrival. (FGDP, p. 213, figure 10-22) 

Fault-Plane Reflection 

Across a single vertical fault in the earth the velocity will be a simple 
step function of the horizontal coordinate. Rays traveling across such a fault 
suffer in amplitude because of reflection and transmission coefficients, depend- 
ing on the angle. Since near-vertical rays are common, only small velocity 
contrasts are required t o  generate strong internal reflections. By this reason- 
ing, steep faults should be more distorted, and hence more recognizable, on 
small-offset sections than on wide-offset sections or stacks. 

This phenomenon is somewhat more confusing when seen in (x , t )-space. 
Figure 6 was computed by Kjartansson and used in a quiz. Study this figure 
and answer the questions in the caption. Here is a hint: A reflected ray 
beyond critical angle undergoes a phase shift. This will turn a pulse into a 
doublet that  might easily be mistaken for two rays. 

Figure 6 exhibits a geometry in which the exploding-reflector model fails 
t o  produce all the rays seen on a zero-offset section. The exploding-reflector 
model produces two types of rays: the ray that  goes directly t o  the surface, 
and the ray that  reflects from the fault plane before going t o  the surface. A 
zero-offset section has three rays: the two rays just mentioned, but moving a t  
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FIG. 3.7-6. Synthetic data from an exploding-reflector calculation for an 
earth model containing a point scatterer and a velocity jump v l / v z  = 1.2 
across a vertical contact. (Kjartansson) 

Is the point scatterer in the slow or the fast medium? 
b a\ Identify four arrivals and diagram their raypaths. 
c) Identify and explain two kinds of computational artifacts. 

Find an evanescent wave. 
Find phase shift on a beyond-critical-angle reflection. 
A zero-offset section has ray not shown above. Where? 

double travel time, once up, once down; and in addition the ray not present in 
figure 6, which hits the fault plane going one way but not the other way. 

There is a simple way to  make constant-offset sections in laterally vari- 
able media when the reflector is just a point. The exploding-reflector seismo- 
gram recorded a t  x =s is simply time convolved with the one recorded a t  
x =g . Convolution causes the travel times t o  add. Even the non-exploding- 
reflector rays are generated. Too bad this technique doesn't work for reflector 
models that  are more complicated than a simple reflecting point. 

Misuse of v (x ) for Depth Migration 

The program that  generated figure 6 could be run in reverse t o  do a 
migration. All the energy from all the interesting rays would march back to  
the impulsive source. Would this be an effective migration program in a field 
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environment? It is unlikely that  it would. The process is far too sensitive t o  
quantitative knowledge of the lateral velocity jump. I t  is the quantitative 
value that  determines the reflection coefficient and ultimately the correct 
recombination of all the wavefronts back t o  a pulse. To  see how an incorrect 
value can result in further error, imagine using the hyperbola-summation 
migration method. Applied t o  this geometry this method implies weighted 
summation over all the raypaths in the figure. The incorrect value would put 
erroneous amplitudes on various branches. An erroneous location for the fault 
would likewise mislocate several branches. 

The lesson t o  be learned from this example is clear. Unnecessary bumps 
in the velocity function can create imaginary fault-plane reflections. Con- 
sistent with known information, a presumed migration velocity should be as 

smooth as possible in the lateral direction. Unskilled and uninformed staff at  
a processing center remote from the decision making should not have the free- 
dom t o  introduce rapid lateral changes in the velocity model. 

First-Order Effects, the Lens Term 

Now let us be specific about what is meant by the lens term in the 
present context of before-stack migration in the presence of lateral velocity 
variation. Specializing the DSR equation t o  15" angles gives 

Rearranging the terms t o  group by behavior gives - - 

d U  - - - lens  t e r m  + di$raction t e r m  
dz 

So you see the familiar type of lens term, but it has two parts, one for shifting 
a t  the shot, and one for shifting at  the geophone. 
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The Migrated Time Section: An Industry Kludge 

As geology becomes increasingly dramatic, reflection data  gets more 
anomalous. The first thing noticeable is that  the stacking velocity becomes 
unreasonable. In practice the available computer processes - based on inap- 
propriate assumptions - will be tried anyway. 

A stacking velocity will be chosen and a stack formed. How should the 
migration be done? Most basic migration programs omit the lens term. 
Although it is easy t o  include the lens term, the term is sensitive t o  lateral 
variation in velocity. Since estimates of lateral variation in velocity always 
have questionable reliability, use of a migration program with a lens term is 
usually limited to  knowledgeable interpreters. The lens term is usually omit- 
ted from the basic migration utility program. Let us see what this means. 

The migration equation is valid in some "local plane wave" sense, i.e. 

A migrated t i m e  sec t ion  is defined by transforming the depth variable z in 
( 4 )  t o  a travel-time depth T. 

The implementation of equation (5) requires no lens terms, so no large 
sensitivity t o  lateral velocity variation is expected. Unfortunately, there is a 
pitfall. The ( y  , z )  coordinate system is an  orthogonal coordinate system, 

but the ( y  , T )  system is not orthogonal [unless v ( y  )=const 1. So equation 
( 4 ) ,  which says that  cos 0 = d-, is not correctly interpreted by (5). 
A hyperbola would migrate t o  its top when i t  should be migrating toward the 
low-velocity side. 

In summary: In a production environment a great deal of data gets pro- 
cessed before anyone has a clear idea of how much lateral velocity variation is 
present. So the lens term is omitted. The results are OIC if the lens term 
happens to  commute with the diffraction term. The terms do commute when 
the lateral velocity variation is slow enough. Otherwise, you should reprocess 
with the lens term. The reprocessing will be sensitive t o  errors in velocity. 
Be careful! 


