
Why Space and Time? 

In the previous chapter we learned how to  extrapolate wavefields down 
into the earth. The process proceeded simply, since it is just a multiplication 
in the frequency domain by exp[ik,(w, k , ) ~ ] .  Finite-difference techniques 

will be seen to  be complicated. They will involve new approximations and 
new pitfalls. Why should we trouble ourselves t o  learn them? To  begin with, 
many people find finite-difference methods more comprehensible. In 
( t  , x ,  2)-space, there are no complex numbers, no complex exponentials, and 
no "magic" box called FFT. 

The situation is analogous to  the one encountered in ordinary frequency 
filtering. Frequency filtering can be done as a product in the frequency 
domain or a convolution in the time domain. With wave extrapolation there 
are products in both the temporal frequency w-domain and the spatial fre- 
quency &-domain. The new ingredient is the two-dimensional (w, kx)-space, 

which replaces the old one-dimensional uspace.  Our question, why bother 
with finite differences?, is a two-dimensional form of an  old question: After the 
discovery of the fast Fourier transform, why should anyone bother with time- 
domain filtering operations? 

Our question will be asked many times and under many circumstances. 
Later ure will have the axis of offset between the shot and geophone and the 
axis of midpoints between them. There again we will need t o  choose whether 
t o  work on these axes with finite differences or to  use Fourier transformation. 
It is not an all-or-nothing proposition: for each axis separately either Fourier 
transform or convolution (finite difference) must be chosen. 

The answer to  our question is many-sided, just as geophysical objectives 
are many-sided. Most of the criteria for answering the question are already 
familiar from ordinary filter theory. Those electrical engineers and old-time 
deconvolution experts who have pushed themselves into wave processing have 
turned out t o  be delighted by it. They hadn't realized their knowledge had so 
many applications! 
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Figure 1 illustrates the differences between Fourier domain calculations 
and time domain calculations. The figure was calculated on a 2 5 6 x 6 4  mesh 
t o  exacerbate for display the difficulties in either domain. Generally, you 
notice wraparound noise in the Fourier calculation, and frequency dispersion 
(Section 4.3) in the time domain calculation. (The "time domain" hyperbola 
in figure 1 is actually a frequency domain simulation - t o  wrap the entire 
hyperbola into view). In this Chapter we will see how t o  do the time domain 
calculations. A more detailed comparison of the domains is in Chapter 4. 

FIG. 2.0-1. Frequency domain hyperbola (top) and time domain hyperbola 
(bottom). 

Even if you always migrate in the frequency domain, it is worth studying 
time domain methods to  help you choose parameters to  get a good time 
domain response. For example both parts of figure 1 were done in the fre- 
quency domain, but one simulated the time domain calculation t o  get a more 
causal response. 

Lateral Variation 

In ordinary linear filter theory, a filter can be made time-variable. This 
is useful in reflection seismology because the frequency content of echoes 
changes with time. An annoying aspect of time-variable filters is that  they 
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cannot be described by a simple product in the frequency domain. So when 
an application of time-variable filters comes along, the frequency domain is 
abandoned, or all kinds of contortions are made (stretching the time axis, for 
example) t o  try t o  make things appear time-invariant. 

All the same considerations apply to  the horizontal space axis x .  On 
space axes, a new concern is the seismic velocity v . If it is space-variable, 

say v (x) ,  then the operation of extrapolating wavefields upward and down- 
ward can no longer be expressed as a product in the k ,  -domain. Wave-ex- 

trapolation procedures must abandon the spatial frequency domain and go to  
finite differences. The alternative again is all kinds of contortions (such as 

stretching the x-axis) to  t ry  t o  make things appear t o  be space-invariant. 

In two or more dimensions, stretching tends t o  become more difficult and 
less satisfactory. 

A less compelling circumstance of the same type that  suggests finite 
differences rather than Fourier methods is lateral variation in channel loca- 
tion. If geophones somehow have become unevenly separated so that  the Ax 
between channels is not independent of x ,  then there is a choice of (1) resam- 
piing the data a t  uniform intervals before Fourier analysis, or (2) processing 
the data  directly with finite differences. 

Stepout 

Much of seismology amounts t o  measuring time shifts. The word 
stepout denotes a change of travel time with a change in location. 
Frequency-domain calculations usually conclude with a transform to  the time 
domain t o  let us see the shifts. An advantage of time-domain computations is 
that  time shifts of wave packets can be measured as the computation 
proceeds. In the frequency domain it is not difficult to  reference one single 
time point, or t o  prescribe a shift of the whole time function. But it is not 
easy t o  access separate wavelets or wave packets without returning t o  the 
time domain. 

The upward and downward wavefield extrapolation filter 

exp[i kz (w, k z ) z ]  is basically a causal all-pass filter. (Under some cir- 

cumstances it is anticausal). It moves energy around without amplification or 
attenuation. I suppose this is why migration filtering is more fun than 
minimum-phase filtering. Migration filters gather energy from all over and 
drop it in a good place, whereas minimum-phase filters hardly move things a t  
all - they just scale some frequencies up and others down. Any filter of the 
form exp[i $(w)] is an all-pass filter. What are the constraints on the func- 
tion d(w) which make the time-domain representation of exp(i 4) causal? 
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Causal all-pass filters turn out t o  have an attractive representation, with 
2-transforms as z ( ~ / z ) / A  (Z  ). Those who are familiar with filter 

theory will realize that  the division by A ( Z )  raises a whole range of new 
issues: feedback, economy of parameterization, and possible instability. (Sec- 
tion 4.6 covers Z-transforms). These issues will all arise in using finite 
differences t o  downward extrapolate wavefields. It is a feedback process. The 
economy of parameterization is attractive. Taking A ( 2 )  = 1 + a lZ  + 
a 2 ~ 2 ,  the two adjustable coefficients are sufficient to  select a frequency and 

a bandwidth for selective delay. Economy of parameterization also implies 
economy in application. That  is nice. It is also nice having the functional 
form itself imply causality. On the other hand, the advantages of economy 
are offset by some dangers. Now we must learn and use some stability theory. 
A (Z )  must be minimum phase. 

Being Too Clever in the Frequency Domain 

Fourier methods are global. That is, the entire dataset must be in hand 
before processing can begin. Remote errors and truncations can have serious 
local effects. On the other hand, finite-difference methods are local. Data 
points are directly related only to  their neighbors. Remote errors propagate 
slowly. Let me cite two examples of frequency-domain pitfalls in the field of 
one-dimensional time-series analysis. 

In the frequency domain it is easy t o  specify sharp cutoff filters, say, a 
perfectly flat passband between 8 Hz and 80 Hz, zero outside. But such filters 
cause problems in the time domain. They are necessarily noncausal, giving a 
response before energy enters the filter. Another ugly aspect is that  the time 
response drops off only inversely with t . Distant echoes that  have ampli- 
tudes weakened as inverse time squared would get lost in the long filter 
response of the early echoes. 

A more common problem arises with the 60 Hz powerline frequency rejec- 
tion filters found in much recording equipment. Notch filters are easy t o  con- 
struct in the 2-transform domain. Start with a zero on the unit circle at  
exactly 60 Hz. That  kills the noise but it distorts the passband a t  other fre- 
quencies. So, a tiny distance away, outside the unit circle, place a pole. The 
separation between the pole and the zero determines the bandwidth of the 
notch. The pole has the effect of nearly canceling the zero if the pair are seen 
from a distance. So there is an ideal flat spectrum away from the absorption 
zone. You record some data with this filter. Late echoes are weaker than 
early ones, so the plotting program increases the gain with time. After instal- 
ling your powerline reject filters you discover that  they have i nc reased  the 
powerline noise instead of decreasing it. Why? The reason is that  you tried 
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t o  be too clever when you put the pole too close to  the circle. The exponen- 
tial gain effectively moved the unit circle away from the zero towards the 
pole. The pole may end up on the circle! Putting the pole further from the 
zero gives a broader notch, which is less attractive in the frequency domain, 
but a t  least the filter will work sensibly when the gain varies with time. 

Zero Padding 

When fast Fourier transforms came into use, one of the first applications 
was convolution. If a filter has more than about fifty coefficients, it may be 
faster t o  apply it by multiplication in the frequency domain. The result will 
be identical to  convolution if care has been taken to  pad the ends of the data 
and the filter with enough zeroes. They make invisible the periodic behavior 
of the discrete Fourier transform. For filtering time functions whose length is 
typically about one thousand, this is a small price in added memory t o  pay 
for the time saved. Seismic sections are often thousands of channels long. 
For migration, zero padding must simultaneously be done on the space axis 
and the time axis. There are three places where zeroes may be required, as 
indicated below: 

Section 4.5 offers suggestions on how t o  alleviate the problems of Fourier 
domain migration techniques. 

Looking Ahead 

Some problems of the Fourier domain have just been summarized. The 
problems of the space domain will be shown in this chapter and Chapter 4. 

Seismic data  processing is a multidimensional task, and the different dimen- 
sions are often handled in different ways. But if you are sure you are content 
with the Fourier domain then you can skip much of this chapter and jump 
directly t o  Chapter 3, where you can learn about shot-to-geophone offset, 
stacking, and migration before stack. 
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2.1 Wave-Extrapolation Equations 

A wave-extrapolation equation is an expression for the derivative of a 

wavefield (usually in the depth z direction). When the wavefield and its 
derivative are known, extrapolation can proceed by various numerical 
representations of P (z + Az ) = P (z ) + Az d P  /dz . So what is really 
needed is an expression for d P  l d z .  Two theoretical methods for finding 
d P  /dx are the original transformation method and the newer dispe~sion- 
relation method. 

Meet the Parabolic Wave Equation 

At the time the parabolic equation was introduced to  petroleum pros- 
pecting (1969), it was well known that  "wave theory doesn't work." At  that 
time, petroleum prospectors analyzed seismic data with rays. The wave equa- 
tion was not relevant t o  practical work. Wave equations were for university 
theoreticians. (Actually, wave theory did work for the surface waves of mas- 
sive earthquakes, scales 1000 times greater than in exploration). Even for 
university workers, finite-difference solutions t o  the wave equation didn't work 
out very well. Computers being what they were, solutions looked more like 
"vibrations of a drum head" than like "seismic waves in the earth." The par- 
abolic wave equation was originally introduced t o  speed finite-difference wave 
modeling. The following introduction t o  the parabolic wave equation is via 
the original transformation method. 

The difficulty prior t o  1969 came from an inappropriate assumpt,ion cen- 
tral t o  all then-existing seismic wave theory, namely, the horizontal layering 
assumption. Ray tracing was the only way to  escape this assumption, but ray 
tracing seemed t o  ignore waveform modeling. In petroleum exploration 
almost all wave theory further limited itself to  vertical incidence. The road to  
success lay in expanding ambitions from vertical incidence t o  include a small 
angular bandwidth around vertical incidence. This was achieved by abandon- 
ing much known, but cumbersome, seismic theory. 

A vertically downgoing plane wave is represented mathematically by the 
equation 

In this expression, P o  is absolutely constant. A small departure from verti- 

cal incidence can be modeled by replacing the constant Po with something, 
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say, Q (x , z ), which is not strictly constant but varies slowly. 

P ( t , x , z )  = Q ( x , z )  e - i  w ( t  - z / v )  
(2) 

Inserting (2) into the scalar wave equation P,, + P,, = Ptt / v  yields 

The wave equation has been reexpressed in terms of Q ( x ,  z ) .  So far no 
approximations have been made. To  require the wavefield t o  be near t o  a 
plane wave, Q ( x ,  z )  must be near t o  a constant. The appropriate means 
(which caused some controversy when it was first introduced) is t o  drop the 
highest depth derivative of Q , namely, Q,, . This leaves us with the para- 

bolic wave equation 

At  the time it was first developed for use in seismology, the most impor- 
tant  property of (4) was thought t o  be this: For a wavefield close t o  a verti- 
cally propagating plane wave, the second x-derivative is small, hence the z -  
derivative is small. Thus, the finite-difference method should allow a very 
large Az  and thus be able to  treat models more like the earth, and less like 
a drumhead. 

It soon became apparent that  the parabolic wave equation was also just 
what was needed for seismic imaging: it was a wave-extrapolation equation. 

It is curious that  equation (4) is the Schroedinger equation of quantum 
mechanics. 

This approach, the transformation approach, was and is very useful. But 
it was soon replaced by the dispersion-equation approach - a way of getting 
equations to  extrapolate waves a t  wider angles. 

Muir Square-Root Expansion 

When we use the newer method of finding wave extrapolators, we seek 
various approximations t o  a square-root dispersion relation. Then the approx- 
imate dispersion relation is inverse transformed into a differential equation. 
Thanks largely t o  Francis Muir, the dispersion approach has evolved consider- 
ably since the writing of Fundamentals of Geophysical Data Processing. 
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Substitution of the plane wave exp(-iwt + ik,x + ik,z) into the 

two-dimensional scalar wave equation yields the dispersion relation 

Solve for k, selecting the positive square root (thus for the moment selecting 

downgoing waves). 

To  inverse transform the z-axis we only need t o  recognize that  ik, 
corresponds t o  a l d z .  The resulting expression is a wavefield extrapolator, 
namely, 

Bringing equation (6b) into the space domain is not simply a matter of 

substituting a second z derivative for kx2. The problem is the meaning of 

the square root of a differential operator. The square root of a differential 
operator is not defined in undergraduate calculus courses and there is no 
straightforward finite difference representation. The square root becomes 
meaningful only when the square root is regarded as some kind of truncated 
series expansion. It will be shown in Section 4.6 that  the Taylor series is a 
poor choice. Francis Muir showed that  the original 15" and 45" methods 
were just truncations of a continued fraction expansion. To  see this, let X 
and R be defined by writing (6a) as 

The desired polynomial ratio of order n will be denoted R, , and it will be 

determined by the recurrence 

To  see what this sequence converges to  (if it converges), set n = oo in (8) 
and solve 
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The square root of (9) gives the required expression (7). Geometrically, (9) 
says that  the cosine squared of the incident angle equals one minus the sine 
squared. Truncating the expansion leads t o  angle errors. Actually it is only 
the low-order terms in the expansion that  are ever used. Beginning from 
R = 1 the results in table 1 are found. 

TABLE 2.1-1. First four truncations of Muir's continued fraction expansion. 

For various historical reasons, the equations in table 1 are often referred 
t o  as the 5 " ,  15",  and 45" equations, respectively, the names giving a reason- 
able qualitative (but poor quantitative) guide t o  the range of angles that  are 
adequately handled. A trade-off between complexity and accuracy frequently 
dictates choice of the 45" equation. It then turns out that  a slightly wider 
range of angles can be accommodated if the recurrence is begun with some- 
thing like R (I = cos 45'. Accuracy enthusiasts might even have R a func- 

tion of velocity, space coordinates, or frequency. 
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Dispersion Relations 

Performing the substitutions of table 1 into equation (7) gives dispersion 
relationships for comparison t o  the exact expression (6a). These are shown in 
table 2. 

TABLE 2.1-2. As displayed in figure 1, the dispersion relations of table 2 
tend toward a semicircle. 

Depth-Variable Velocity 

Identification of 2 with d/dz  converts the dispersion relations of 

table 2 into the differential equations of table 3. 

The differential equations in table 3 were based on a dispersion relation 
that  in turn was based on an assumption of constant velocity. So you might 
not expect that  the equations have substantial validity or even great utility 
when the velocity is depth-variable, v = v ( z ) .  The actual limitations are 
better characterized by their inability, by themselves, t o  describe reflection. 

Migration methods based on equation (6b) or on table 3 are called 
phase-shift methods. 

Retardation (Frequency Domain) 

It is often convenient t o  arrange the calculation of a wave t o  remove the 
effect of overall translation, thereby making the wave appear to  ('stand still." 
This subject, wave retardation, will be examined more thoroughly in Section 
2.6. Meanwhile, it is easy enough to  introduce the time shift t of a verti- 

cally propagating wave in a hypothetical medium of velocity F ( z ) ,  namely, 
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TABLE 2.1-3. Extrapolation equations when velocity depends only on depth. 

FIG. 2.1-1. Dispersion relation of equations (6a) and table 2. The curve 
labeled 45 "+ was constructed with R = cos 45 ". It fits exactly at  0 "  
and 45 ". 
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A time delay t o  in the time domain corresponds to  multiplication by 

exp(iwto) in the w-domain. Thus, the actual wavefield P is related t o  the 

time-shifted wavefield Q by 

(Equation (11) applies in both x -  and k, -space). Differentiating with 

respect t o  z gives 

Next, substitute (11) into table 3 t o  obtain the retarded equations in table 4. 

Lateral Velocity Variation 

Having approximated the square root by a polynomial ratio, table 3 or 
table 4 can be inverse transformed from the horizontal wavenumber domain 

k, t o  the horizontal space domain x by substituting (ik, )2 = d2/dx2. As 

before, the result has a wide range of validity for v =v (x , z ) even though 
the derivation would not seem to  permit this. Ordinarily F ( z )  will be 
chosen t o  be some kind of horizontal average of v ( x ,  z ) .  Permitting G to 
become a function of z generates many new terms. The terms are awkward 
t o  implement and ignoring them introduces unknown hazards. So F is usu- 
ally taken t o  depend on z but not x . 

Splitting 

The customary numerical solution t o  the x-domain forms of the equa- 
tions in tables 3 and 4 is arrived at  by splitting. That  is, you march forward 
a small Az -step alternately with the two extrapolators 

aQ - - - lens term 
d z 

8Q - = diffraction term (1 2 b) 
a z 
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TABLE 2.1-4. Retarded form of phase-shift equations. 

5 "  

15"  

45 " 

general 

Justification of the splitting process is found in Section 2.4. The first equa- 
tion, called the lens equation, is solved analytically: 

- = zero 1 
a z ,u V ( Z )  

aQ - -  - . vkx2 
- 2  - Q 

a2 2w " V ( Z )  

aQ - = - Z 
kx2 

2 Q + i w [ L - -  a z  w vk, ,v T ( z )  2 - - -  
v 2w 

I Q  
aQ - = diffraction + thin lens 
a z  

Observe that  the diffraction parts of tables 3 and 4 are the same. Let us use 
them and equation (12b) t o  define a table of diffraction equations. Substitute 
alas for ik, and clear alax from the denominators t o  obtain table 5. 

Time Domain 

To put the above equations in the time domain, it is necessary only to  
get w into the numerator and then replace -i w by dlat. For example, 
the 15",  retarded, v = V  equation from table 5 becomes 

Interpretation of time t for a retarded-time variable Q  awaits further 
clarification in Section 2.6. 
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- 

TABLE 2.1-5. Diffraction equations for laterally variable media. 

5 "  

15 " 

Upcoming Waves 

- aQ - - zero a z 

8Q - -  - v ( x , z )  a 2 ~  
dz  -22W d,2 

All the above equations are for downgoing waves. T o  get equations for 
upcoming waves you need only change the signs of z and d l d z .  Letting 
D denote a downgoing wavefield and U an upcoming wavefield, equation 
(14), for example, takes the form 

d" v d2 D = + - -  
dz d t  2 d x 2  

a2 v a2 u = --- 
dz dt  2 d x 2  

v ( x , z )  a2& 
- 2  2 W  dz2 

TABLE 2.1-6. Time-domain equations for downgoing and upcoming wave 
diffraction with retardation and the 15" approximation. 

Using the exploding-reflector concept, it is the upcoming wave equation that  
is found in both migration and diffraction programs. The downgoing wave 
equation is useful for modeling and migration procedures that  are more ela- 
borate than those based on the exploding-reflector concept (see Section 5.7). 
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EXERCISE 

1. Consider a tilted straight line tangent t o  a circle. Use this line t o  initial- 
ize the Muir square-root expansion. State equations and plot them 
(-2 5 X 5 +2) for the next two Muir semicircle approxima,tions. 

2.2 Finite Differencing 

The basic method for solving differential equations in a computer is finite 
differencing. The nicest feature of the method is that  it allows analysis of 
objects of almost any shape, such as earth topography or geological structure. 
Ordinarily, finite differencing is a straightforward task. The main pitfall is 
instability. It often happens that  a seemingly reasonable approach t o  a reason- 
able physical problem leads t o  wildly oscillatory, divergent calculations. 
Luckily, there is a fairly small body of important and easily learned tricks 
that  should solve most stability problems. 

Of secondary concern are the matters of cost and accuracy. These must 
be considered together since improved accuracy can be achieved simply by 
paying the higher price of a more refined computational mesh. Although the 
methods of the next several pages have not been chosen for their accuracy or 
efficiency, it turns out that  in these areas they are excellent. Indeed, t o  my 
knowledge, some cannot be improved on a t  all, while others can be improved 
on only in small ways. By "small" I mean an improvement in efficiency of a 
factor of five or less. Such an improvement is rarely of consequence in 
research or experimental work; however, its importance in matters of 
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production will justify pursuit of the literature far beyond the succeeding 
pa.ges. 

The Lens Equation 

The various wave-extrapolation operators can be split into two parts, a 
complicated part called the diffraction or migration part, and an easy part 
called the lens part. The lens equation applies a time shift that  is a function 
of x .  The lens equation acquires its name because it acts just like a thin 
optical lens when a light beam enters on-axis (vertically). Corrections for 
nonvertical incidence and the thickness of the lens are buried somehow in the 
diffraction part. The lens equation has an analytical solution, namely, 
exp[i w t  O(x )]. I t  is better to  use this analytical solution than to use a finite- 

difference solution because there are no approximations in it t o  go bad. The 
only reason the lens equation is mentioned a t  all in a chapter on finite 
differencing is that  the companion diffraction equation must be marched for- 
ward along with the lens equation, so the analytic solutions are marched along 
in small steps. 

First Derivatives, Explicit Method 

The inflation of money q a t  a 10% rate can be described by the 
difference equation 

This one-dimensional calculation can be reexpressed as a differencing star  and 
a data table. As such i t  provides a prototype for the organization of calcula- 
tions with two-dimensional partial-differential equations. Consider 

DiJerencing Star Data Table 

time 

1 

Since the data in the data table satisfy the difference equation (I), the 
differencing star may be laid anywhere on top of the data table, the numbers 
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in the star  may be multiplied by those in the underlying table, and the result- 
ing cross products will sum to  zero. On the other hand, if all but one number 
(the initial condition) in the data table were missing then the rest of the 
numbers could be filled in, one a t  a time, by sliding the star along, taking the 
difference equation to  be true, and solving for the unknown data value at each 
stage. 

Less trivial examples utilizing the same differencing star  arise when the 
numerical constant .10 is replaced by a complex number. Such examples exhi- 
bit oscillation as well as growth and decay. 

First Derivatives, Implicit Method 

Let us solve the equation 

by numerical methods. Note that  the inflation-of-money equation (I),  where 
2 r =.I, provides an approximation. But then note that  in the inflation-of- 
money equation the expression of dq l d t  is centered a t  t +I/+?, whereas the 
expression of q by itself is a t  time t .  There is no reason the q on the 
right side of equation (3) cannot be averaged a t  time t with time t +l, thus 
centering the whole equation a t  t +I/+?. Specifically, a centered approxima- 
tion of (3) is 

Letting a=r A t ,  this becomes 

which is representable a s  the difference star 

C 

For a fixed A t  this star  gives a more accurate solution t o  the differential 
equation (3) than does the star  for the inflation of money. 

Explicit Heat-Flow Equation 

The heat-flow equation controls the diffusion of heat. This equation is a 
prototype for migration. The 15" migration equation is the same equation 
but  the heat conductivity constant is imaginary. (The migration equation is 
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really the Schroedinger equation, which controls the diffusion of probability of 
atomic particles). Taking a constant yields 

Implementing (5) in a computer requires some difference approximations for 
the partial differentials. The most obvious (but not the only) approach is the 
basic definition of elementary calculus. For the time derivative, this is 

It is convenient t o  use a subscript notation that  allows (6a) t o  be compacted 
into 

In this notation t + A t  is abbreviated by t +1, a convenience for more com- 
plicated equations. The second-derivative formula may be obtained by doing 
the first derivative twice. This leads t o  q, +2 - 2 qt + q, . The formula is 

usually treated more symmetrically by shifting it t o  q, +l - 2 q, + qt -l. 

These two versions are equivalent as A t  tends t o  zero, but the more sym- 
metrical arrangement will be more accurate when A t  is not zero. Using 
superscripts t o  describe x -dependence gives a finite-difference approximation 
t o  the second space derivative: 

Inserting the last two equations into the heat-flow equation (and using = to  
denote z) gives 

Letting a=a A t  / ( C  Ax2)  (8) can be arranged thus: 

Equation (9) can be interpreted geometrically as a computational star in 
the ( x ,  t )-plane, as depicted in figure 1. By moving the sta.r around in the 
dat'a table you will note that  it can be positioned so that  only one number at  
a time (the 1) lies over an unknown element in the data  table. This enables 
the computation of subsequent rows beginning from the top. By doing this 
you are solving the partial-differential equation by the finite-difference 
method. There are other possible arrangements of initial and side conditions, 
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Data Table 

2.2 Finite Differencing 

x --+ 

FIG. 2.2-1. Differencing star  and table for one-dimensional heat-flow equa- 
tion. 

such as zero-value side conditions. Next is a computer program and a test 
example. 

# Explicit heatcflow equation 
real q(12), ~ ( 1 2 )  
nx=12 
do ia=1,2 { # stable and unstable cases 

alpha = ia*.3333; write(6,'(/"alpha =",f4.2)') alpha 
do ix=1,6; q(ix) = 0. # Initial temperature step 
do ix=7,12; q(k)  = 1. 
do it=1,6 { 

write(6, '(20f5.2)') (q(ix),ix= 1 ,nx) 
do ix=2,nx-1 

= q(ix) + alpha*(q(ix-l)-2.*q(ix)+q(u+ 1)) 
w ( 1 )  = w(2) ;  w(nx)  = w(nx-1) 
do ix=l ,nx 

q(ix) = w ( k )  

1 
} 

stop; end 



F I N  TE DIFFER EArCIArG 2.2 Finite Diflerencing 

alpha = .33 

alpha = .67 

The Leapfrog Method 

The difficulty with the given program is that  it doesn't work for all possi- 
ble numerical values of a. You can see that  when a is too large (when Ax 
is too small) the solution in the interior region of the data  table contains 
growing oscillations. What is happening is that  the low-frequency part of the 
solution is OI< (for a while), but the high-frequency part is diverging. The 
precise reason the divergence occurs is the subject of some mathematical 
analysis that  will be done in Section 2.8. A t  wavelengths long compared to  
Ax  or A t ,  we expect the difference approximation t o  agree with the true 
heat-flow equation, smoothing out irregularities in temperature. At  short 
wavelengths the wild oscillation shows that  the difference equation can behave 
in a way almost opposite to  the way the differential equation behaves. The 
short wavelength discrepancy arises because difference operators become equal 
t o  differential operators only a t  long wavelengths. The divergence of the solu- 
tion is a fatal problem because the subsequent round-off error will eventually 
destroy the low frequencies too. 

By supposing that  the instability arises because the time derivative is 
centered a t  a slightly different time t + 11s than the second x -derivative at 
time t ,  we are led t o  the so-called leapfrog method, in which the time 
derivative is taken a s  a difference between t - 1 and t + I: 
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The resulting leapfrog differencing star is 

IX 

Here the result is even worse. A later analysis shows that  the solution is now 
divergent for all real numerical values of a. Although it was a good idea to  
center both derivatives in the same place, it turns out that  it was a bad idea 
t o  express a first derivative over a span of more mesh points. The enlarged 
operator has two solutions in time instead of just the familiar one. The 
numerical solution is the sum of the two theoretical solutions, one of which, 
unfortunately (in this case), grows and oscillates for all real values of a. 

To avoid all these problems (and get more accurate answers as well), w7e 
now turn t o  some slightly more complicated solution methods known as impli- 
cit methods. 

The Crank-Nicolson Method 

The Crank-Nicolson method solves both the accuracy and the stability 
problem. 

The heat-flow equation (6b) was represented as 

NOW, instead of expressing the right-hand side entirely a t  time t ,  it will be 
averaged a t  t and t +1, giving 

This is called the Crank-Nicolson method. Letting a=a 12, the difference 
star  is 
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x 

t (12'4 
When placing this star  over the data table, note that ,  typically, three ele- 
ments a t  a time cover unknowns. To  say the same thing with equations, 
move all the t +1 terms in (12a) to  the left and the t terms t o  the right, 
obtaining 

Taking all the t +1 values t o  be unknown, while all the t values are known 

the right side of (13a) is known, say, d t ,  and the left side is a set of simul- 
taneous equations for the unknown qt +l.  In other words, (13a) does not give 

us each qhl explicitly. They are given implicitly by the solution of simul- 

taneous equations. If the x-axis is limited to  five points, these equations are 

The values ell and ert are adjustable and have to  do with the side bound- 

ary conditions. The important thing to  notice is that  the matrix is tridiago- 
nal, tha t  is, except for three central diagonals all the elements of the matrix in 
(13b) are zero. The solution t o  such a set of simultaneous equations may be 
economically obtained. I t  turns out that  the cost is only about twice that  of 
the explicit method given by (9). In fact, this implicit method turns out t o  be 
cheaper, since the increased accuracy of (13a) over (9) allows the use of a 
much larger numerical choice of At . A program that  demonstrates the sta- 

bility of the method, even for large A t , is given next. 

A tridiagonal simultaneous equation solving subroutine is used. It is 
explained subsequently. 
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# Implicit heat-flow equation 
real q(12),d(12),e(12),f(12) 
nx=12; a = 8.; write(6,'(/"a =",f4.2)') a; alpha = .5*a 
do ix=1,6; q(ix) = 0. # Initial temperature step 
do ix=7,12; q(ix) = 1.  
do it=1,4 { 

write(6,'(20f5.2)') (q(ix),ix=l ,nx) 
d(1) = 0.; d(nx) = 0. 
do ix=2,nx-1 

d(ix) = q(ix) + al~ha*(~(ix-1)-2.*q(ix)+q(ix+ 1)) 
call rtris(nx,alpha,-alpha,(l.+2.*alpha),-alphalalphaldlq,elf) 
1 

stop; end 

# real tridiagonal equation solver 
subroutine rtri~(n,endl,a,b,c,endr,d,~,e,f) 
real q(n),d(n),f(n),e(n),a,b,c,den,endl,endr 
e(1) = -a/endl; f(1) = d(l)/endl 
do i = 2,n-1 { 

den = b+c*e(i-1); e(i) = -a/den; f(i) = (d(i)-c*f(i-l))/den j 
q(n) = (d(n)-c*f(n-l))/(endr+c*e(n-1)) 
do i = n-l,l,-1 

q(i) = e(i)*q(i+ 1 )+ f (i) 
return; end 

Solving Tridiagonal Simultaneous Equations 

Much of the world's computing power gets used up solving tridiagonal 
simultaneous equations. For reference and completeness the algorithm is 
included here. 

Let the simultaneous equations be written as a difference equation 

'"j P j + l  + b j  Y j  + 'j Y j - 1  = dj  

Introduce new unknowns e j  and j j ,  along with an equation 

- 
Y j  - e j  P j + l  f f j 

Write (15) with shifted index: 

- 
qj -1  - e j -1  P j  f j j-l 

Insert (16) into (14): 
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Now rearrange (17) t o  resemble (15): 

Compare (18) t o  (15) t o  see recursions for the new unknowns e j  and j j: 

First a boundary condition for the left-hand side must be given. This 
may involve one or two points. The most general possible end condition is a 
linear relation like equation (15) a t  j =0, namely, q = e oq l+ j 0. Thus, 

the boundary condition must give us both e and j o. With e and all 

the a j  , b j ,  c j ,  we can use (19a) to  compute all the e j. 

On the right-hand boundary we need a boundary condition. The general 
two-point boundary condition is 

Equation (20) includes as special cases the zero-value and zero-slope boundary 
conditions. Equation (20) can be compared to  equation (16) at  its end. 

- 
Qn-1 - en- l  qn  + f n-1  (21) 

Both q and q are unknown, but in equations (20) and (21) we have 

two equations, so the solution is easy. The final step is to  take the value of 

qn and use it in (16) t o  compute q,-l, Q , - ~ ,  qn-3, etc. 

If you wish to  squeeze every last ounce of power from your computer, 
note some facts about this algorithm. (1) The calculation of e depends on 

the medium through a j ,  b j ,  c j ,  but it does not depend on the solution q j  

(even through d j  ). This means that  it may be possible t o  save and reuse e j. 

(2) In many computers, division is much slower than multiplication. Thus, 
the divisor in (19a,b) can be inverted once (and perhaps stored for reuse). 

The d3/dx dz  -Derivative 

The 45" diffraction equation differs from the 15" equation by the inclu- 
sion of a d3/d2 2dz -derivative. Luckily this derivative fits on the six-point 
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differencing star 

2.2 Finite Diferencing 

So other than modifying the six coefficients on the star, it adds nothing t o  the 
computational cost. 

Difficulty in Higher Dimensions 

So far we have had no trouble obtaining cheap, safe, and accurate 
difference methods for solving partial-differential equations (PDEs). The 
implicit method has met all needs. But in space dimensions higher than one, 
the implicit method becomes prohibitively costly. For the common example 
of problems in which a2/ax becomes generalized to  a2 /az  + @ / a y  , we 
will learn the reason why. The simplest case is the heat-flow equation for 
which the Crank-Nicolson method gave us (13a). Introducing the abbrevia- 
tion b,, q  = q  "+'-2q +q  '-I, equation (13a) becomes 

The nested expression on the left represents a tridiagonal matrix. The critical 
stage is in solving the tridiagonal simultaneous equations for the vector of un- 
knowns Qt+l .  Fortunately there is a special algorithm for this solution, and 

the cost increases only linearly with the size of the matrix. Now turn from 
the one-dimensional physical space of x t o  two-dimensional ( x  , y )-space. 
Letting a denote the numerical constant in (23), the equation for stepping 
forward in time is 

(bXz + b y y ) I  Qt+ i  = I1 + 46,, + b y , ) ]  Qt (24 

The unknowns Qt +l are a two-dimensional function of x and y tha t  can 

be denoted by a matrix. Next we will interpret the bracketed expression on 
the left side. I t  turns out t o  be a four-dimensional matrix! 

T o  clarify the meaning of this matrix, a mapping from two dimensions to  
one will be illustrated. Take the temperature Q t o  be defined on a 4 x 4  
mesh. A natural way of numbering the points on the mesh is 

11 12 13 14 

41 42 43 44 

For algebraic purposes these sixteen numbers can be mapped into a vector. 
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There are many ways to  do this. A simple way would be t o  associate the 
locations in (25) with vector conlponents by the column arrangement 

1 5  9 1 3  
2 6 10 14 
3 7 11 15 
4 8 12 16 

The second difference operator has the following star  in the (x , y )-plane: 

Lay this star down in the (x , y )plane (26) and move i t  around. Unfor- 
tunately, with just sixteen points, much of what you see is dominated by 
edges and corners. Try every position of the star that  allows the center -4 to  
overlay one of the sixteen points. Never mind the 1's going off the sides. 
Start with the -4 in (27) over the 1 in the upper left corner of (26). Observe 
1's on the 2 and the 5. Copy the 1's into the top row of table 1 into the 
second and fifth columns. Then put the -4 in (27) over the 2 in (26). 
Observe 1's on the 1, 3, and 6. Copy the 1's into the next row of table 1. 
Then put the -4 over the 3. Observe 1's on the 2, 4, and 7. Continue like- 
wise. The 16 X 16 square matrix that  results is shown in table 1. 

Now that  table 1 has been constructed we can return t o  the interpreta- 
tion of equation (24). The matrix of unknowns Qt has been mapped into 

a sixteen-point column vector, and the bracketed expression multiplying 

Qt +l can be mapped into a 1 6 x 1 6  matrix. Clearly, the matrix contains 

zeroes everywhere that  table 1 contains dots. It seems fortunate that  the 
table contains many zeroes, and we are led t o  hope for a rapid solution 
xnethod for the simultaneous equations. The bad news is that  no good 
method has ever been found. The best methods seem to  require effort propor- 
tional t o  N3 ,  where in this case N=4.  Based on our experience in one 
dimension, those of us who worked on this problem hoped for a method pro- 
portional t o  N2, which is the cost of an explicit method - essentially the 
cost of computing the right side of (16). Even all the features of implicit 
methods do not justify an additional cost of a factor of N .  The next best 
thing is the splitting method. 
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TABLE 2.2-1. The two-dimensional matrix of coefficients for the Laplacian 
operator. 

EXERCISES 

1. Interpret the  inflation-of-money equation when the interest rate is the 
imaginary number a 110. 

2. Write the 45" diffraction equation in ( x ,  2)-space for fixed c~ in the 
form of (12b). 
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2.3 Monochromatic Wave Programs 

An old professor of education had a monochromatic theme. I t  was his 

only theme and the topic of his every lecture. I t  was this: 

People learn by solving problems. Solving problems i s  the only way  people 
learn, etc.,  etc., etc ...... 

All he ever did was lecture; he never assigned any problems. 

Your first problems relate t o  the computer program in figure 1. As it 

stands it will produce a movie (three-dimensional matrix) of waves propaga- 
ting through a focus. The whole process from compilation through computa- 
tion t o  finally viewing the film loop takes about a minute (when you are the 
only user on the computer). 

Analysis of Film Loop Program 

For a film loop to  make sense t o  a viewer, the subject of the movie must 
be periodic, and organized so that  the last frame leads naturally into the first. 
In the movie created by the program in figure 1, there is a parameter lambda 
tha t  controls the basic repetition rate of wave pulses fired onto the screen 
from the top. When a wavelet travels one-quarter of the way down the 
frame, another is sent in. This is defined by the line 

N, A2 
lambda = nz * dz /4 = 

4 

The pulses are a superposition of sinusoids of n w  frequencies, namely, Aw,  
2 Aw, ..., nw Aw. The lowest frequency dw = Aw has a wavelength inverse 
t o  lambda. Thus the definition 

2 7r v 
dw = v * pi2 / lambda = - 

X 

Finally, the time duration of the film loop must equal the period of the 
lowest-frequency sinusoid 

This latter equation defines the time interval on the line 

dt  = pi2 / ( nt  * dw ) 

The differential equation solved by the program is 
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For each A z-step the calculation is done in two stages. The first stage is to  

solve 

Using the Crank-Nicolson differencing method this becomes 

Absorb all the constants into one and define 

getting 

Bring the unknowns t o  the left: 

2-1 - z + l  -aq,;:' + (1+2a)q,Z,1 - aqz+l - aq, + (1-2a)qf + aqf-' (4) 

The second stage is t o  solve the equation 

analytically by 

The program closely follows the notation of equations (3), (4), and (6). 

T o  make a wave pulse, some frequency components are added together. 
In this program, only two frequencies nw=2 were used. If you try a single 
frequency nw=1 several things become less clear. Waves reflected a t  side 
boundaries (see especially exercise 2) look more like standing waves. If you 
try more frequencies, the program will take longer, but you might like the 
movie better, because the quiet zones between the pulses will get longer and 
quieter. Frequency components can be weighted differently. 
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# Wave field extrapolation program 
implicit undefined (a-z) 
complex ~d(48),ce(48),cf(48),~(48),aa,a,b,c,cshift 
real p(96,48,12),phase,pi2,dx,dz,v,z0,x0,dt,dw,lambda,w,wov,x 
int,eger ix,nx,iz,nz,iw ,nw ,it,nt 
open(3,file='plot30',status='new',access='direct',form='unformatted',recl=l) 

do iz=l,nz; do ix=l,nx; do i t=l ,nt  { p(iz,ix,it) = 0. ) 
do iw = 1,nw { # superimpose nw frequencies 

w = iw*dw; wov = w/v # frequency / velocity 
xO = nx*dx/3; z0 = nz*dz/3 
do ix = 1,nx { # initial conditions for a 

x = ix*dx-x0; # collapsing spherical wave 
phase = -wov*sqrt(z0**2+x**2) 
q(ix) = cexp(cmplx(O.,phase)) 
1 
I 

a a  = dz/(4.*(0.,-l.)*wov*dx**2) # tridiagonal matrix coefficients 
a = -aa; b = 1.+2.*aa; c = -aa 
do iz = 1,nz { # extrapolation in depth 

do ix = 2,nx-1 # diffraction term 
cd(ix) = aa*q(ix+ 1) + (1 .-2.*aa)*q(ix) + aa*q(ix-l) 

cd(1) = 0.; cd(nx) = 0. 
call ctris(nx,-a,a,b,c,-~,cd,~,ce,cf) 

# " ctrisn solves complex tridiagonal equations 
# i.e. "rtrisn with complex variables 

cshift = cexp(cmplx(0.,wov*dz)) 
do ix = 1,nx # shifting term 

q(ix) = q(ix) * cshift 
do i t=l ,nt  { # evolution in time 

cshift = cexp(cmplx(O.,-w*it*dt)) 
do ix = 1,nx 

p(iz,ix,it) = p(iz,ix,it)+q(ix)*cshift 
1 

1 
write(3,rec=l) (((p(iz,ix,it),iz=l ,nz),ix=l,nx),it=l,nt) 
stop; end 

FIG. 2.3-1. Computer program to  make a movie of a sum of monochromatic 
waves. (Lynn, Gonzalez, P C ,  Hale) 

Phase Shift 

Theory predicts that  in two dimensions waves going through a focus 
suffer a 90" phase shift. You should be able t o  notice that  a symmetrical 
waveform is incident on the focus, but an asymmetrical waveform emerges. 
(This is best seen in figure 6, but is clearer in a movie). In migrations, waves 
go just to a focus, not through it. So the migration impulse response in two 
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dimensions carries a 45" phase shift. Even though real life is three dimen- 
sional, the two dimensional response is appropriate for migrating seismic lines 
where focusing is presumed t o  arise from cylindrical, not spherical, reflectors. 

Lateral Velocity Variation 

Lateral velocity variation v = v ( x )  has not been included in the pro- 
gram, but  i t  is not difficult to  install. It enters in two places. I t  enters first in 
equation (6). If the data is such that  k, is small enough t o  be neglectable, 

then equation (6) is the only place it is needed. Second, it enters in the tridi- 
agonal coefficients. The so-called thin-lens approximation of optics seems to  
amount t o  including the equation (6) part only. 

Side-Boundary Analysis 

In geophysics, we usually wish the side-boundary question would go 
away. The only real reason for side boundaries is that  either our survey or 
our processing activity is necessarily limited in extent. Given that  side boun- 
daries are inevitable, we must think about them. The program of figure 1 
included zero-slope boundary conditions. This type of boundary treatment 
resulted from taking 

and in the call t o  "ctris" taking 

end1 = - a ; endr = - c 

A quick way t o  get zero-value side-boundary conditions is t o  take 

end1 = endr = 1030 e oo 

The above approach is slightly wasteful of computer memory, because 
the end zero is stored, and the zero slope is explicitly visible as two identical 
traces. This waste is avoided in Dave Hale's coding of the boundary condi- 
tions as given, but not derived, below: 

q0 = bl * q(1); qnxpl = br * q(nx) 

cd(1) = a a *  q(2) + ( 1 . - 2 .  * a a )  * q ( l ) +  a a *  qO 
cd(nx) = aa * q(nx-l) + ( 1 .  - 2. * a a )  * q(nx) + aa * qnxpl 

end1 = c * bl + b; 
endr = a * br + b 

call ctris(nx,endl,a,b,c,endr,cd,q,ce,cf) 

Note that  bl = br = 0 for zero-value boundaries, and bl = br = I for 
zero-slope boundaries. Absorbing side boundaries, derived in Section 4.4, are 
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obtained by letting bl and br be complex. 

Variations on the Film Loop Program 

Keep a record of your progress through these exercises. I t  will be helpful 
when preparing for the final exam. And several years hence you will be able 
t o  refresh your memory. 

Get a three-ring notebook. Cut all plots and program listings t o  8-112 by 
11 size and three-hole punch them. If algebraic analysis is required, do it on 
the same size paper. Avoid leaving important bits of analysis on scraps of 
paper. Either keep this material with your lecture notes or maintain it as a 
laboratory notebook, filing consistently by date. 

For each of these exercises, hand in a program listing and a pIot of the 
first frame. 

1. Specify program changes that  give an initial plane wave propagating 
downward a t  an angle of 15" to  the right of vertical. 

FIG. 2.3-2. Left, first frame of movie generated by figure 1. Right, solution 
t o  exercise 1. (Li Zhiming). 
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2. Given that  the domain of computation is 0 < x <= xmax and 
0 < z 5 zmax, how would you modify the initial conditions a t  z =O 

t o  simulate a point source a t  ( x ,  2 )  = (xmax/3, -zmax/2)? Try it. 

3. Modify the program so that  zero-slope side boundaries are replaced by 
zero-value side boundaries. 

FIG. 2.3-3. Left, exercise 2, expanding spherical wave. Right, exercise 3, 
zero-value side boundaries. (Li Zhiming). 

4. Incorporate the 45" term, d,,, , for the collapsing spherical wave. Use 

zero-slope sides. Compare your result with the 15" result obtained via 
the program in figure 1. Mark an X a t  the theoretical focus location. 

5 .  Make changes t o  the program to  include a thin-lens term with a lateral 
velocity change of 40% across the frame produced by a constant slowness 
gradient. Identify other parts of the program which are affected by 
lateral velocity variation. You need not make these other changes. Why 
are they expected t o  be small? 

6. Observe and describe various computational artifacts by testing the pro- 
gram using a point source a t  ( x ,  z )  = (xmax/2,0). Such a source is rich 
in the high spatial frequencies for which difference equations do not 
mimic their differential counterparts. 



2.3 Monochromatic TVave Programs 

FIG. 2.3-4. Left, exercise 4, 45" term. Right, exercise 5 ,  lateral velocity vari- 
ation. (Li Zhiming). 

7. Section 4.4 explains how to  absorb energy a t  the side boundaries. Make 
the necessary changes to  the program. 

8. The accuracy of the x-derivative may be improved by a technique that  is 
analyzed later in Section 4.3. Briefly, instead of representing kZ2 Ax2 

by the tridiagonal matrix T with (-1, 2, -1) on the ma.in diagonal, you 
use T/(I-T/6). Modify the extrapolation analysis by multiplying 
through by the denominator. Make the necessary changes t o  the 45" col- 
lapsing wave program. 

Migration Program in the (w,x,z)-Domain (Kjartansson, Jacobs) 

The migration program is similar to  the film loop program. But there 
are some differences. The film loop program has "do loops" nested four deep. 
It produces results for many values of t . Migration requires a value only a t  
t = 0. So one loop is saved, which means that  for the same amount of com- 
puter time, the space volume can be increased. Unfortunately, loss of a loop 
seems also t o  mean loss of a movie. With w-domain migration, it seems that  
the only interesting thing t o  view is the input and the output. 

The input for this process will probably be field data, unlike for the film 
loop movie, so there will not be an analytic representation in the w-domain. 
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FIG. 2.3-5. Left, exercise 6, computational artifacts with point source. Right, 
exercise 7, absorbing side. (Li Zhiming). 

FIG. 2.3-6. Left, exercise 8, without 116 trick; right, with 116 trick. (Li 
Zhiming). 
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The input will be in the time domain and will have t o  be Fourier 
transformed. The beginning of the program in figure 6 defines some pulses to  
simulate field data. The pulses are broadened impulses and should migrate to  
approximate semicircles. Exact impulses were not used because the departure 
of difference operators from differential operators would make a noisy mess. 

Next the program Fourier transforms the pseudodata from the time 
domain into the w-frequency domain. 

Then comes the downward continuation of each frequency. This is a 
loop on depth x and on frequency w. Either of these loops may be on the 
inside. The choice can be made for machine-dependent efficiency. 

# Migration in the (omega,x,z)-domain 
real q(48,64),pi2,alpha,dt,dtau,dw 
complex cq(48,64),cd(48),ce(48),cf(48),aa,a,b,c,cshift 
integer ix,nx,iz,nz,iw,nw,it,nt 
o p e n ( 4 , f i l e = ' p l o t 3 6 ' , s t a t u s = ' n e w ' , a c c e ~ r m = ' u n f o r m a t t e d ' , r e c l = l )  

n t  = 64; nz = nt; nx = 48; pi2=2.*3.141592 
dt=l . ;  dtau=l.;  dw=pi2/(dt*nt); nw=nt/2; 
alpha = .25 # alpha = v*v*dtau/(4*dx*dx) 
do iz=l,nz; do ix=l,nx; { q(ix,iz) = 0.; cq(ix,iz)=O. ) 
do it=nt/3,nt,nt/4 

do ix=1,4 # Broadened impulse source 
{ cq(iu,it) = ( 5 . 4 ~ ) ;  cq(ix,it+l) = (5.-ix) ) 

call rowcc(nx,nt,cq,+l.,+l.) # F.T. over time. 
do iz = 1,nz { # iz and iw loops interchangeable 
do iw = 2,nw { # iz and iw loops interchangeable 

a a  = - alpha /( (O.,-l.)*(iw-l)*dw ) 
a = -aa; b = 1.+2.+aa; c = -aa 
do ix = 2,nx-1 

cd(ix) = aa*cq(ix+l,iw) + (1.-2.*aa)*cq(ix,iw) + aa*cq(ix-1,iw) 
cd(1) = 0.; cd(nx) = 0. 
call ctris(nx,-a,a7b,c,-c,cd,cq(l,iw),ce,cf) 
cshift = cexp(cmplx(O.,-(iw-l)*dw*dtau)) 
do ix=l,nx 

cq(ix,iw) = cq(ix,iw) * cshift 
do ix = 1,nx 

q(ix,iz) = q(ix,iz)+cq(ix,iw) # q(t=O) = C Q(w) 
11 
J J  

write(4,rec=l) ((q(ix,iz),iz=l,nz),ix=l,nx) 
stop; end 

FIG. 2.3-7. Migration program in the (w, x ,  2)-domain. 
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For migration an equation for upcoming waves is required, unlike the 
downgoing wave equation required for the film loop program. Change the 
sign of the z-axis in equation (1). This affects the sign of aa and the sign of 
the phase of cshijt. 

Another difference with the film loop program is that  the input now has 
a time axis whereas the output is still a depth axis. I t  is customary and con- 
venient t o  reorganize the calculation t o  plot travel-time depth, instead of 
depth, making the vertical axes on both input and output the same. Using 
T = z /v , equivalently d r/dz = l / v  , the chain rule gives 

Substitution into (1) gives 

In the program, the time sample size d t  = A t  and the travel-time 
depth sample dtau = AT are taken t o  be unity, so the maximum frequency 
is the Nyquist. Notice that  the frequency loop covers only the positive fre- 
quency axis. The negative frequencies serve only t o  keep the time function 
real, a task that  is more easily done by simply taking the real part. 

The output of the program is shown in figure 8. Mainly, you see semicir- 
cle approximations. There are also some artifacts a t  late time that  may be 
w-domain wraparounds. The input pulses were apparently sufficiently broad- 
banded in dip that  the figure provides a preview of the fact, t o  be proved 
later, tha t  the actual semicircle approximation is an ellipse going through the 
origin. 

Notice that  the waveform of the original pulses was a symmetric function 
of time, whereas the semicircles exhibit a waveform that  is neither symmetric 
nor antisymmetric, but is a 45" phase-shifted pulse. Waves from a point in a 
three-dimensional world would have a phase shift of 90". Waves from a two- 
dimensional exploding reflector in a three-dimensional world have the 45" 
phase shift. 
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FIG. 2.3-8. Output of figure 7 program: semicircle approximations. 

2.4 Splitting and Full Separation 

Two processes, A and B, which ordinarily act simultaneously, may or 
may not be interconnected. The case where they are independent is called full 
separation. In this case it is often useful, for thought and for computation, to  
imagine process A going t o  completion before process B is begun. Where 
the processes are interconnected it is possible t o  allow A t o  run for a short 
while, then switch t o  B, and continue in alternation. This alternation 
approach is called splitting. 

The Heat-Flow Equation 

The diffraction or migration equation could be called the "wavefront 
healing" equation. I t  smooths back together any lateral breaks in the wave- 
front that  may ha,ve been caused by initial conditions or by the lens term. 
The 15" migration equation has the same mathematical form as the heat-flow 
equation. But the heat-flow equation has all real numbers, and its physical 
behavior is more comprehensible. This makes it a worthwhile detour. A 
two-sentence derivation of i t  follows. (1) The heat flow Hz in the x- 
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direction equals the negative of the gradient -d/dx of temperature T 
times the heat conductivity a. (2) The decrease of temperature - dT  l d t  is 
proportional to the divergence of the heat flow dIT, l d x  divided by the heat 

storage capacity C of the material. Combining these, extending from one 
dimension t o  two, taking a constant and C =1, gives the equation 

Splitting 

The splitting method for numerically solving the heat-flow equation is to  
replace the two-dimensional heat-flow equation by two one-dimensional equa- 
tions, each of which is used on alternate time steps: 

In equation (2a) the heat conductivity a has been doubled for flow in the x -  
direction and zeroed for flow in the y-direction. The reverse applies in equa- 
tion (2b). At odd moments in time heat flows according t o  (2a) and at even 
moments in time it flows according t o  (2b). This solution by alternation 
between (2a) and (2b) can be proved mathematically t o  converge t o  the solu- 
tion t o  (1) with errors of the order of A t .  Hence the error goes t o  zero as 
At goes t o  zero. The motivation for splitting is the infeasibility of higher- 
dimensional implicit methods (end of Section 2.2). 

Full Separation 

Splitting can turn  out t o  be much more accurate than  might be ima- 
gined. In many cases there is no loss of accuracy. Then the method can be 
taken t o  an extreme limit. Think about a radical approach t o  equations (2a) 
and (2b) in which, instead of alternating back and forth between them a t  
alternate time steps, what is done is t o  march (2a) through all time steps. 
Then this intermediate result is used as  an initial condition for (2b), which is 
marched through all time steps t o  produce a final result. It might seem 
surprising that  this radical method can produce the correct solution t o  equa- 
tion (1). But if o is a constant function of x and y , it does. The process 
is depicted in figure 1 for an impulsive initial disturbance. A differential equa- 
tion like (1) is said t o  be fully separable when the correct solution is obtain- 
able by the radical method. It should not be too surprising that  full 
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separation works when o is a constant, because then Fourier transformation 
may be used, and the two-dimensional solution exp[-a (kX2 + ky2)t] equals 

the succession of one-dimensional solutions exp(-o kz2t ) cup(-o kg2t ). I t  

turns out, and will later be shown, that  the condition required for applicabil- 
ity of full separation is that  a d2/ax should commute with o a 2 / a y 2 ,  that  
is, the order of differentiation should be irrelevant. Technically there is also a 
boundary-condition requirement, but it creates no difficulty when the distur- 
bance dies out before reaching a boundary. 

FIG. 2.4-1. Temperature distribution in the (x , y )-plane beginning from a 
delta function (left). After heat is allowed t o  flow in the x -direction but not 
in the y -direction the heat is located in a "wall" (center). Finally allowing 
heat t o  flow for the same amount of time in the y-direction but not the x -  
direction gives the same symmetrical Gaussian result that  would have been 
found if the heat had moved in x - and y -directions simultaneously (right). 

Surprisingly, no notice is made of full separability in many textbooks on 
numerical solutions. Perhaps this is because the total number of additions 
and multiplications is the same whether a solution is found by splitting or by 
full separation. But as a practical matter, the cost of solving large problems 
does not mount up simply according t o  the number of multiplications. When 
the data  base does not fit entirely into the random-access memory, as is 
almost the definition of a large problem, then each step of the splitting 
method demands that  the data base be transposed, say, from ( x ,  y ) storage 
order t o  (y , x )  storage order. Transposing requires no multiplications, but 
in many environments transposing would be by far the most costly part of the 
whole computation. So if transposing cannot be avoided, a t  least i t  should be 
reduced t o  a practical minimum. 

There are circumstances which dictate a middle road between splitting 
and separation - for example, if a were a slowly variable function of x or 
y . Then you might find that  although o d2/dx2 does not strictly commute 
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with o a2/ay 2, i t  comes close enough that  a number of time steps may be 
made with (2a) before you transpose the data and switch over t o  (2b). Cir- 
cumstances like this one but with more geophysical interest arise with the 
wave-extrapolation equation that  is considered next. The significance in 
seismology of the splitting and full separation concepts was first recognized by 
Brown [1983]. 

Application to Lateral Velocity Variation 

A circumstance in which the degree of noncommutativity of two 
differential operators has a simple physical meaning and an obviously 
significant geophysical application is the so-called monochromatic 15" wave- 
extrapolation equation in inhomogeneous media. Taking v = T7 this equa- 
tion is 

- - (retardation + thin lens + difiaction) U 

Inspection of (3) shows that  the retardation term commutes with the thin-lens 
term and with the free-space diffraction term. But the thin-lens term and the 
diffraction term do not commute with one another. In practice it seems best 
t o  split, doing the thin-lens part analytically and the diffraction part by the 
Crank-Nicolson method. Then stability is assured because the stability of 
each separate problem is known. Also, the accuracy of the analytic solution is 
an attractive feature. Now the question is, t o  what degree do these two terms 
commute? 

The problem is just that  of focusing a slide projector. Adjusting the 
focus knob amounts to  repositioning the thin-lens term in comparison t o  the 
free-space diffraction term. There is a small range of knob positions over 
which no one can notice any difference, and a larger range over which the peo- 
ple in the back row are not disturbed by misfocus. Much geophysical data 
processing amounts t o  downward extrapolation of data. The lateral variation 
of velocity occurring in the lens term is known only t o  a limited accuracy. 
The application could be t o  determine v ( x )  by the extrapolation procedure. 

For long lateral spatial wavelengths the terms commute. Then 
diffraction may proceed in ignorance of the lateral variation in v . At shorter 
wavelengths the diffraction and lensing effects must be interspersed. So the 
real issue is not merely computational convenience but the interplay between 
data  accuracy and the possible range for velocity in the underlying model. 
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Application to 3-D Downward Continuation 

The operator for migration of zero-offset reflection seismic data  in three 
dimensions is expandable t o  second order by Taylor series expansion t o  the 
so-called 15" approximation 

The most common case is when v is slowly variable or independent of x 
and y . Then the conditions of full separation do apply. This is good news 
because it means that  we can use ordinary 2-D wave-extrapolation programs 
for 3-D, doing the in-line data  and the out-of-line data in either order. The 
bad news comes when we try for more accuracy. Keeping more terms in the 
Taylor series expansion soon brings in the cross term a4 /dx2ay2 .  Such a 
term allows neither full separation nor splitting. Fortunately, present-day 
marine data-acquisition techniques are sufficiently crude in the out-of-line 
direction that  there is little justification for out-of-line processing beyond the 
15" equation. Francis Muir had the good idea of representing the square root 
as 

There may be justification for better approximations with land data. 
Fourier transformation of a t  least one of the two space axes will solve the 
computational problem. This should be a good approach when the medium 
velocity does not vary laterally so rapidly as to  invalidate application of 
Fourier transformation. 

Separability of 3-D Migration (the Jakubowicz Justification) 

In an operations environment, 3-D is much harder t o  cope with than 2-D. 
Therefore, it may be expedient to  suppose that  3-D migration can be achieved 
merely by application of 2-D migration twice, once in the x-direction and 
once in the y -direction. The previous section would lead you t o  believe that  
such an expedient process would result in a significant degradation of accu- 
racy. In fact, the situation is nzuch better than might be supposed. It has 
been shown by Jakubowicz and Levin [I9831 that ,  wonder of wonders, for a 
constant-velocity medium, the expedient process is exact. 

The explanation is this: migration consists of more than downward con- 
tinuation. It also involves imaging, that  is, the selection of data  a t  t =O. In 



FINITE DIFFERENCING 2.4 Splitting and Full Separation 

principle, downward continuation is first completed, for both the x and the 
y directions. After that ,  the imaging condition is applied. In the expedient 
process there are four steps: downward continuation in x ,  imaging, down- 
ward continuation in y ,  and finally a second imaging. Why it is that  the 
expedient procedure gives the correct result seems something of a puzzle, but 
the validity of the result is easy to  demonstrate. 

First note tha t  substitution of (6) into (7) gives (8) where 

Equation (8) represents travel time to  an arbitrary point scatterer. For a 2-D 
survey recorded along the y-axis, i.e., a t  constant x ,  equation (7) is the 
travel-time curve. In-line hyperbolas cannot be distinguished from sideswipe 
hyperbolas. 2-D migration with equation (7) brings the energy up to  t 

Subsequently migrating the other direction with equation (6) brings the 
energy up the rest of the way to  to.  This is the same result as the one given 

by the more costly 3-D procedure migrating with (8). 

The Jakubowicz justification is somewhat more mathematical, but may 
be paraphrased as follows. First note that  substitution of (9) into (10) gives 
(11) where 

Twedimensional Stolt migration over x may be regarded as a transforma- 
tion from travel-time depth t t o  a pseudodepth T by use of equation (9). 
The second two-dimensional migration over y may be regarded as a 
transformation from pseudodepth T t o  true depth z by use of equation (10). 
The composite is the same as equation (11), which depicts 3-D migration. 

The validity of the Jakubowicz result goes somewhat beyond its proof. 
Our two-dimensional geophysicist may be migrating other offsets besides zero 
offset. (In Chapter 3 nonzereoffset data is migrated). If a good job is done, 
all the reflected energy moves up to  the apex of the zero-offset hyperbola. 
Then the cross-plane migration can handle it if it can handle zero offset. So 
offset is not a problem. But can a good job be done of bringing all the energy 
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up t o  the apex of the zero-offset hyperbola? 

Difficulty arises when the velocity of the earth is depth-dependent, as it 
usually is. Then the Jakubowicz proof fails, and so does the expedient 3-D 
method. With a 2-D survey you have the problem that  the sideswipe planes 
require a different migration velocity than the vertical plane. Rays propaga- 
ting t o  the side take longer t o  reach the high-velocity media deep in the earth. 
So sideswipes usually require a lower migration velocity. If you really want to  
do three-dimensional migration with v (z) ,  you should forget about separa- 
tion and do i t  the hard way. Since we know how t o  transpose (Section 1.6), 

the hard way really isn't much harder. 

Separability in Shot-Geophone Space 

Reflection seismic data gathering is done on the earth's surface. One can 
imagine the appearance of the data  that  would result if the data were gen- 
erated and recorded a t  depth, that  is, with deeply buried shots and geo- 
phones. Such buried data could be synthesized from surface data by first 
downward extrapolating the geophones, then using the reciprocal principle to  
interchange sources and receivers, and finally downward extrapolating the sur- 
face shots (now the receivers). A second, equivalent approach would be to  
march downward in steps, alternating between shots and geophones. This 
latter approach is developed in Chapter 3, but the result is simply stated by 
the equation 

The equivalence of the two approaches has a mathematical consequence. The 
shot coordinate s and the geophone coordinate g are independent vari- 
ables, so the two square-root operators commute. Thus the same solution is 
obtained by splitting as by full separation. 

Validity of the Splitting and Full-Separation Concepts 

When Fourier transformation is possible, extrapolation operators are 
ik,  r 

complex numbers like e . With complex numbers a and b there is 
never any question that  ab = b a .  Then both splitting and full separation 
are always valid, but the proof will be given only for a more general arrange- 
ment. 

Suppose Fourier transformation has not been done, or could not be done 
because of some spatial variation of material properties. Then extrapolation 
operators are built up by combinations of the finite-differencing operators 
described in previous sections. Let A and B denote two such operators. 



FINITE DIFFERENCING 2.4 Splitting and Full Separation 

For example, A could be a matrix containing the second x differencing 
operator. Seen as matrices, the boundary conditions of a differential operator 
are incorporated in the corners of the matrix. The bottom line is whether 
A B = B A ,  so the question clearly involves the boundary conditions as well 
as the differential operators. 

Extrapolation forward a short distance can be done with the operator 
(I+A Az) .  In two-dimensional problems A was seen t o  be a four- 
dimensional matrix. For  convenience the terms of the four-dimensional 
matrix can be arranged into a super-large, ordinary tw~dimensional  matrix. 
Implicit finite-differencing calculations gave extrapolation operators like 
(I+A A Z  )/(I-A AZ  ). Let p denote a vector where components of the vec- 
tor designate the wavefield a t  various locations. As has been seen, the loca- 
tions need not be constrained t o  the x-axis but could also be distributed 
throughout the ( x ,  y)-plane. Numerical analysis gives us a matrix operator, 
say A ,  which enables us to  project forward, say, 

The subscript on A denotes the fact that  the operator may change with z .  

To get a step further the operator is applied again, say, 

From an operational point of view the matrix A is never squared, but from 
an analytical point of view, it really is squared. 

To  march some distance down the z-axis we apply the operator many 
times. Take an interval z - zO, t o  be divided into N subintervals. Since 

there are N intervals, an error proportional to  l / N  in each subinterval 
would accumulate t o  an  unacceptable level by the time z was reached. On 

the other hand, an error proportional to  1 / ~ ~  could only accumulate t o  a 
total error proportional to  1 / N .  Such an error would disappear as the 
number of subintervals increased. 

To  prove the validity of splitting, we take Az = ( z  - z o ) / N .  Observe 

that  the operator I+(A+B)Az differs from the operator 
(I+A Az) ( I+B A z )  by something in proportion t o  a z 2  or 1 1 ~ ~ .  So in 
the limit of a very large number of subintervals, the error disappears. 

It is much easier t o  establish the validity of the full-separation concept. 
Commutativity is whether or not A B = B A. Commutativity is always 
true for scalars. With finite differencing the question is whether the two 
matrices commute. Taking A and B to  be differential operators, 
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commutativity is defined with the help of the family of all possible wavefields 
P  . Then A and B are commutative if A B P = B A P  . 

The operator representing 8P /8z will be taken t o  be A+B. The sim- 
plest numerical integration scheme using the splitting method is 

Applying (13) in many stages gives a product of many operators. The opera- 
tors A and B are subscripted with j t o  denote the possibility that  they 
change with z .  

As soon as A and B are assumed t o  be commutative, the factors in (14) 
may be rearranged a t  will. For example, the A operator could be applied in 
its entirety before the B operator is applied: 

Thus the full-separation concept is seen to  depend on the commutativity of 
operators. 

EXERCISES 

1. With a splitting method, Ma Zaitian (Ma [1981]) showed how very wide- 
angle representations may be implemented with successive applications of 
an equation like a 45" equation. This avoids the band matrix solving 
inherent in the high-order Muir expansion. Specifically, one chooses 
coefficients a and b j ,  in the square-root fitting function 

The general n th-order case is somewhat complicated, so your job is sim- 
ply t o  find a a 2 ,  b and b 2, t o  make the fitting function match the 

45" equation. 

2. Migrate a two dimensional data set with velocity v l. Then migrate the 

migrated data set with a velocity v2. Rocca pointed out that  this dou- 
ble migration simulates a migration with a third velocity v g .  Using a 

method of deduction similar t o  the Jakubowicz deduction equations (9), 
(lo), and (11) find v in terms of v and v2. 
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3. Consider migration of zero-offset data P (x , y , t ) recorded in an area of 
the earth's surface plane. Assume a computer with a random access 
memory (RAM) large enough t o  hold several planes (any orientation) 
from the data  volume. (The entire volume resides in slow memory dev- 
ices). Define a migration algorithm by means of a program sketch (such 
as in Section 1.3). Your method should allow velocity t o  vary with 
depth. 

2.5 Recursive Dip Filters 

Recursive filtering is a form of filtering where the output of the filter is 
fed back as an input. This can achieve a long impulse response for a tiny 
computational effort. It is particularly useful in computing a running mean. 
A running mean could be implemented as a low-pass filter in the frequency 
domain, but it is generally much better to  avoid transform space. Physical 
space is cheaper, it allows for variable coefficients, and it permits a more flexi- 
ble treatment of boundaries. Geophysical datasets are rarely stationary over 
long distances in either time or space, so recursive filtering is particularly 
helpful in statistical estimation. 

The purpose of most filters is t o  make possible the observation of impor- 
tant  weak events that  are obscured by strong events. One-dimensional filters 
can do this only by the selection or rejection of frequency components. In 
two dimensions, a different criterion is possible, namely, selection by dip. 

Dip filtering is a process of long-standing interest in geophysics (Embree, 
Burg, and Backus [1963]). Steep dips are often ground-roll noise. Horizontal 
dips can also be noise. For example, weak fault diffractions carry valuable 
information, but they may often be invisible because of the dominating pres- 
ence of flat layers. 

To  do an ordinary dip-filtering operation ("pie slice"), you simply 

transform data into (w, k)-space, multiply by any desired function of k /w ,  
and transform back. Pie-slice filters thus offer complete control over the filter 

response in k /w dip space. While the recursive dip filters are not controlled 
so easily, they do meet the same general needs as pie-slice filters and offer the 



F I N I T E  DIFFERENCING 2.5 Recursive Dip Filters 

additional advantages of 

1. time- and space-variability 

2. causality 

3. ease of implementation 

4. orders of magnitude more economic than (w ,  k )-implementation 

The causality property offers an interesting opportunity during data 
recording. Water-velocity rejection filters could be built into the recording 
apparatus of a modern high-density marine cable. 

Definition of a Recursive Dip Filter 

Let P denote raw data  and Q denote filtered data. When seismic 
data  is quasimonochromatic, dip filtering can be achieved with spatial fre- 
quency filters. The table below shows filters with an adjustable cutoff param- 
eter a. 

T o  apply these filters in the space domain it is necessary only to  interpret 
k 2  as the tridiagonal matrix T with (-1 2, -1) on the main diagonal. 
Specifically, for the low-pass filter it is necessary t o  solve a tridiagonal set of 
simultaneous equations like 

Dip Filters for Monochromatic Data (w Const ) 

in which q and p are column vectors whose elements denote different 
places on the x-axis. Previously, this was done while solving the heat-flow 
equation. T o  make the filter space-variable, the parameter a can be taken 
t o  depend on x so that  a I is replaced by an arbitrary diagonal matrix. I t  
doesn't matter whether p and q are represented in the w-domain or the 
t -domain. 

Low Pass 

Q = a P  
a + k 2  

Turn your attention from narrow-band data t o  data with a somewhat 

High Pass 

Q = k 2  P 
a + k 2  
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broader spectrum and consider 

2.5 Recursive Dip Filters 

Naturally these filters can be applied t o  data of any bandwidth. However the 
filters are appropriately termed "dip filters" only over a modest bandwidth. 

To  understand these filters look in the (w, k )-plane at  contours of con- 
stant  k2/w, i.e. w = k2. Such contours, examples of which are shown in 
figure 1, are curves of constant attenuation and constant phase shift. The 
low-pass filter has no phase shift in the pass zone, but there is time 
differentiation in the attenuation zone. This is apparent from the defining 
equation. The high-pass filter has no phase shift in the flat pass zone, but 
there is time integration in the attenuating zone. 

D i p  F i l t e r s  f o r  Moderate B a n d w i d t h  D a t a  (Aw) 

An interesting feature of these dip filters is that  the low-pass and the 
high-pass filters constitute a pair of filters which sum t o  unity. So nothing is 
lost if a dataset is partitioned by them in two. The high-passed part could be 
added to  the low-passed part to  recover the original dataset. Alternately, 
once the low-pass output is computed, it is much easier t o  compute the high- 
pass output, because it is just the input minus the low-pass. 

Low Pass 

a  P Q = 
k 2  

a + -  
- i w  

Recursive-Dip-Fil ter  Imp lemen ta t i on  

High Pass 

k 
- i w  

Q = P 
k 

a + -  
- i w  

Implementation of the moderate bandwidth dip filters is, again, a 
straightforward matter. For example, clearing fractions, the low-pass filter 
becomes 

The main trick is t o  realize that  the differentiation implied by - i w is per- 
formed in a Crank-Nicolson sense. That  is, terms not differentiated are aver- 
aged over adjacent values. 

Gathering the unknowns to  the left gives 
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FIG. 2.5-1. Constant-attenuation contours of dip filters. Over the seismic 
frequency band these parabolas may be satisfactory approximations t o  the 
dashed straight line. Passlreject zones are indicated for the low-pass filter. 
(Hale) 

Equation (4) is a tridiagonal system of simultaneous equations for the un- 
knowns qt+l .  The system may be solved recursively for successive values of 

t .  

The parameter a determines the filter cutoff. I t  can be chosen t o  be 
any function of time and space. However, if the function is t o  vary extremely 
rapidly, then it may be necessary t o  incorporate some of the stability analysis 
that  is developed in a later chapter for use with wave equations. 

Side Boundaries 

Usually geophysicists wish that  there were no boundaries on the sides, or 
that  they were infinitely far away. There are two kinds of side conditions to 
think about, those in x , and those in k .  

Often the side conditions on x are best approximated by zero-slope side 
conditions. I t  is possible t o  use more general side conditions because we have 
previously learned t o  solve any tridiagonal system of equations. 

The side conditions in k-space relate t o  the steepest dips. A way to  han- 
dle these dips is t o  use T/(I-@T) to  represent k 2. This introduces another 
adjustable parameter P, which must be kept less than 114. Details are 
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studied in Section 4.3. 

Slicing Pies 

Naturally we may prefer true dip filters, that  is, functions of k /w 
instead of the functions of k2/w described above. But it can be shown that  

2 2 replacing k2/w in the above expressions by k /w gives recursions that  are 
unstable. 

Sharper pie slices (filters which are more strictly a rectangle function of 
k /w), may be defined through a variety of approximation methods described 
by Hale and Claerbout [1983]. Generally, I k I can be expanded in a power 
series in a2/ax2.  If the approximation t o  I k I is ensured positive, you can 
expect stability of the recursion that  represents 1 k 1 /2w. 

More simply, you might be willing to  Fourier transform time or space, 
but not both. In the remaining dimension (the one not transformed) the 
required operation is a highpass or lowpass filter. This is readily implemented 
by a variety of techniques, such as the Butterworth filter. 

Higher Dimensionality 

It is natural t o  think of a recursive three-dimensional low-pass dip filter 
as the functional form 

This, however, leads t o  an infeasible Crank-Nicolson situation. Multidimen- 
sional low-pass filtering is possible with 
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2.6 Retarded Coordinates 

To examine running horses it may be best t o  jump on a horse. Likewise, 
t o  examine moving waves, it may be better t o  move along with them. So to  
describe waves moving downward into the earth we might abandon ( x ,  2)-  

coordinates in favor of moving (x , z ')-coordinates, where z ' = z + t v . 
An alternative t o  the moving coordinate system is to  define retarded 

coordinates (x , z , t ') where t ' = t - z /v . The classical example of 
retarded coordinates is solar time. Time seems t o  stand still on an airplane 
that  moves westward a t  the speed of the sun. 

The migration process resembles the simulation of wave propagation in 
either a moving coordinate frame or a retarded coordinate frame. Retarded 
coordinates are much more popular than moving coordinates. Here is the rea- 
son: In solid-earth geophysics, velocity may depend on both x and z , but 
the earth doesn't change with time t during our seismic observations. In a 
moving coordinate system the velocity could depend on all three variables, 
thus unnecessarily increasing the complexity of the calculations. Fourier 
transformation is a popular means of solving the wave equation, but it loses 
most of its utility when the coefficients are nonconstant. 

Definition of Independent Variables 

The specific definition of retarded coordinates is a matter of convenience. 
Often the retardation is based on hypothetical rays moving straight down 
with velocity T ( z ) .  The definition of these coordinates has utility even in 
problems in which the earth velocity varies laterally, say v ( x ,  z ) ,  even 
though there may be no rays going exactly straight down. In principle, any 
coordinate system may be used t o  describe any circumstance, but the utility 
of the retarded coordinate system generally declines as the family of rays 
defining it departs more and more from the actual rays. 

Despite the simple case a t  hand it is worthwhile t o  be somewhat formal 
and precise. Define the retarded coordinate system ( t  ', x ', z ') in terms of 
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ordinary Cartesian coordinates ( t  , x ,  z )  by the set of equations 

The purpose of the integral is t o  accumulate the travel time from the surface 
t o  depth z .  The reasons to  define (a', 2') when it is just set equal to  
(x , z ) are, first, t o  avoid confusion during partial differentiation and, second, 
t o  prepare for later work in which the family of rays is more general. 

Definition of Dependent Variables 

There are two kinds of dependent variables, those that  characterize the 
medium and those that  characterize the waves. The medium is characterized 
by its velocity v and its reflectivity c . The waves are characterized by 
using U for an upcoming wave, D for a downgoing wave, P for the pres- 
sure, and Q for a modulated form of pressure. Let us say P ( t  , x , z ) is 
the mathematical function t o  find pressure, given ( t , x , z ) ;  and 
P '(t ', x ', z ')  is the mathematical function given ( t  ', x ', z I ) .  The statement 
that  the two mathematical functions P and P' both refer t o  the same 
physical variable is this: 

P ( t , x , z )  = P 1 [ t ' ( t , x , z ) ,  x l ( t , x , z ) ,  z 1 ( t , X , z ) l  (2) 

P ( t  , x ,  z )  = P ' ( t t ,  x', z ')  

Obviously there are analogous expressions for the other dependent variables 
and medium parameters like velocity v ( x ,  z ). 

The Chain Rule and the High Frequency Limit 

The familiar partial-differential equations of physics come t o  us in 
( t  , x , z )-space. The chain rule for partial differentiation will convert the par- 
tial derivatives t o  ( t  ', x ', z ')-space. For example, differentiating (2) with 
respect t o  z gives 

Using (1) t o  evaluate the coordinate derivatives gives 
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There is nothing special about the variable P in (3). We could as well write 

where the left side is for operation on functions that  depend on ( t  , x , z ) 
and the right side is for functions of ( t  ', x',  2'). Differentiating twice gives 

Using the fact that  the velocity is always time-independent results in 

Except for the rightmost term with the square brackets it could be said that  
i L squaring" the operator (4) gives the second derivative. This last term is 
almost always neglected in data  processing. The reason is that  its effect is 
similar t o  the effect of other first-derivative terms with material gradients for 
coefficients. Such terms, as described in Section 1.5, cause amplitudes t o  be 
more carefully computed. If the last term in (6) is t o  be included, then it 
would seem that  all such terms should be included, from the beginning. 

Fourier Transforms in Retarded Coordinates 

Given a pressure field P (t , x ,  z ) ,  we may Fourier transform it with 
respect to  any or all of its independent variables (t  , x ,  2). Likewise, if the 
pressure field is specified in retarded coordinates, we may Fourier transform 
with respect to  ( I ,  x 2 )  Since the Fourier dual of ( t  , x , z ) is 
(w, k , k ), it seems appropriate for the dual of ( t  I,  x ', z I )  to  be 

(J, k: , k: ). Now the question is, how are ( I ,  k , k ) related to  the famil- 

iar (cL), kZ,  kZ)?  The answer is contained in the chain rule for partial 
differentiation. Any expression like 

on Fourier transformation says 

Computing all the other derivatives, we have the transformation 
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Recall the dispersion relation for the scalar wave equation: 
n 

Performing the substitutions from (8) into (9) we have the expression of the 
scalar wave equation in retarded time, namely, 

FIG. 2.6-1. Dispersion relation of the wave equation in usual coordinates 
(left) and retarded time coordinates (right). 

These two dispersion relations are plotted in figure 1 for the retardation veloc- 
ity chosen equal t o  the medium velocity. 

Figure 1 graphically illustrates that  retardation can reduce the cost of 
finite-difference calculations. Waves going straight down are near the top of 
the dispersion curve (circle). The effect of retardation is to  shift the circle's 
top down to  the origin. Discretizing the x -  and z-axes will cause spatial 
frequency aliasing on them. The larger the frequency w, the larger the circle. 
Clearly the top of the shifted circle is further from folding. Alternately, Az 
may be increased (for the sake of economy) before k: exceeds the Nyquist 

frequency x / A z .  
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Interpretation of the Modulated Pressure Variable Q 

Earlier a variable Q w7as defined from the pressure P by the equation 

The right side is a product of two functions of w. At  constant velocity ( 1 1 )  is 
expressed as 

i w t  
In the time domain e  O becomes a delta function S( t  - t o ) .  Equation ( 1 2 )  

is a product in the frequency domain, so in the time domain i t  is the convolu- 
tion 

~ ( t )  = q ( t ) * S ( t  - 2 1 ~ )  

= q( t  - z / v )  

= q ( t ' )  ( 1 3 )  

This confirms that  the definition of a dependent variable Q is equivalent to  
introducing retarded time t '. 

Einstein's Special Relativity Theory 

There is no known application of Einstein's theory of special relativity t o  
seismic imaging. But some of the mathematical methods are related, and now 
is the appropriate time to  take a peek a t  this famous theory. 

In 1887 the Michelson-Morley interferometer experiment established with 
high accuracy that  light travels in all directions a t  t,he same speed, day and 
night, winter and summer. We have seen that  the dispersion relation of the 
scalar wave equation is a circle centered a t  the origin, meaning that  waves go 
the same speed in all directions. But if the coordinate system is moving with 
respect to  the medium, then the dispersion relation loses directional sym- 
metry. For light propagating in the vacuum of outer space, there seems to  be 
no natural reference coordinate system. If the earth is presumed to  be a t  rest 
in the summer, then by winter, the earth is moving around the sun in the 
opposite direction. The summer coordinates relate t o  the winter coordinates 
by something like x ' = x - 2 vearth t  . While analysis of the Michelson- 

Morley experiment shows that  such motion should have a measurable asym- 
metry, measurements show that  the predicted asymmetry is absent. Why? 
One theory is the "ether" theory. Ether is a presumed substance that  
explains the paradox of the Michelson-Morley experiment. It is presumed to  
be of minuscule density and viscosity, allowing us t o  imagine that  it is 
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somehow dragged around the earth in such a way that  earthbound experi- 
menters are always moving a t  the same speed as it is. Other measurements, 
however, also contradict the presumption of ether. Just as  wind refracts 
atmospheric sound waves, ether should cause a measurable refraction of star- 
light, but this is not observed. 

Einstein's explanation of the experiments is based on a mathematical fact 
that  you can easily verify. Let a coordinate frame be defined by 

The amazing thing about this transformation, which you can easily prove, is 
that  it converts the equation P,, + P,, = c - 2 ~ t t  t o  the equation 

P, l+P, 1 = c P ~ P ,  ! , I .  The transformed wave equation is independent of 

velocity v which is what led Einstein t o  his surprising conclusions. 

2.7 Finite Differencing in (t, x, 2)-Space 

Much, if not most, production migration work is done in ( t ,  x ,  2 ) -  

space. T o  avoid being overwhelmed by the complexity of this three- 
dimensional space, we will first look a t  migration in (z , t )-space for fixed kz . 

Migration in ( 2 ,  t)-Space 

Migration and data synthesis may be envisioned in (z' ,  t  ')-space on the 
following table, which contains the upcoming wave U :  
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In this table the observed upcoming wave a t  the earth's surface 2 '  = 0 is 
denoted by ut . The migrated section, denoted by ct  , is depicted along the 

diagonal because the imaging condition of exploding reflectors a t  time t =O 

is represented in retarded space as 

t 1  = t + z / v  (+ for up) (2b) 

The best-focused migration need not fall on the 45" line a s  depicted in 
(1); it might be on any line or curve as  determined by the earth velocity. 
This curve forms the basis for velocity determination (Section 3.5). You 
couldn't determine velocity this way in the frequency-domain. 

From Section 2.1, the equation for upcoming waves U in retarded coor- 
dinates ( t  ', x ', z ') is 

Next, Fourier transform the x-axis. This assumes that  v is a constant func- 
tion of x and that  the x-dependence of U is the sinusoidal function 
exp(ik, x ). Thus, 

Now this partial-differential equation will be discretized with respect to  
t ' and z '. Matrix notation will be used, but the notation does not refer to  
matrix algebra. Instead the matrices refer t o  differencing stars that  may be 
placed on the ( t  ', z ')-plane of (I). Let * denote convolution in ( 2 ,  t )- 
space. A succession of derivatives is really a convolution, so the concept of 
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8/82 8 / a t  = a2 /az  a t  is expressed by is expressed by 

Thus, the differenced form of (5) is 

The 114 enters in because the average of U is taken over four places on 
the mesh. 

The sum of the two operators always has I b I > I s I in the form 

Now the differencing star in (8) will be used t o  fill table (1) with values for 
U .  

Given the three values of U in the boxes, a missing one, A4, may be 
determined by either of the implied two operations 

or 

(9a,b) 

It turns out that  because I b I > I s I , the implied filling operations by 

are unstable. I t  is obvious that  there would be a zero-divide problem if s 
were equal to  0, and it is not difficult t o  do the stability analysis that  shows 
that  (10) causes exponential growth of small disturbances. 

It is a worthwhile exercise t o  make the zero-dip assumption (k, = 0) 
and use the numerical values in the operator of (8) t o  fill in the elements of 
table (I). It will be found that  the values of ut move laterally in z across 

the table with no change, predicting, as the table should, that  ct = u t .  

Slow change in z suggests that  we have oversampled the z-axis. In prac- 
tice, effort is saved by sampling the z-axis with fewer points than are used to 
sample the t -axis. 
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( t  , x , z )-Space, 15" Diffraction Program 

The easiest way t o  understand 15" migration in ( t  , x ,  z)-space is t o  
refer t o  the (z , t )-space migration. Instead of a scalar function U (lc, ), we 
use u, a vector whose components u j  measure pressure a t  x = j A x .  

Think of kz2 as a tridiagonal matrix, call it T, with (-1, 2, -1) on the 

main diagonal. Note that  kZ2 is positive, and that  T is a positive definite 

matrix with a positive element on its main diagonal. Take equation (7) and 
use a t o  denote the left constant. This gives 

Consider a modeling program. It begins down inside the earth with the 
differencing star  (9b). Solving (11) for the unknown u t  , r and dropping 

all primes yields 

First, evaluate the expression on the right. The left side is a tridiagonal sys- 
tem t o  be solved for the unknown u t  + 1 , ,  . Allowable sequences in which 

(12) may be applied are dictated by the differencing star  (9b). 

Heeding the earlier remark that  with waves of modest dip, the zl-axis 
need not be sampled so densely as the t'-axis, we do a computation that  
skips alternate levels of z'. The specific order chosen in the computer pro- 
gram in figure 1 is indicated by the numbers in the following table: 

An inescapable practical problem shown in the table when the number of 
points in t '-space is not exactly equal that  in z '-space is that  the earth image 
must be interpolated along a diagonal on the mesh. The crude interpolation 
in (13) illustrates the assumption that  the wave field changes rapidly in t ' 
but slowly in z ' ,  i.e. the small-angle assumption. 
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# Time Domain 15-degree Diffraction Movie 
# Star: w=p(t ,z) y=p(t ,z+l)  
# Star: u = ~ ( t + l , z )  v=p(t+l ,z+l)  
real p(36,96),u(36),w(36),v(36),y(36),e(36),f(36),d(36),2(96),alfa,beta 
integer ix,nx,iz,nz,it,nt,kbyte 
nx = 36; nz = 96; n t  = 96; kbyte=l  
alfa = ,125 # v*dz*dt/(8*dx*dx) 
beta = ,140 # accurate x derivative parameter; simplest case b=O. 
open(3,file='plot40',status='new',access='direct',form='unformatted',recl=l) 
d o  iz=l,nz; do ix=l,nx; p(ix,iz) = 0 .  # clear space 
d o  iz=nz/5,nz,nz/4 # Set up initial model 

do it=1,15 # of 4 band limited 
do ix=1,4 # "point" scatterers. 

p(ix,it+iz) = (5.-ix)*(&it)*exp(-.l*(it-8)**2) 
apb = alfa+beta; amb = alfa-beta # tridiagonal coefficients 
diag = l .+2.*amb; offdi = -amb 
do iz=nz,2,-2 { # Climb up in steps of 2 z-levels 

do i=l,nz; z(i)=O.; z(iz)=l. # Pointer t o  current z-level 
write(3,rec=kbyte) (z(i),i=l,nz),((p(ix,i),i=l,nz),ix=l,nx) 
kbyte = kbyte + nx*nz*4 + nz*4 
do ix=l,nx 

{ u(ix) = p(ix,iz-1); v(ix) = u(ix) ) 
do it=iz,nt { 

do ix=l,nx #update the differencing star 
{ w(ix) = u(ix); y(ix) = v(ix); v(ix) = p(ix,it) ) 

dd = (1.-apb)*(v(l)+w(l))+apb*(v(2)+~(2)) 
d(1) = dd-diag*y(l)-offdi*(y(l)+y(2)) 
do ix=2,nx-1 { 

dd = (1.-2.*apb)*(v(ix)+w(ix)) 
dd  = dd + apb*(v(ix-l)+w(ix-l)+v(~x+l)+w(ix+l)) 
d(ix) = dd-diag*y(ix)-offdi*(y(ix-l)+y(ix+l)) } 

dd = (1.-apb)*(v(nx)+w(nx))+apb*(v(nx-l)+w(nx-1)) 
d(nx) = dd-diag*y(nx)-offdi*(y(nx)+y(nx-1)) 
call rtris(nx,diag+offdi,offdi,diag,offdi,diag+offdi,d,u,e,f) 
do ix=l,nx 

p(ix,it) = u(ix) 

1 
1 

I 

do i=l,nz; z(i)=0.; z(l)=l.  
write(3,rec=kbyte) (z(i),i=l,nz),((p(ix,i),i=l,nz),ix=l,nx) 
stop; end 

FIG. 2.7-1. Time-domain diffraction movie program. (Clayton, Gonzalez, 
P C ,  Hale) 

Figure 2 shows the last frame in the movie produced by the test pro- 

gram. Exercise 1 suggests minor changes t o  the program of figure 1 to  con- 
vert it from diffraction to  migration. As modified, the program is essentially 
the original wave equation migration program introduced by Johnson and 
Claerbout [I9711 and Doherty and Claerbout [1972]. 



F I N ? %  DIFFERENCING 

20 

2.7 (t,  x, :,)-Space 

FIG. 2.7-2. Diffractions in the last frame of the downward-continuation 
movie. 

Y o u  Can't Time Shi f t  in  t h e  T i m e  Domain .  

You might wish t o  do migration in (x , x ,  t )-space with lateral velocity 
variation. Then the thin-lens stage would be implemented by time shifting 
instead of by multiplying by exp{i w [v (x , z )-I- B ( z  )-']Az }. Time shifting 
is a delightfully easy operation when what is needed is t o  shift data by an 
integral number of sample units. Repetitive time shifting by a fractional 
number of digital units, however, is a nightmare. Multipoint interpolation 
operators are required. Even then, pulses tend t o  disperse. So the lens term 
is probably best left in the frequency domain. 

( t  , x , z )-Space, 45" E q u a t i o n  

The 45" migration is a little harder than the 15" migration because the 
operator in the time domain is higher order, but the methods are similar to 
those of the 15" equation and the recursive dip filter. The straightforward 
approach is just t o  write down the differencing stars. When I did this kind of 
work I found it easiest to  use the Z-transform approach where I/(- iwAt  ) 
is represented by the bilinear transform t / q l+Z) / ( l - 2 ) .  There are various 
ways t o  keep the algebra bearable. One way is t o  bring all powers of Z t o  
the numerator and then collect powers of 2 .  Another way, called the 
integrated approach, is t o  keep 1/(1-Z) with some of the terms. Terms 
including l / ( l - Z )  are represented in the computer by buffers that  contain 
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the sum from infinite time t o  time t .  The 2-transform approach is developed 
in Section 4.6. Its real advantage is that  it systematizes the stability analysis. 

EXERCISES 

Alter the program given in figure 1 so that  it does migration. The delta- 
function inputs should turn into approximate semicircles. 

Perform major surgery on the program in figure 1 so that  it becomes a 
low-pass dip filter. 

Consider a 45" migration program in the space of ( 2 ,  t , Ic, ). Find the 

coefficients in a 6-point differencing star, three points in time and two 
points in depth. For simplicity, take v =1, A t  =1, and Az =l. Sup- 
pose this analysis were transformed into the x-domain ( A x = l )  by 
replacing kx2 with T. What set of tridiagonal equations would have t o  

be solved? 

2.8 Introduction to  Stability 

Experience shows that  as soon as you undertake an applicat,ion that  
departs significantly from textbook situations, stability becomes a greater con- 
cern than accuracy. Stability, or its absence, determines whether the goal is 
achievable a t  all, whereas accuracy merely determines the price of achieving 
it. Here we will look a t  the stability of the heat-flow equation with real and 
with imaginary heat conductivity. Since the latter case corresponds t o  seismic 
migration, these two cases provide a useful background for stability analysis. 

Most stability analysis is based on Fourier transformation. More simply, 
single sinusoidal or  complex exponential trial solutions are examined. If a 
method becomes unstable for any frequency, then i t  will be unstable for any 
realistic case, because realistic functions are just combinations of all frequen- 
cies. Begin with the sinusoidal function 
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The second derivative is 

An expression analogous t o  the second difference operator defines k : 

Ideally k should equal k .  Inserting the complex exponential (I) into (3a) 
gives an expression for k : 

I t  is a straightforward matter t o  make plots of (4b) or its square root. The 
square root of (4b), through the half-angle trig identity, is 

i a x  = 
k Ax 

2 sin- 
2 

Series expansion shows that  d matches k well at low spatial frequencies. 
At  the Nyquist frequency, defined by k Ax  = T, the value of d Ax = 2 is 
a poor approximation to  T. As with any Fourier transform on the discrete 
domain, is a periodic function of k above the Nyquist frequency. 

Although k ranges from minus infinity to  plus infinity, k 2  is compressed 
into the range zero to  four. The limits t o  the range are important since insta- 
bility often starts  a t  one end of the range. 

Explicit Heat-Flow Equation 

Begin with the heat-flow equation and Fourier transform over space. 

Thus d2/8x becomes simply -k 2, and 

Finite differencing explicitly over time gives an equation that  is identical in 
form to  the inflation-of-money equation: 
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For stability, the magnitude of q t + l  should be less than or equal to  the 

magnitude of q t .  This requires the factor in parentheses t o  have a magni- 

tude less than or equal t o  unity. The dangerous case is when the factor is 
more negative than -1. There is instability when k 2  > 2 c  / (a  A t  ). This 
means that  the high frequencies are diverging with time. The explicit finite 
differencing on the time axis has caused disaster for short wavelengths on the 
space axis. Surprisingly, this disaster can be recouped by differencing the 
space axis coarsely enough! The second space derivative in the Fourier 
transform domain is - k 2 .  When the x-axis is discretized it becomes -k 2 .  
So, t o  discretize (5) and (6), just replace k by 6 .  Equation (4c) shows that  
i 2  has an upper limit of k 2  = 4 / A x 2  a t  the Nyquist frequency 
k Ax = 7r . Finally, the factor in (6b) will be less than unity and there will 
be stability if 

Evidently instability can be averted by a sufficiently dense sampling of time 
compared t o  space. Such a solution becomes unbearably costly, however, 
when the heat conductivity a (x  ) takes on a wide range of values. For prob- 
lems in one space dimension, there is an easy escape in implicit methods. For 
problems in higher-dimensional spaces, explicit methods must be used. 

Explicit 15" Migration Equation 

We saw in Section 2.1 that  the retarded 15" wave-extrapolation equation 
is like the heat-flow equation with the exception that  the heat conductivity a 
must be replaced by the purely imaginary number i .  The amplification fac- 
tor (the magnitude of the factor in parentheses in equation (6b)) is now the 
square root of the sum squared of real and imaginary parts. Since the real 
part is already one, the amplification factor exceeds unity for all nonzero 
values of k 2 .  The resulting instability is manifested by the growth of dip- 
ping plane waves. The more dip, the faster the growth. Furthermore, discre- 
tizing the x-axis does not solve the problem. 

Implicit Equations 

Recall that  the inflation-of-money equation 

is a simple explicit finite differencing of the differential equation dq / d t  q. 
And recall that  a better approximation to  the differential equation is given by 
the Crank-Nicolson form 
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tha t  may be rearranged t o  

The amplification factor (9c) has magnitude less than unity for all negative r 
values, even r equal to  minus infinity. Recall that  the heat-flow equation 
corresponds to  

o a t  k2 
C 

where k is the spatial frequency. Since (9c) is good for all negative r  , the 
heat-flow equation, implicitly time-differenced, is good for all spatial frequen- 
cies k .  The heat-flow equation is stable whether or not the space axis is 
discretized (then k -+ ) and regardless of the sizes of A t  and A x .  
Furthermore, the 15" wave-extrapolation equation is also unconditionally 
stable. This follows from letting r in (9c) be purely imaginary: the 
amplification factor (9c) then takes the form of some complex number l + r  12 
divided by its complex conjugate. Expressing the complex number in polar 
form, it becomes clear that  such a number has a magnitude exactly equal to  
unity. Again there is unconditional stability. 

At  this point it seems right t o  add a historical footnote. When finite- 
difference migration was first introduced many objections were raised on the 
basis that  the theoretical assumptions were unfamiliar. Despite these objec- 
tions finite-difference migration quickly became popular. I think the reason 
for its popularity was that ,  compared t o  other methods of the time, it was a 
gentle operation on the data. More specifically, since (9c) is of exactly unit 
magnitude, the output has the same (w, k)-spectrum as the input. There 
may be a wider lesson to  be learned from this experience: any process acting 
on data  should do as little to  the data as possible. 

Leapfrog Equations 

The leapfrog method of finite differencing, it will be recalled, requires 
expressing the time derivative over two time steps. This keeps the centers of 
the differencing operators in the same place. For the heat-flow equation 
Fourier-transformed over space, 
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I t  is a bit of a nuisance to  analyze this equation because it covers times t -1, 
t , and t +l and requires slightly more difficult analytical techniques. 
Therefore, it seems worthwhile t o  state the results first. The result for the 
heat-flow equation is that  the solution always diverges. The result for the 
wave-extrapolation equation is much more useful: there is stability provided 
certain mesh-size restrictions are satisfied, namely, Az must be less than 
some factor times Ax2.  This result is not exciting in one space dimension 
(where implicit methods seem ideal), but in higher-dimensional space, such as 
in the so-called 3-D prospecting surveys, we may be thankful t o  have the leap- 
frog method. 

The best way to  analyze equations like (11) which range over three or 
more time levels is t o  use 2-transform filter analysis. Converted t o  a Z -  
transform filter problem, the question posed by (11) becomes whether the 
filter has zeroes inside (or outside) the unit, circle. 2-transform stability 
analysis is described in Section 4.6. Such analysis is necessary for all possible 
numerical values of k2 .  Its result is that  there is always trouble if k 2  
ranges from zero t o  infinity. But with the wave-extrapolation equation, insta- 
bility can be avoided with certain mesh-size restrictions, because ( I  A s ) ?  
lies between zero and four. 

Tridiagonal Equation Solver 

The tridiagonal algorithm is stable for all positive definite matrices. If 
you have any problems with the tridiagonal solver, you should question the 
validity of your problem formulation. What is there about your application 
that  seems t o  demand division by zero? 


