1.1 Exploding Reflectors

The basic equipment for reflection seismic prospecting is a source for
impulsive sound waves, a geophone (something like a microphone), and a mul-
tichannel waveform display system. A survey line is defined along the earth’s
surface. It could be the path for a ship, in which case the receiver is called a
hydrophone. About every 25 meters the source is activated, and the echoes
are recorded nearby. The sound source and receiver have almost no direc-
tional tuning capability because the frequencies that penetrate the earth have
wavelengths longer than the ship. Comnsequently, echoes can arrive from
several directions at the same time. It is the joint task of geophysicists and
geologists to interpret the results. Geophysicists assume the quantitative,
physical, and statistical tasks. Their main goals, and the goal to which this
book is mainly directed, is to make good pictures of the earth’s interior from
the echoes.

A Powerful Analogy

Figure 1 shows two wave-propagation situations. The first is realistic
field sounding. The second is a thought experiment in which the reflectors in
the earth suddenly explode. Waves from the hypothetical explosion propagate
up to the earth’s surface where they are observed by a hypothetical string of
geophones.

Notice in the figure that the raypaths in the field-recording case seem to
be the same as those in the exploding-reflector case. It is a great conceptual
advantage to imagine that the two wavefields, the observed and the hypothet-
ical, are indeed the same. If they are the same, then the many thousands of
experiments that have really been done can be ignored, and attention can be
focused on the one hypothetical experiment. One obvious difference between
the two cases is that in the field geometry waves must first go down and then
return upward along the same path, whereas in the hypothetical experiment
they just go up. Travel time in field experiments could be divided by two. In
practice, the data of the field experiments (two-way time) is analyzed
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FIG. 1.1-1. Echoes collected with a source-receiver pair moved to all points
on the earth’s surface (left) and the “exploding-reflectors” conceptual model
(right).

assuming the sound velocity to be half its true value.

Huygens Secondary Point Source

Waves on the ocean have wavelengths comparable to those of waves in
seismic prospecting (15-500 meters), but ocean waves move slowly enough to
be seen. Imagine a long harbor barrier parallel to the beach with a small
entrance in the barrier for the passage of ships. This is shown in figure 2. A
plane wave incident on the barrier from the open ocean will send a wave
through the gap in the barrier. It is an observed fact that the wavefront in
the harbor becomes a circle with the gap as its center. The difference between
this beam of water waves and a light beam through a window is in the ratio
of wavelength to hole size.

Linearity is a property of all low-amplitude waves (not those foamy,
breaking waves near the shore). This means that two gaps in the harbor bar-
rier make two semicircular wavefronts. Where the circles cross, the wave
heights combine by simple linear addition. It is interesting to think of a bar-
rier with many holes. In the limiting case of very many holes, the barrier
disappears, being nothing but one gap alongside another. Semicircular wave-
fronts combine to make only the incident plane wave. Hyperbolas do the
same. Figure 3 shows hyperbolas increasing in density from left to right. All
those waves at nonvertical angles must somehow combine with one another to
extinguish all evidence of anything but the plane wave.
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FIG. 1.1-2. Wayves going through a gap in a barrier have semicircular wave-
fronts (if the wavelength is long compared to the gap size).
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FIG. 1.1-3. A barrier with many holes (top). Waves, (z,t)space, seen
beyond the barrier (bottom).
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A Cartesian coordinate system has been superimposed on the ocean sur-
face with z going along the beach and 2z measuring the distance from
shore. For the analogy with reflection seismology, people are confined to the
beach (the earth’s surface) where they make measurements of wave height as
a function of ¢ and t. From this data they can make inferences about the
existence of gaps in the barrier out in the (z, z )-plane. Figure 4a shows the
arrival time at the beach of a wave from the ocean through a gap. The earli-
est arrival occurs nearest the gap. What mathematical expression determines
the shape of the arrival curve seen in the (z, ¢ }-plane?

a b c d
atz, (beach) at z, atz, atz (barrier)

X X X

/7 \
N

FIG. 1.1-4. The left frame shows the hyperbolic wave arrival time seen at the
beach. Frames to the right show arrivals at increasing distances out in the
water. (The z-axis is compressed from figure 2). (Gonzalez)

The waves are expanding circles. An equation for a circle expanding with
velocity v about a point (74, z4) is

(m~z3)2 + (2—23)2 = p2¢2 (1)

Considering ¢ to be a constant, i.e. taking a snapshot, equation (1) is that of
a circle. Considering z to be a constant, it is an equation in the (z,1)-
plane for a hyperbola. Considered in the (¢, z, z }-volume, equation (1) is that
of a cone. Slices at various values of ¢t show circles of various sizes. Slices
of various values of 2 show various hyperbolas. Figure 4 shows four hyper-
bolas. The first is the observation made at the beach 2= 0. The second is a

X
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hypothetical set of observations at some distance z, out in the water. The
third set of observations is at z,, an even greater distance from the beach.
The fourth set of observations is at 23, nearly all the way out to the barrier,

where the hyperbola has degenerated to a point. All these hyperbolas are
from a family of hyperbolas, each with the same asymptote. The asymptote
refers to a wave that turns nearly 90° at the gap and is found moving nearly
parallel to the shore at the speed dz /dt of a water wave. (For this water
wave analogy it is presumed —incorrectly— that the speed of water waves is
a constant independent of water depth).

If the original incident wave was a positive pulse, then the Huygens
secondary source must consist of both positive and negative polarities to
enable the destructive interference of all but the plane wave. So the Huygens
waveform has a phase shift. In the next section, mathematical expressions
will be found for the Huygens secondary source. Another phenomenon, well
known to boaters, is that the largest amplitude of the Huygens semicircle is in
the direction pointing straight towards shore. The amplitude drops to zero
for waves moving parallel to the shore. In optics this amplitude dropoff with
angle is called the obliquity factor.

Migration Defined

A dictionary gives many definitions for the word run. They are related,
but they are distinct. The word migration in geophysical prospecting like-
wise has about four related but distinct meanings. The simplest is like the
meaning of the word move. When an object at some location in the (z, 2 )
plane is found at a different location at a later time ¢, then we say it moves.
Analogously, when a wave arrival (often called an event) at some location in
the (z, t }space of geophysical observations is found at a different position for
a different survey line at a greater depth 2z, then we say it migrates.

To see this more clearly imagine the four frames of figure 4 being taken
from a movie. During the movie, the depth 2z changes beginning at the
beach (the earth’s surface) and going out to the storm barrier. The frames
are superimposed in figure 5a. Mainly what happens in the movie is that the
event migrates upward toward t==0. To remove this dominating effect of
vertical translation make another superposition, keeping the hyperbola tops
all in the same place. Mathematically, the time ¢ axis is replaced by a so-
called retarded time axis t’'==t+z /v, shown in figure 5b. The second, more
precise definition of migration is the motion of an event in (z, t')-space as 2
changes. After removing the vertical shift, the residual motion is mainly a
shape change. By this definition hyperbola tops, or horizontal layers, don’t
migrate.
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FIG. 1.1-5. Left shows a superposition of the hyperbolas of figure 4. At the
right the superposition incorporates a shift, called retardation t’'=t+z /v, to
keep the hyperbola tops together. (Gonzalez)

The hyperbolas in figure 5 really extend to infinity, but the drawing cuts
each one off at a time equal V2 times its earliest arrival. Thus the hyperbo-
las shown depict only rays moving within 45° of the vertical. It is good to
remember this, that the ratio of first arrival time on a hyperbola to any other
arrival time gives the cosine of the angle of propagation. The cutoff on each
hyperbola is a ray at 45°. Notice that the end points of the hyperbolas on
the drawing can be connected by a straight line. Also, the slope at the end of
each hyperbola is the same. For any wavefront, the angle of the wave is
tan § = dz /dz in physical space. For any seismic event, the slope v dt [dzx
is sin 0, as you can see by considering a wavefront intercepting the earth’s
surface at angle 6. So, energy moving on a straight line in physical (z, z )-
space migrates along a straight line in data (z, ¢t }space. As z increases, the
energy of all angles comes together to a focus. The focus is the exploding
reflector. It is the gap in the barrier. This third definition of migration is
that it is the process that somehow pushes observational data — wave height
as a function of z and t — from the beach to the barrier. The third
definition stresses not so much the motion itself, but the transformation from
the beginning point to the ending point.



MIGRATION 1.1 Ezxploding Reflectors

To go further, a more general example is needed than the storm barrier
example. The barrier example is confined to making Huygens sources only at
some particular z. Sources are needed at other depths as well. Then, given
a wave-extrapolation process to move data to increasing =z  values,
exploding-reflector images are constructed with

Image (z,2) = Wave (t=0,z, 2) (2)

The fourth definition of migration also incorporates the definition of
diffraction as the opposite of migration.

observations model
migration
2z =0 _— t =0
all t all z
diffraction

Diffraction is sometimes regarded as the natural process that creates and
enlarges hyperboloids. Migration is the computer process that does the
reverse.

Another aspect of the use of the word migration arises in Chapter 3,
where the horizontal coordinate can be either shot-to-geophone midpoint 1y,
or offset h. Hyperboloids can be downward continued in both the (y,t)
and the (h, t }-plane. In the (y, t)-plane this is called migration or imaging,
and in the (k,t)plane it is called focusing or velocity analysis.

An Impulse in the Data

The Huygens diffraction takes an isolated pulse function (delta function)
in (7, 2 }-space and makes it into a hyperbola in (z, ¢ }space at z=0. The
converse is to start from a delta function in (z, ¢t }-space at z=0. This con-
verse refers to a seismic survey in which no echoes are recorded except at one
particular location, and at that location only one echo is recorded. What
earth model is consistent with such observations? As shown in figure 6 this
earth must contain a spherical mirror whose center is at the anomalous
recording position.

It is unlikely that the processes of nature have created many spherical
mirrors inside the earth. But when we look at processed geophysical data, we
often see spherical mirrors. Obviously, such input data contains impulses that
are not consistent with the wave-propagation theory being explained here.
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FIG. 1.1-6. When the seismic source S 1is at the exact center of a semicircu-
lar mirror, then, and only then, will an echo return to the geophone at the
source. This semicircular reflector is the logical consequence of a dataset
where one echo is found at only one place on the earth.

This illustrates why petroleum prospectors study reflection seismic data pro-
cessing, even though they personally plan to write no processing programs.
The raw data is too complex to comprehend. The processed data gives an
earth model, but its reliability is difficult to know. You may never plan to
build an automobile, but when you drive alone far out into the desert, you
should know as much as you can about automobiles.

Hand Migration

Given a seismic event at (2, t;) with a slope p = dt /dz, let us deter-
mine its position (z,,,t, ) after migration. Consider a planar wavefront at
angle 8 to the earth’s surface traveling a distance dz in a time dt.

Assuming a velocity v we have the wave angle in terms of measurable quan-
tities.

dt
i 0 —_ v —_
sin - pv (3)

The vertical travel path is less than the angled path by
tm = tgcosh = to\/l—p2v2 (4a)

A travel time ¢ and a horizontal component of velocity v sin § gives the

lateral location after migration:

Consideration of a hyperbola migrating towards its apex shows why (4b) con-
tains a minus sign. Equations (4a) and (4b) are the basic equations for
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manual migration of reflection seismic data. They tell you where the point
migrates, but they do not tell you how the slope p will change.
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FIG. 1.1-7. Left is a superposition of many hyperbolas. The top of each
hyperbola lies along a straight line. That line is like a reflector, but instead of
using a continuous line, it is a sequence of points. Constructive interference
gives an apparent reflection off to the side.

Right shows a superposition of semicircles. The bottom of each semicircle lies
along a line that could be the line of an observed plane wave. Instead the
plane wave is broken into point arrivals, each being interpreted as coming

from a semicircular mirror. Adding the mirrors yields a more steeply dipping
reflector.

Reflector Steepening

Consider a vertical wall, a limiting case of a dipping bed. Its reflections,
the asymptotes of a hyperbola, have a nonvertical steepness. This establishes
that migration increases the apparent steepness of dipping beds. I use the
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words apparent steepness because it is the slope as seen in the (z, t)-plane
that has steepened. Migration really produces its output in z. but z /v is
often overlain on ¢ to create a migrated time section. When we say a
hyperbola migrates to its apex, we are of course thinking of the migrated time
section. Let us determine the steepening as a function of angle.

Consider a point (zg,, to,) = 7o+ A, {3+ p A neighboring the origi-
nal point (z, ty). By equation (4), this neighbor migrates to

tne = (to+p A)V1-pZo? (5a)

Tpy = To+A-(tg+p A)p v? (5b)
Now we compute the stepout p, of the migrated event
dt, dt, . /dA
Pm = 4 . T dz, . JdA
1-p2y2 tan 0
Py = L : = 4 = (6)

1__p2102 ‘/1—1)2'02 v

So slopes on migrated time sections, like slopes in Cartesian space, imply
tangents of angles while slopes on unmigrated time sections imply sines.

It may seem paradoxical that dipping beds change slope on migration
whereas flanks of hyperbolas do not change slope during downward continua-
tion. One reason is that migration is downward continuation plus imaging
(selecting t =0). Another reason is that a hyperbola is a special event that
comes from a single source at a single depth whereas a dipping bed is a super-
position of point sources from different depths. Figure 7 shows how points
making up a line reflector diffract to a line reflection, and how points making
up a line reflection migrate to a line reflector.

Limitations of the Exploding-Reflector Concept

The exploding-reflector concept is a powerful and fortunate analogy. For
people who spend their time working entirely on data interpretation rather
than on processing, the exploding-reflector concept is more than a vital
crutch. It’s the only means of transportation! But for those of us who work
on data processing, the exploding-reflector concept has a serious shortcoming.
No one has yet figured out how to extend the concept to apply to data
recorded at nonzero offset. Furthermore, most data is recorded at rather large
offsets. In a modern marine prospecting survey, there is not one hydrophone,
but hundreds, which are strung out in a cable towed behind the ship. The
recording cable is typically 2-3 kilometers long. Drilling may be about 3 kilo-
meters deep. So in practice the angles are big. Therein lie both new

10
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problems and new opportunities, none of which will be considered until
Chapter 3.

Furthermore, even at zero offset, the exploding-reflector concept is not
quantitatively correct. For the moment, note three obvious failings: figure 8
shows rays that are not predicted by the exploding-reflector model. These
rays will be present in a zero-offset section. Lateral velocity variation is
required for this situation to exist.

V1 V2 velocity lens

A YA

reflector

FIG. 1.1-8. Two rays, not predicted by the exploding-reflector model, that
would nevertheless be found on a zero-offset section.

Second, the exploding-reflector concept fails with multiple reflections.
For a flat sea floor with a two-way travel time ¢, multiple reflections are
predicted at times 2¢;, 3¢{,, 4f;, etc. In the exploding-reflector geometry
the first multiple goes from reflector to surface, then from surface to reflector,
then from reflector to surface, for a total time 3t¢,. Subsequent multiples
occur at times 5¢;, 7t,, etc. Clearly the multiple reflections generated on
the zero-offset section differ from those of the exploding-reflector model.

The third failing of the exploding-reflector model is where we are able to
see waves bounced from both sides of an interface. The exploding-reflector
model predicts the waves emitted by both sides have the same polarity. The
physics of reflection coefficients says reflections from opposite sides have oppo-
site polarities.

Plate Tectonics Example

Plate tectonic theory says the ocean floors are made of thin plates that
are formed at volcanic ridges near the middle of the oceans. These plates
move toward trenches in the deepest part of the ocean where they plunge
back down into the earth. The best evidence for the theory is the lack of old

11
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FIG. 1.1-9. Top is 11 kilometers of reflection data from a survey line across
the Japan trench (Tokyo University Oceanographic Research Institute). Bot-
tom shows the result of migration processing. (Ottolini)

rocks on the floors of the earth’s oceans. Generally, continents are older rocks
jostled by the younger moving oceanic plates. The formation of plates by
mid-ocean ridge volcanism is readily observed in a variety of ways. Whether
the plates really do plunge at the trenches is not so clear observationally.
The evidence comes from earthquake locations and from reflection seismology.
Figure 9 shows some reflection data from the Japan trench. Two reflections
dominate, the sea floor reflection and a deeper layer dipping down to the left.
This latter is presumably the top part of a plate that is beginning its descent
into the earth. We can examine it for evidence of bending downward, such as

12
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tension fractures near the surface. (The topmost layer is soft recent marine
sediment loosely attached to the plate).
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FIG. 1.1-10. Top is 6.5 kilometers of reflection data from a survey line
offshore from the Texas coast of the Gulf of Mexico. Bottom shows the result
of migration processing. (Rothman).

Notice that the top of the plot is not zero time. The time axis runs from
9.5 to 11.0 seconds. Before 9.5 sec there are no echoes — we are waiting for
the waves to go between the ship and the ocean floor. Hyperbolic reflections
around kilometers 1-3 are collapsed by migration to form interesting ‘‘blocky”
shapes. Look at the sea floor topography near kilometer 8 and the difference
between migrated and unmigrated data sections. After migration, the sea
floor diffraction hyperbolas move away from the plate echo (kilometer 4).
Fractures (especially the one at 6.2 km) are more sharply defined. Finally, if
the plate bends downward, it is not apparent from the data given. The bend-
ing question really requires a more detailed analysis of lateral variation in
seismic velocity.

18
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For an example with petroleum interest, see figure 10, data from offshore
Texas. Sediments are dropped where coastal rivers enter the Gulf of Mexico.
The added weight causes slumping along steep faults. After a permeable
sandstone layer has been identified by drilling, its reflection can be extrapo-
lated up dip to the nearest fault on data like figure 10. The fault is likely to
break the continuity of the permeability trapping the upward flowing hydro-
carbons. A sandstone at this depth can have a porosity of 25%. Assume a
seismic velocity of 2.2 km/sec. Deduce the scale between physical volume and
the data in figure 10. Comparing the value of a volume of oil to the size of
that same volume on figure 10, you can see the importance of good images.

EXERCISES

1. Prove the Pythagorean theorem, that is, the length of the hypotenuse
v t of a right triangle is determined by z2 + 22 = v2¢2. Hint:

T z
z} 7 = 2 2
2
T z
2
z Z2
Tz
2

Compute propagation angles for the hyperbola flanks in figure 9.
Using the result of exercise 2, deduce the plunge angle of the plate.
How deep is the Japan trench (water velocity is 1.5 km/sec)?

On the Gulf Coast data, which direction is offshore? Why?

14
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1.2 Wave Extrapolation as a 2-D Filter

One of the main ideas in Fourier analysis is that an impulse function (a
delta function) can be constructed by the superposition of sinusoids (or com-
plex exponentials). In the study of time series this construction is used for the
tmpulse response of a filter. In the study of functions of space, it is used to
make a physical point source.

Taking time and space together, Fourier components can be interpreted
as monochromatic plane waves. Physical optics (and with it reflection
seismology) becomes an extension to filter theory. In this section we learn the
mathematical form, in Fourier space, of the Huygens secondary source. It is a
two-dimensional (2-D) filter for spatial extrapolation of wavefields.

Rays and Fronts

Figure 1 depicts a ray moving down into the earth at an angle 6 from
the vertical. Perpendicular to the ray is a wavefront. By elementary
geometry the angle between the wavefront and the earth’s surface is also 6.
The ray increases its length at a speed v. The speed that is observable on
the earth’s surface is the intercept of the wavefront with the earth’s surface.
This speed, namely v /sin 6, is faster than v. Likewise, the speed of the
intercept of the wavefront and the vertical axis is v /cos §. A mathematical
expression for a straight line, like that shown to be the wavefront in figure 1,
is

z = zg-c tan ¥ (1)

In this expression z, is the intercept between the wavefront and the
vertical axis. To make the intercept move downward, replace it by the
appropriate velocity times time:

t
cos

z = v -z tan 6 (2)
Solving for time gives

t(z,z) = %cos@—{—%siné’ (3)

Equation (3) tells the time that the wavefront will pass any particular location
(z,2). The expression for a shifted waveform of arbitrary shape is
[ (t —ty). Using (3) to define the time shift t; gives an expression for a

15
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FIG. 1.2-1. Downgoing ray and wavefront.
wavefield that is some waveform moving on a ray.
. z . z
moving wavefield = f| t — = sinf - = cos § (4)

v v

Waves in Fourier Space

Arbitrary functions can be made from the superposition of sinusoids.
Sinusoids and complex exponentials often occur. One reason they occur is
that they are the solutions to linear partial differential equations (PDEs) with
constant coefficients. The PDEs arise because most laws of physics are
expressible as PDEs.

Using Fourier integrals on time functions we encounter the Fourier ker-
nel exp(-twt). Specializing the arbitrary function in equation (4) to be the
real part of the function exp(-iw(t-tg)] gives

MOVINg cOSine WAve = COS lrw[ % sin § + % cos 6 — ¢ ] } (5)
To use Fourier integrals on the space-axis z the spatial angular frequency
must be defined. Since we will ultimately encounter many space axes (three
for shot, three for geophone, also the midpoint and offset), the convention will
be to use a subscript on the letter k to denote the axis being Fourier
transformed. So k, is the angular spatial frequency on the z-axis and
exp(tk, ) is its Fourier kernel. For each axis and Fourier kernel there is the
question of the sign of 1. The sign convention used here is the one used in
most physics books, namely, the one that agrees with equation (5). Reasons
for the choice are given in Section 1.6. With this convention, a wave moves

16
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in the positive direction along the space axes. Thus the Fourier kernel for
(z, 2, t)space will be taken to be

Fourier kernel =
- etkz.’t e’ k; z e~ twt - exp[i(kzx —{—kzz—wt)] (6)
Now for the whistles, bells, and trumpets. Equating (5) to the real part
of (6), physical angles and velocity are related to Fourier components. These
relations should be memorized!

(7)

Angles and Fourier Components

v k v k

4
cos § =
w w

F4

sin § =

Equally important is what comes next. Insert the angle definitions into the
familiar relation sinZ 6 + cos? § = 1. This gives a most important relation-
ship, known as the dispersion relation of the scalar wave equation.
2
btk = =5 (8)

v 2

We'll encounter dispersion relations and the scalar wave equation later. The
importance of (8) is that it enables us to make the distinction between an
arbitrary function and a chaotic function that actually is a wavefield. Take
any function p(t, z, z). Fourier transform it to P(w, k,, k,). Look in the
(w, k,, k, }volume for any nonvanishing values of P. You will have a
wavefield if and only if all nonvanishing P have coordinates that satisfy (8).
Even better, in practice the (z, t)-dependence at z =0 is usually known, but
the z-dependence is not. Then the z-dependence is found by assuming P is
a wavefield, so the z-dependence is inferred from (8).

Migration Improves Horizontal Resolution

In principle, migration converts hyperbolas to points. In practice, hyper-
bolas don’t collapse to a point, they collapse to a focus. A focus has measur-
able dimensions. Migration is said to be ‘“‘good” because it increases spatial
resolution. It squeezes a large hyperbola down to a tiny focus. To quantita-
tively describe the improvement of migration, the size of the hyperbola and
the size of the focus must be defined. Figure 2 shows various ways of measur-
ing the size of a hyperbola.

17



MIGRATION 1.2 Extrapolation as a 2-D Filter

sz

Ax3

- Aml >

FIG. 1.2-2. Measurements of width parameters of a hyperbola.

The hyperbola carries an impulsive arrival. So the w-bandwidth of the
hyperbola is roughly given by the zero crossings on the time axis of the main
energy burst. I'll mention 50 Hz as a typical value, though you could
encounter values four times higher or four times lower. Knowledge of a
seismic velocity determines depth resolution. T'll suggest 3 km/sec, though
once again you could encounter velocities four times greater or four times less.
These values imply a seismic wavelength of v /f = 60 meters. But the
effective seismic wavelength is half the actual wavelength. The half comes
from halving the velocity v in exploding reflector calculations, or
equivalently, from realizing that the seismic wavelength is divided equally into
upgoing and downgoing parts. Resolving power is customarily defined as
about half the effective wavelength or about 15 meters. (Whether seismic
resolution should be half the effective wavelength or a smaller fraction is an
issue that involves signal-to-noise considerations outside our present study).

The lateral resolution requires estimates of hyperbola width and focus
width. Figure 2 shows three hyperbola widths. The widest, A r,, includes
about three-quarters of the energy in the hyperbola. Next is the width A z,,
called the Fresnel Zone. It is measured across the hyperbola at the time

when the first arrival has just changed polarity. Third is the smallest measur-
able width, found far out on a flank. This width, A zg, is the shortest
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MIGRATION 1.2 Eaxtrapolation as a 2-D Filter

horizontal wavelength to be found. Resolution is the study of the size of
error, and it is not especially useful to be precise about the error in the error.
The main idea is that A z;> Azy > Axz. The bandwidth of the spatial
k, spectrum is roughly 1/A T 3. How small a focus can migration make? It

will be limited by the available bandwidth in the &%
the focus will be about the same as A z 5.

. spectrum. The size of

/

FIG. 1.2-3. Fresnel zone in (z, z }space (left) and in (z, ¢ }-space (right).

Figure 3 shows the geometry of the Fresnel zone concept. A Fresnel zone
is an intercept of a spherical wave with a plane. The intercept is defined
when the spherical wave penetrates the plane to a depth of a half wavelength.
What is the meaning of the Fresnel width A z,? Imagine yourself in Berlin.
There is a wall there. You may not go near it. Imagine a hole in the wall.
You are shouting to a friend on the opposite side. How does the loudness of
the sound depend on the size of the hole A X? It is not obvious, but it is
well known, both theoretically and experimentally, that holes larger than the
Fresnel zone cause little attenuation, but smaller holes restrict the sound in
proportion to their size.

Wave propagation is a convolutional filter that smears information from
a region A z, along a reflector (or A z; in the subsurface) to a point on

the surface. Migration, the reverse of wave propagation, is the deconvolution
operation. The final amount of lateral resolution is limited by the spatial
bandwidth of the data.

Migration may be called for even where reflectors show no dip. When a
well site is to be chosen within an accuracy of less than Az, then the
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MIGRATION 1.2 Extrapolation as a 2-D Filter

interpreter is looking at subtle changes in amplitude or waveform along the
reflector. Migration causes these amplitude and waveform variations to
change and to move horizontally along the reflector. The distance moved is
about equal the Fresnel zone.
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FIG. 1.2-4. Hyperboloids for an earth of velocity increasing with depth.
Observable lateral wavelengths get longer with increasing depth. Thus lateral
resolving power decreases with depth.

A basic fact of seismology is the resolution limitation caused by the
increase with depth of the seismic velocity. What happens is that as the
waves get deeper into the earth, their spatial wavelengths get longer because
of the increasing velocity. The case of vertical resolution is simply this: longer
wavelengths, less resolution. The case of horizontal resolution is similar, but
the horizontal wavelength is directly measurable at the earth’s surface. Fig-
ure 4 demonstrates this. Hyperboloids from shallow and deep scatterers are
shown. Shallow hyperbolas have early tops and steep asymptotes. Deep
scatterers have late tops and less steep asymptotes. The less steep asymp-
totes have longer horizontal wavelength. Horizontal wavelengths measured at
the surface are unchanged at depth, even though velocity increases with
depth. (This implication of Snell’s law is shown in Section 1.5). Thus, lateral
spatial resolution gets worse with depth. Compounding the above reason for
decreasing resolution is the loss of high-frequency energy at late travel time.
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MIGRATION 1.2 Extrapolation as a 2-D Filter

Two-Dimensional Fourier Transform

Before going any further, let us review some basic facts about two-
dimensional Fourier transformation. A two-dimensional function is
represented in a computer as numerical values in a matrix. A one-
dimensional Fourier transform in a computer is an operation on a vector. A
two-dimensional Fourier transform may be computed by a sequence of one-
dimensional Fourier transforms. You may first transform each column vector
of the matrix and then transform each row vector of the matrix. Alternately
you may first do the rows and later do the columns. This is diagramed as fol-
lows:

p(t,c)=——>P(t,k,)

| |

Pw,z)*+——P(w, k,)

A notational problem on the diagram is that we cannot maintain the
usual convention of using a lower-case letter for the domain of physical space
and an upper-case letter for the Fourier domain, because that convention can-
not include the mixed objects P(t,k,) and P(w,z). Rather than invent
some new notation it seems best to let the reader use the context to cope with
this notational problem. The arguments of the function must help name the
function.

An example of these transformations on typical deep-ocean data is shown
in figure 5.

In the deep ocean, sediments are fine-grained and deposit slowly in flat,
regular, horizontal beds. The lack of permeable rocks like sandstone severely
reduces the potential for petroleum production from the deep ocean. The
fine-grained shales overlay irregular, igneous, basement rocks. In the plot of
P(t, Icz) the lateral continuity of the sediments is shown by the strong spec-
trum at low k_ . The igneous rocks show a k, spectrum extending to such
large k, that the deep data may be somewhat spatially aliased (sampled too
coarsely). The plot of P(w,z) shows that the data contains no low-
frequency energy. At large w the energy is not dropping off as fast as one
might like, which indicates temporal frequency aliasing. This aliasing is also
apparent in the plot of p(¢,z) in the steplike appearance of the sea-floor
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FIG. 1.2-5. A deep-marine dataset p(t,z) from Alaska (U.S. Geological
Survey) and the real part of various Fourier transforms of it. Because of the
long travel time through the water, the time axis does not begin at ¢ =0.

arrival. The dip of the sea floor shows up in (w, k, }-space as the energy
crossing the origin at an angle.

Altogether, the two-dimensional Fourier transform of a collection of
seismograms involves only twice as much computation as the one-dimensional
Fourier transform of each seismogram. This is lucky. Let us write some
equations to establish that the asserted procedure does indeed do a two-
dimensional Fourier transform. Say first that any function of z and ¢
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may be expressed as a superposition of sinusoidal functions:
—fwt+i k
p(t,z) = [[e R P(w, k) dw dk, (9)

(Sign convention used in Fourier transformation is explained in Section 1.6).
The kernel in this tnverse Fourier transform has the form of a wave moving
in the plus z direction. Likewise, in the forward Fourier transform, the signs
of both exponentials change, preserving the fact that the kernel is a wave
moving positively. The scale factor and the infinite limits are omitted as a
matter of convenience. (The limits and scale both differ from the sampled-
time computation, so why bother?) The double integration can be nested to
show that the temporal transforms are done first (inside):

p(t,o) = [e'*” [fe-‘wtp(w,kz)dw] dk,
= [e' ™% Pt k) dk,

The quantity in brackets is a Fourier transform over w done for each and
every k,. Alternately, the nesting could be done with the k_-integral on the
inside. That would imply rows first instead of columns (or vice versa). It is
the separability of exp(-iwt + ¢ k,z) into a product of exponentials that
makes the computation this easy and cheap.

The Input-Output Relation

At the heart of the migration process is the operation of downward con-
tinuing data. Given the input data on the plane of the earth’s surface 2 =0,
we must manufacture the data that could be recorded at depth z. This is
most easily done in the Fourier domain. The method will be seen to be sim-
ply multiplication by a complex exponential, namely,

t k,(w k, )z

P(w,k,,2) = P(w,k,,0)e (10)

Since the operation is a multiplication in the Fourier domain, it may be

described as an engineering diagram.

) Filter
inpul output

> e >

P (w, k,,0) P(w k,,z)

Downward continuation is a product relationship in both the w-domain
and the k,-domain. What does the filter look like in the time and space
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domain? It turns out like a cone, that is, it is roughly an impulse function of
22+ 22 - v2¢2 More precisely, it is the Huygens secondary wave source
that was exemplified by ocean waves entering a gap through a storm barrier.
Adding up the response of multiple gaps in the barrier would be convolution
over r. Superposing many incident ocean waves would be convolution over
t.

Now let us see why the downward continuation filter has the mathemati-
cal form stated. Every point in the (w, k, )-plane refers to a sinusoidal plane
wave. The variation with depth will also be sinusoidal, namely exp(ik, z).
The value of k, for the plane wave is found simply by solving equation (8):

2 1/2
— 2
k, = :i:[-v—2~lcz] (11a)
g2 1/2
=+ |1-—= (11b)
v w?
= :{;% cos 6 (11c)

Choice of the plus sign means that exp(-twt + ¢ k,z) is a downgoing wave
(because the phase will stay constant if z increases as ¢ increases). Choice
of a minus sign makes the wave upcoming. The exploding-reflector concept
requires upcoming waves, so we nearly always use the minus sign, whether we
are migrating or modeling.

The input-output filter, being of the form e i¢, appears to be a phase-
shifting filter with no amplitude scaling. This bodes well for our plans to
deconvolve. It means that signal-to-noise power considerations will be much
less relevant for migration than for ordinary filtering.

EXERCISES

1. Suppose that you are able to observe some shear waves at ordinary
seismic frequencies. Is the spatial resolution better, equal, or worse than
usual? Why?

2. Scan this book for hyperbolic arrivals on field data and measure the
Fresnel zone width. Where zero offset recordings are not made, a valid
approximation is to measure Az, along a tilted line.

3. Explain the horizontal “layering” in figure 1.2-5 in the plot of P (w, ).
What determines the ‘‘layer” separation? What determines the “‘layer”
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slope?

4. Evolution of a wavefield with time is described by
p(x,z,t)sz [P(kz,k‘z’t=0)e"'W(kzykz)t] eik;,;z"'lkzzdkx dk‘z

Let P(k,,k,,0) be constant, signifying a point source at the origin in
(z,z)space. Let t be very large, meaning that phase = ¢ =
[w(k,, k, )+ k, (x/t)+ k, (¢/t)]t in the integration is rapidly alter-
nating with changes in k, and k,. Assume that the only significant

contribution to the integral comes when the phase is stationary, that is,
where 0¢/0k, and O¢/0k, both vanish. Where is the energy in

(z,z,t)space?
5. Downward continuation of a wave is expressed by

plz,z,t)=[] [P(kz,z=0,w)e

Let P(k,,0,w) be constant, signifying a point source at the origin in

ik, («, k,)z] itk dw dk,

(z, t)space. Where is the energy in (2, 2z, ¢ }-space?

1.3 Four Wide-Angle Migration Methods

The four methods of migration of reflection seismic data that are
described here are all found in modern production environments. As a group
they handle wide-angle rays easily. As a group they are used less successfully
to deal with lateral velocity variation.

Travel-Time Depth

Conceptually, the output of a migration program is a picture in the
(z, z }plane. In practice the vertical axis is almost never depth z; it is the
vertical travel time 7. In a constant-velocity earth the time and the depth are
related by a simple scale factor. The meaning of the scale factor is that the
(z,7)plane has a vertical exaggeration compared to the (z,z)-plane. In
reconnaissance work, the vertical is often exaggerated by about a factor of
five. By the time prospects have been sufficiently narrowed for a drill site to
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MIGRATION 1.3 Wide-Angle Migration

be selected, the vertical exaggeration factor in use is likely to be about unity
(no exaggeration).

The travel-time depth 7 is usually defined to include the time for both
the wave going down and the wave coming up. The factor of two thus intro-
duced quickly disappears into the rock velocity. Recall that zero-offset data
sections are generally interpreted as exploding-reflector wavefields. To make
the correspondence, the rock velocity is cut in half for the wave analysis:

2z z

T == pnd

Vtrue Y half

(1)

The first task in interpretation of seismic data is to figure out the
approximate numerical value of the vertical exaggeration. It probably won’t
be printed on the data header because the seismic velocity is not really
known. Furthermore, the velocity usually increases with depth, which means
that the vertical exaggeration decreases with depth. For velocity-stratified
media, the time-to-depth conversion formula is

dz

)= e®

O n

dr 1
2L = = )
or dz v (2)

Hyperbola-Summation and Semicircle-Superposition Methods

The methods of hyperbola summation and semicircle superposition are
the most comprehensible of all known methods.

Recall the equation for a conic section, that is, a circle in (z, z )-space
or a hyperbola in (z, t }space. Converting to travel-time depth 7

224 22 = v2¢2 (3a)
232
— +77 = 1?2 (3b)
vl

Figure 1 illustrates the semicircle-superposition method. (Both the
figure and its caption are from Schneider’s classic paper [1971]). Taking the
data field to contain a few impulse functions, the output should be a superpo-
sition of the appropriate semicircles. Each semicircle denotes the spherical-
reflector earth model that would be implied by a dataset with a single pulse.
Taking the data field to be one thousand seismograms of one thousand points
each, then the output is a superposition of one million semicircles. Since a
seismogram has both positive and negative polarities, about half the semicir-
cles will be superposed with negative polarities. The resulting superposition
could look like almost anything. Indeed, the semicircles might mutually de-
stroy one another almost everywhere except at one isolated impulse in (z, 7)-
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MIGRATION 1.3 Wide-Angle Migration

space. Should this happen you might rightly suspect that the input data sec-
tion in (z, t )space is a Huygens secondary source, namely, energy concen-
trated along a hyperbola. This leads us to the hyperbola-summation method.

SOURCE x —» RECEIVER

LOC! OF EQUAL
TRAVEL TIMES

INPUT TRACE

FIG. 1.3-1. The process may be described in numerous ways. Two very sim-
ple and equally valid representations are indicated in figures 1 and 2. Shown
here is a representation of the process in terms of what happens to a single
input trace plotted in depth (time may also be used) midway between its
source and receiver. Each amplitude value of this trace is mapped into the
subsurface along a curve representing the loci of points for which the travel
time from source to reflection point to receiver is constant. If the velocity is
constant, these curves are ellipses with source and receiver as foci. The pic-
ture produced by this operation is simply a wavefront chart modulated by the
trace amplitude information. This clearly is not a useful image in itself, but
when the map is composited with similar maps from neighboring traces (and
common-depth-point traces of different offsets), useful subsurface images are
produced by virtue of constructive and destructive interference between wave-
fronts in the classical Huygens sense. For example, wavefronts from neighbor-
ing traces will all intersect on a diffraction source, adding constructively to
produce an image of the diffractor as a high-amplitude blob whose (2, z)
resolution is controlled by the pulse bandwidth and the horizontal aperture of
the array of neighboring traces composited. For a reflecting surface, on the
other hand, wavefronts from adjacent traces are tangent to the surface and
produce an image of the reflector by constructive interference of overlapping
portions of adjacent wavefronts. In subsurface regions devoid of reflecting
and scattering bodies, the wavefronts tend to cancel by random addition.
(from Schneider, W. A., 1971 [by permission])
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MIGRATION 1.8 Wide-Angle Migration

The hyperbola-summation method of migration is depicted in figure 2.
The idea is to create one point in (z, 7)-space at a time, unlike in the semi-
circle method, where each point in (z, 7)-space is built up bit by bit as the
one million semicircles are stacked together. To create one fixed point in the
output (z, 7)-space, imagine a hyperbola, equation (3b), set down with its top
on the corresponding position of (z, t }space. All data values touching the
hyperbola are added together to produce a value for the output at the
appropriate place in (z,7)-space. In the same way, all other locations in
(z, 7)space are filled. We can wonder whether the hyperbola-migration
method is better or worse than or equivalent to the semicircle method.

INPUT TRACES

OUTPUT TRACE

FIG. 1.3-2. A second description of the process is provided here. The process
is represented in terms of how an output trace is developed from an ensemble
of input traces, shown as CDP-stacked traces in the upper half of the figure.
The output in the lower half reflects how each amplitude value at (z, z) is
obtained by summing input amplitudes along the travel-time curve shown.
This curve defines a diffraction hyperbola. If a diffraction source existed in
the subsurface at the output point shown, then a large amplitude would
result. The process also works for reflectors since a reflector may be regarded
as a continuum of diffracting elements whose individual images merge to pro-
duce a smooth continuous boundary. (also from Schneider, 1971)
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MIGRATION 1.3 Wide-Angle Migration

The opposite of data processing or building models from data is con-
structing synthetic data from models. With a slight change, the above two
processing programs can be converted to modeling programs. Instead of
hyperbola summation or semicircle superposition, you do hyperbola superposi-
tion or semicircle summation. We can also wonder whether the processing
programs really are inverse to the modeling programs. Some factors that need
to be considered are (1) the angle-dependence of amplitude (the obliquity
function) of the Huygens waveform, (2) spherical spreading of energy, and (3)
the phase-shift on the Huygens waveform. It turns out that results are rea-
sonably good even when these complicating factors are ignored.

As other methods of migration were developed, the deficiencies of the
earlier methods were more clearly understood and found to be largely correct-
able by careful implementation. One advantage of the later methods is that
they implement true all-pass filters. Such migrations preserve the general
appearance of the data. This suggests restoration of high frequencies, which
tend to be destroyed by hyperbolic integrations. Work with the Kirchhoff
diffraction integral by Trorey [1970] and Hilterman [1970] led to forward
modeling programs. Eventually (Schneider [1977]) this work suggested quanti-
tative means of bringing hyperbola methods into agreement with other
methods, at least for constant velocity. Common terminology nowadays is to
refer to any hyperbola or semicircular method as a Kirchhoff method,
although, strictly speaking, the Kirchhoff integral applies only in the
constant-velocity case.

Spatial Aliasing

Spatial aliasing means insufficient sampling of the data along the space
axis. This difficulty is so universal, that all migration methods must consider
it.

Data should be sampled at more than two points per wavelength. Other-
wise the wave arrival direction becomes ambiguous. Figure 3 shows synthetic
data that is sampled with insufficient density along the z-axis. You can see
that the problem becomes more acute at high frequencies and steep dips.

There is no generally-accepted, automatic method for migrating spatially
aliased data. In such cases, human beings may do better than machines,
because of their skill in recognizing true slopes. When the data is adequately
sampled, however, computer migration based on the wave equation gives
better results than manual methods. Contemporary surveys are usually ade-
quately sampled along the line of the survey, but there is often difficulty in
the perpendicular direction.
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FIG. 1.3-3. Insufficient spatial sampling of synthetic data. To better perceive
the ambiguity of arrival angle, view the figures at a grazing angle from the
side.

The hyperbola-sum-type methods run the risk of the migration operator
itself becoming spatially aliased. This should be avoided by careful imple-
mentation. The first thing to realize is that you should be integrating along
a hyperbolic trajectory. A summation incorporating only one point per trace
is a poor approximation. It is better to incorporate more points, as depicted
in figure 4. The likelihood of getting an aliased operator increases where the
hyperbola is steeply sloped. In production examples an aliased operator often
stands out above the sea-floor reflection, where — although the sea floor may

be flat — it acquires a noisy precursor due to the steeply flanked hyperbola
crossing the sea floor.

The Phase-Shift Method (Gazdag)

The phase-shift method proceeds straightforwardly by extrapolating
downward with exp(ik,z) and subsequently evaluating the wavefield at
=0 (the reflectors explode at t =0). Of all the wide-angle methods it most
easily incorporates depth variation in velocity. Even the phase angle and
obliquity function are correctly included, automatically. Unlike Kirchhoff
methods, with this method there is no danger of aliasing the operator.
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FIG. 1.3-4. For a low-velocity hyperbo-
la, integration will require more than

one point per channel. P

The phase-shift method begins with a two-dimensional Fourier transform
(2D-FT) of the dataset. (Some practical details about 2D-FT are described in
Section 1.7). Then the transformed data values, all in the (w, k, )-plane, are

downward continued to a depth Az by multiplying by

et FeBE exp{—i% 1—[0101 }2}1/2133} (4)

W

Ordinarily the time-sample interval Ar for the output-migrated section is
chosen equal to the time-sample rate of the input data (often 4 milliseconds).
Thus, choosing the depth Az = v Ar, the downward-extrapolation operator

for a single time unit is
1 v k;,; ]2 1/2 }
1 -
w ()

Data will be multiplied many times by C, thereby downward continuing it
by many steps of Ar.

cC = exp{—iwAT

Next is the task of imaging. At each depth an inverse Fourier transform
is followed by selection of its value at t=0. (Reflectors explode at ¢=0).
Luckily, only the Fourier transform at one point, ¢=0, is needed, so that is
all that need be computed. The computation is especially easy since the value
at ¢=0 is merely a summation of each w frequency component. (This may
be seen by substituting ¢=0 into the inverse Fourier integral). Finally,
inverse Fourier transform k. to x. The migration process, computing the

image from the upcoming wave u, may be summarized as follows:
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U(w,k,) = FT[u(t,z)

For 7= Ar, 2A7, ---, end of time axis on seismogram {
For all k_ {
Image (k, 7) = O.
Forall w {
C = exp(-1 wAT\/l— v2k12/w2)

Ulw,k,) = U(w, k) * C
Image (k,,7) = Image(k,,7) + U(w, k,)
}

}

image (x,7) = FT [Image (k,, 7)]

}

Inverse migration (modeling) proceeds in much the same way. Beginning
from an upcoming wave that is zero at great depth, the wave is marched
upward in steps by multiplication with exp(: k, A 2 ). As each level in the
earth is passed, exploding reflectors from that level are added into the upcom-
ing wave. The program for modeling the upcoming wave u is

Image (k,,2) = FT[1image(z, 2)]
For all w and all &,

U(w, k,) = 0.
Forall w {
For all k, {
For z = 2 0 Za B2, 2,282, ---,0{

C = exp(+idzwr/v2-k2/w?)

Ulw, k,) = Ulw, k,) ¥ C + Image(k,,z)

}1}
u(t,z) = FT[U(w, k)]

The positive sign in the complex exponential is a combination of two nega-
tives, the upcoming wave and the upward extrapolation. The three loops on
w, k., and z are interchangeable. When the velocity v is a constant func-
tion of depth the program can be speeded by moving the computation of the
complex exponential C out of the inner loop on z.

The velocity is hardly ever known precisely, so although it may be
increasing steadily with depth, it is often approximated as constant in layers
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instead of slowly changing at each of the thousand or so time points on a
seismogram. The advantage of this approximation is economy. Once the
square root and the sines and cosines in (5) have been computed, the complex
multiplier (5) can be reused many times. With a 4-millisecond sample rate
and a layer 200 milliseconds thick, the complex multiplier gets used 50 times
before it is abandoned.

The Stolt Method

On most computers the Stolt method of migration is the fastest one —
by a wide margin. For many applications, this will be its most important
attribute. For a constant-velocity earth it incorporates the Huygens wave
source exactly correctly. Like the other methods, this migration method can
be reversed and made into a modeling program. One drawback, a matter of
principle, is that the Stolt method does not handle depth variation in velocity.
This drawback is largely offset in practice by an approximate correction that
uses an axis-stretching procedure (Section 4.5). A practical problem is the
periodicity of all the Fourier transforms. In principle this is no problem at all,
since it can be solved by adequately surrounding the data by zeroes.

A single line sketch of the Stolt method is this:
p(z,t) » P(k,,w) — Pk, , k, = wz/vQ—sz) — P(z,z2)

To see why this works, begin with the input-output relation for down-
ward extrapolation of wavefields:

r k
P(wk,,2z) = ¢ % P(wk,, 2=0) (6)
Perform a two-dimensional inverse Fourier transform:

p(t,z,2) = [[ gt Feztwtdi ke P(w, k,,0) dw dk,

Apply the idea that the image at (z,z) is the exploding-reflector wave at
time ¢=0:

Image(z,2z) = [f L eik‘(w’k’)z P(w, k,,0) dw dk, (7)

Equation (7) gives the final image, but it is in an unattractive form, since
it implies that a two-dimensional integration must be done for each and every
z-level. The Stolt procedure converts the three-dimensional calculation thus
implied by (7) to a single two-dimensional Fourier transform.

So far nothing has been done to specify an upcoming wave instead of a
downgoing wave. The direction of the wave is defined by the relationship of
z and ¢ that is required to keep the phase constant in the expression
exp(-twt + tk, z). If w were always positive, then +k, would always refer
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to a downgoing wave and -k, to an upcoming wave. Negative frequencies
w as well as positive frequencies are needed to describe waves that have real
(not complex) values. So the proper description for a downgoing wave is that
the signs of w and k, must be the same. The proper description for an

upcoming wave is the reverse. With this clarification the integration variable
in (7) will be changed from w to &,.

w = —sgn(k,)v VEZ+ k2 (8a)
k

dw z

— = —sgn(k,) v —/——— (8b)
dk‘z z /k:¢'2+ kz2

dw _ -v |kz |

- (8¢)
dkz /kz2 + kz2

Put (8) into (7), and include also a minus sign so that the integration on &k,
goes from minus infinity to plus infinity as was the integration on w.

Image(z,z) = (9)

. . v k
_ ffezkzz-Hk,It P[w(kz, IcZ ), ch,o] __l_.z_l__ dkz dkx
k:c2+k22

Equation (9) states the result as a two-dimensional inverse Fourier transform.
The Stolt migration method is a direct implementation of (9). The steps of
the algorithm are

1. Double Fourier transform data from p(t,z,0) to P(w, k., 0).

2. Interpolate P onto a new mesh so that it is a function of k, and
k,. Multiply P by the scale factor (which has the interpretation

z
cos 0).

3. Inverse Fourier transform to (z, z }-space.

Samples of Stolt migration of impulses are shown in figure 5. You can
see the expected semicircular smiles. You can also see a semicircular frown
hanging from the bottom of each semicircle. The worst frown is on the
deepest spike. The semicircular mirrors have centers not only at the earth’s

surface z=0 but also at the bottom of the model It is known

2=z _ .

max
that these frowns can be suppressed by interpolating more carefully. (Interpo-
lation is the way you convert from a uniform mesh in w, to a uniform mesh
in k,). Interpolate with say a sinc function instead of a linear interpolator.

(See Section 4.5). A simpler alternative is to stay away from the bottom of
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the model, i.e. pad with lots of zeroes.
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FIG. 1.3-5. Response of Stolt method to data with impulses. Semicircles are
seen, along with computation artifacts.

It seems that an extraordinary amount of zero padding is required on the
time axis. To keep memory requirements reasonable, the algorithm can be
reorganized as described in an exercise. Naturally, the periodicity in z also
requires padding the z-axis with zeroes.

Hyperbola Summation Refined into the Kirchhoff Method

Schneider [1978] states the analytic representation for the Huygens secon-
dary wavelet

FT-Y(e ik, 2 1 0 step(t —r1/v) (10)
T 0z 0 t 2 _ r 2/'1) 2
where r is the distance 22+ (2-2,)® between the (exploding reflector)

source and the receiver. The function (10) contains a pole and the derivative
of a step function. Because of the infinities it really cannot be graphed. But
from the mathematical form you immediately recognize that the disturbance
concentrates on the expected cone. The derivative of the step function gives
a positive impulsive arrival on the cone. The derivative of the inverse square
root gives the impulse a tail of negative polarity decaying with a —3/2 power.
The cosine obliquity arises because the derivative is a 2 derivative and not
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an r derivative.

Equation (10) states the two-dimensional Huygens wavelet, not the
three-dimensional wavelet (which differs in some minor aspects). Although
waves from point sources are mainly spherical, the focusing of bent layers is
mainly a two-dimensional focusing, i.e., bent layers are more like cylinders
than spheres.
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FIG. 1.3-6. The Huygens wavelet (top) and a smoothed time integral (bot-
tom).

You might wonder why anyone would prefer approximations, given the
exact inverse transform (10). The difficulty of graphing (10) shows up in prac-
tice as a difficulty in convolving it with data. That is why early Kirchhoff
migrations were generally recognizable by precursor noise above a flat sea
floor. Chapters 2 and 4 are largely devoted to extensions of (10) that are
valid with variable velocity and that are better representations on a data
mesh.

In the Fourier domain, the Huygens secondary source function is simple
and smooth. It is a straightforward matter to evaluate the function on a rec-
tangular mesh and inverse transform with the programs in Section 1.7. Fig-
ure 6 shows the result on a 256 X 64 point mesh. (In practice the mesh
would be about 1024 X 256 or more, but the coarser mesh used here provides
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a plot of suitable detail). Because of the difficulty in plotting functions that
resemble an impulsive doublet, a second plot of the time integral, (with gentle
band limiting) is displayed in the lower part of figure 6.

Data Model Mugrated Time Section

FIG. 1.3-7. Velocity error sensitivity increases with angle up to 90° . Migra-
tion of a data impulse as a function of velocity. Three possible choices of con-
stant velocity are shown superposed on one plane.

Sensitivity of Migration to Velocity Error

Figure 7 shows how the migration impulse response depends on velocity.
Recall that migrated data is ordinarily displayed as a time section. Arbitrary
velocity error makes no difference for horizontal bedding.

Different people have different accuracy criteria. A reasonable criterion is
that the positioning error of the energy in the semicircles should be less than
a half-wavelength. For the energy moving horizontally, the positioning error
is simply related to the dominant period AT and the travel time 7T . The
ratio T /AT is rarely observed to exceed 100. This 100 seems to be a fun-
damental observational parameter of reflection seismology in sedimentary
rock. (Theoretically, it might be related to the “Q  of sedimentary rock or it
may relate to generation of chaotic internal multiple reflections. Larger
values than 100 occur when (1) much of the path is in water or (2) at time
depths greater than about 4 seconds). Figure 8 compares two nearby migra-
tion velocities. The separation of the curves increases with angle. For the
separation to be less than a wavelength, for 90° dip the velocity error must be
less than one part in 100. For 45° migration velocity error could be larger by

Ve
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FIG. 1.3-8. Timing error of the
wrong velocity increases with
angle.

45°

\ error

Velocities are rarely known this accurately. So we may question the
value of migration at wide angles.

Subjective Comparison and Evaluation of Methods

The three basic methods of migration described in this section are com-
pared subjectively in table 1.

Hyperbola Sum or Phase Shift Stolt
Semicircle Super-
pose
v(z) ray tracing easily approximately by
stretching
wide angle? Beware of data | Beware of data | Beware of data
alias and operator | alias. alias.
alias.
correct phase and |{| possible with some | easy for any v(z) for const v
obliquity? effort for const
v
wraparound noise? no on z, see Section | on z, see Section
4.5 to alleviate on | 4.5 to alleviate on
¢ (t,2)
v(z) Production  pro- | approximately by | no known program
grams have serious | iteration and
pitfalls. interpolation
side boundaries excellent poor poor
and irregular spac-
ing
Speed slow average very fast
memory organiza- awkward good good
tion

TABLE 1.3-1. Subjective comparison of three wide-angle migration methods.
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The perspective of later chapters makes it possible to remark on the
quality of the wide-angle methods as a group, and it is useful to do that now.
Their greatest weakness is their difficulties with lateral velocity variation.
Their greatest strength, wide-angle capability, is reduced by the weakness of
other links in the data collection and processing chain, namely:

1. Shot-to-geophone offset angles are often large but ignored. A CDP
stack is not a zero-offset section.

2. Why process to the very wide angles seen in the survey line when
even tiny angles perpendicular to the line are being ignored?

3. Data is often not sampled densely enough to represent steeply dip-
ping data without aliasing.

4. Accuracy in the knowledge of velocity is seldom enough to justify
processing to wide angles.

5. Noise eventually overpowers all echoes and this also implies an angle
cutoff. For example, imagine oil reservoirs at a time depth of two
seconds, where data recording stopped at four seconds. The implied
angle cutoff is at 60°.

EXERCISES

1. The wave modeling program sketch assumes that the exploding reflectors
are impulse functions of time. Modify the program sketch for wave
modeling to include a source waveform s (¢ ).

2. The migration program sketch allows the velocity to vary with depth.
However the program could be speeded considerably when the velocity is
a constant function of depth. Show how this could be done.

3. Define the program sketch for the inverse to the Stolt algorithm — that
is, create synthetic data from a given model.

4. The Stolt algorithm can be reorganized to reduce the memory require-
ment of zero padding the time axis. First Fourier transform z to k.
Then select, from the (¢, k,)-plane of data, vectors of constant £, .
Each vector can be moved into the space of a long vector, then zero pad-

ded and interpolated. Sketch the implied program.

5. Given seismic data that is cut off at four seconds, what is the deepest
travel time depth from which 80° dips can be observed?
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1.4 The Physical Basis

Previous sections have considered the geometrical aspects of wave propa-
gation and how they relate to seismic imaging. Now we will consider how the
physical aspects relate to imaging. The propagation medium has a mass den-
sity and compressibility. The waves have a material acceleration vector and a
pressure gradient. Static deformation, ground roll, shear, rigidity, dissipation,
sedimentary deposition — how are these related to image construction?

Because of the complexity of sedimentary rocks, there is not universal
agreement on an appropriate mathematical description. To help you under-
stand the degree to which theory can be used as a guide, I will point to some
inconsistencies between theory and current industrial practice.

The Clastic Section

Generally speaking, most petroleum reservoir rocks are sandstones.
Sandstones are most often made by the sands that are deposited near the
mouths of rivers where the water velocity is no longer sufficient to move
them. The sands deposit along the terminus of the sand bars found at the
river mouth, often along a slope of 25° or so, as depicted in figure 1.
Although the sands are not laid down in flat layers, the process may build a
horizontal layer.

&

flow

river ocean
sediment il i:Z 33 :4 .

FIG. 1.4-1. Sands (petroleum reservoir rocks) deposit on fairly steep slopes
where rivers run into the ocean.
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Clays are more fine-grained materials (dirt) that are carried out to deeper
water before they settle to make shale. Shale deposits tend to be layered
somewhat more horizontally than sandstones. Specific locations of sand depo-
sition change with the passing of storms and seasons, leaving a wood-grain-
like appearance in the rock.

The river delta itself is a complicated, ever-changing arrangement of
channels and bars, constantly moving along the coastline. At any one time
the delta seems to be moving seaward as deposits are left, but later settling,
compression, or elevation of sea level can cause it to move landward.

Sand is important because its porosity enables oil to accumulate and its
permeability enables the oil to move to a well. Shale is important because it
contains the products of former life on earth, and their hydrocarbons. These
escape to nearby sands, but often not to the earth’s surface, because of cover-
ing impermeable shales. The acoustic properties of sands and shales often
overlap, though there is a slight tendency for shales to have a lower velocity
than sands. Geophysicists on the surface see with seismic wavelengths (= 30
meters) the final interbedded three-dimensional mixture of sands and shales.

Mixtures of sands and shales are called clastic rocks. The word clast
means break. Clastic rocks are made from broken bits of crystalline rock.
Most sedimentary rocks are clastic rocks. Most oil is found in clastic rocks.
But much oil is also found in association with carbonates such as limestone.
Carbonates are formed in shallow marine environments by marine organisms.
Many carbonates (and clastics) contain oil that cannot be extracted because of
lack of permeability. Permeability in carbonate rocks arises through several
obscure processes. The seismologist knows carbonates as rocks with greater
velocity than clastic rocks. Typically, a carbonate has a 20-50% greater ve-
locity than a nearby clastic rock. Clastic rock sometimes contains limestone,
in which case it is called marl.

Chrono-Stratigraphy

Strange as it may seem, there is not universal agreement about the exact
nature of seismic reflections. Physicists tend to think of the reflections as
caused by the interface between rock types, as a sand-to-shale contact. The
problem with this view is that sands and shales interlace in complex ways,
both larger and smaller than the seismic wavelength. Many geologists, partic-
ularly a group known as seismic stratigraphers, have a different concept. (See
Setsmic Stratigraphy — Applications to Hydrocarbon Ezploration, memoir 26
of the American Association of Petroleum Geologists). They have studied
thousands of miles of reflection data along with well logs. They believe a
reflection marks a constant geological time horizon. They assert that a long,
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continuous reflector could represent terrigenous deposition on one end and
marine deposition on the other end with a variety of rock types in between.
Data interpretation based on this assumption is called chrono-stratigraphy.
The view of the seismic stratigrapher seems reasonable enough for areas that
are wholly clastic, but when carbonates and other rocks are present, the
physicist’s view seems more appropriate. For further details, the book of
Sheriff [1980] is recommended.

Nonobservation of Converted Shear Waves

In earthquake seismology and in laboratory measurement there are two
clearly observed velocities. The faster velocity is a pressure wave (P-wave),
and the slower velocity is a shear wave (S-wave). The shear wave can be
polarized with ground motion in a horizontal plane (SH ) or in a vertical plane
(SV). Theory, field data, and laboratory measurement are in agreement.
Successful experimental work with S-waves in the prospecting environment
was done by Cherry and Waters [1968] and Erickson, Miller and Waters
[1968].

It is remarkable that more than 99% of industrial petroleum prospecting
ignores the existence of shear waves. Mathematically the earth is treated as if
it were a liquid or a gas. The experimental work with shear waves used spe-
cial equipment to generate and record vibration perpendicular to the survey
line, i.e. SH -waves. The picture of the earth given by these transverse waves
is often impaired by the soil layers, but sometimes the SH-wave picture is
clear and consistent. Surprisingly, even good SH-wave data is often difficult
to relate to the P-wave picture. These experimental studies show that the
shear waves typically travel about half the speed of the pressure waves except
in the soil layer, where the shear wave speed is often much slower and more
variable. Observed shear waves usually have lower frequency than pressure
waves. A shear wave with half the frequency and half the velocity of a pres-
sure wave has just the same wavelength and hence the same resolving power
as the pressure wave. Indeed, experimental work shows that shear waves do
offer us about the same spatial resolution as pressure waves. Most land
seismic data shows only the vertical component of motion, and all marine
seismic data records the pressure. So in the conventional recording geometry,
ideally we should never see SH-waves. More precisely, SH -waves should be
small, arising only from the earth’s departure from simple stratification.

The puzzling aspect of shear waves in reflection seismology is the failure
of petroleum prospectors using the standard operating arrangement to rou-
tinely observe P-to-S conversions. Theory predicts that P-waves hitting an
interface at an angle should be partially converted to SV-waves.
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Furthermore, for the 30°-60° angle reflections that are routinely encountered,
these converted waves should have a size comparable to the P-wave.

The routine geometry of recording and processing discriminates some-
what against converted shear waves. But it discriminates against multiple
reflections too (in much the same way) and we see multiples all the time.
Furthermore the signature of converted waves should resemble that of multi-
ples, but be distinctly different. Converted waves should show up routinely in
velocity surveys (Chapter 3). Figure 2 shows a zero-offset section containing
some multiple reflections. The multiple reflection is recognizable as a replica
of earlier topography. Converted waves would replicate the topography but
the time scaling would be in the ratio of about 3/2 instead of exactly 4/2.
With a sufficiently complex topography, as in figure 2, the probability is low
that the converted wave would be mistaken for another primary reflection.

FIG. 1.4-2. A zero-offset section from east Africa with multiple reflections.
(Teledyne)
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Converted waves should have good diagnostic value in exploration. But
the likelihood of seeing converted shear waves in conventional data seems to
be so remote that most interpreters have given up looking. Why aren’t con-
verted waves seen in conventional data? Some reasons can be offered:

1. In marine data there would have to be an additional conversion to
P for the water path.

In land data the soil is especially absorptive of shear.

Vertical component recorders tend to see P better than S. This
is especially so because rays bend toward the vertical in the near
surface.

Of all the reasons why converted shear waves should be weaker than
pressure waves, none is overwhelming. A wide range of amplitudes are
recorded in a wide variety of environments. Data are often displayed with
automatic gain control (AGC). Weakened amplitude appears to be
insufficient cause for the failure of observation. We should keep looking.
Converted waves are certainly more prevalent than our recognition of them.
(I have never identified a converted shear wave on conventional recordings).

So although converted shear waves might some day play a significant role
in reflection seismology, we now return to the mainstream — how to deal
effectively with that which is routinely observable.

Reliability of Reverberation Modeling

The seismological literature contains an abundance of theory to describe
seismic waves in layered media. A significant aspect of applied seismology is
the general neglect of intrabed reverberation. When a wave reflects from an
interface, the strength of the reflected wave is a small fraction, typically less
than 10%, of the strength of the incident wave. This reflected wave is the
one that is mainly dealt with in this book. However, the reflected wave itself
reflects again and again, ad infinitum. For short path geometries, there can
be very many of these rays. The question is whether these reverberations can
ever amount to enough to make considering them worthwhile. The answer
seems to be that although reverberation may be significant, seismologists are
rarely able to improve interpretation of reflection survey data with the more
complicated theory that is required to incorporate reverberation. A few more
details are in Section 5.5.

The situation is somewhat improved when well logs are available, but
even then there are serious difficulties. The best possible lateral resolving
power, say about 20-50 meters, is obtained after migration. The well log,
however, is not a 20-50 meter lateral average of the earth. Next time you see
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a highway cut through sedimentary rocks, think of the difference between a
point and a lateral average over 20-50 meters. In practice, people smooth the
well log (vertical smoothing). Too little smoothing gives too much reverbera-
tion. Too much smoothing gives no reverberation. The amount of vertical
smoothing is an empirically determined parameter, and results are
significantly sensitive to it. Vertical averages of the well log may or may not
be a satisfactory approximation to the required horizontal average.

Failure of Newtonian Viscosity

Also remarkable is the failure of basic textbook seismology to explain the
observed frequency-dependence of the dissipation parameter @ . The simplest
theoretical approach to dissipation is to add a strain-rate term to Hooke’s
stress-strain law. This predicts stronger relative dissipation of high frequen-
cies than of low frequencies. Experimentally, relative dissipation is observed
to be roughly constant over many decades of frequency. Other simple
Newtonian theories yield polynomial ratios in —tw for the stress/strain ratio.
These theories contain scale lengths and characteristic frequencies. They do
not predict constant @ . The heterogeneity of the rock at all scales seems to
be an essential attribute of a successful theory (Section 4.6).

Philosophy of Inverse Problems

Physical processes are often simulated with computers in much the same
way they occur in nature. The machine memory is used as a map of physical
space, and time evolves in the calculation as it does in the simulated world.
A nice thing about solving problems this way is that there is never any ques-
tion about the uniqueness of the solution. Errors of initial data and model
discretization do not tend to have a catastrophic effect. Exploration geophysi-
cists, however, rarely solve problems of this type. Instead of having (z, z)-
space in the computer memory and letting ¢ evolve, we usually have (z, t)-
space in memory and extrapolate in depth z. This is our business, taking
information (data) at the earth’s surface and attempting to extrapolate to
information at depth. Stable time evolution in nature provides no “existence
proof”’ that our extrapolation goals are reasonable, stable, or even possible.

The time-evolution problems are often called forward problems and the
depth-extrapolation problems tnverse problems. In a forward problem, such as
one with acoustic waves, it is clear what you need and what you can get.
You need the density p(z,z) and the incompressibility K(z,z), and you
need to know the initial source of disturbance. You can get the wavefield
everywhere at later times but you usually only want it at the earth’s surface
for comparison to some data. In the tnverse problem you have the waves seen
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at the surface, the source specification, and you would like to determine the
material properties p(z,z) and K(z,z). What has been learned from
experience is that routine observations do not give reasonable estimates of
images or maps of p and K.

What You Can Get from Reflection Seismology

Luckily, it has been discovered that certain functions of p and K can
be reliably determined and mapped. The velocity v and the acoustic
impedance R are given by the equations

v = VK/[p (1a)
R = +JVKp (1b)
Mathematically, it is a simple job to back-solve equation (1), which gives
K = vR (2a)
R
= — b
P ” (2b)

In practice, the solution (2) has little value because the two parameters v
and R are seen through nonoverlapping spectral windows. The acoustic
impedance R is seen through the typical 10 to 100 Hz spectral window of
good quality reflection data. Since the low frequency part of the spectrum is
missing, it is common to say that it is not the impedance which is seen, but
the gradient reflectivity = ¢ (z,2) = v log (R).

The velocity v 1is seen through a much smaller window. Observation of
it involves studying travel time as shot-to-geophone offset varies and will be
described in Chapter 3. With this second window it is hard to discern sixteen
independent velocity measurements on a 4-second reflection time axis. So this
window goes from zero to about 2 Hz, as depicted in figure 3.

Note that there is an information gap from 2-10 Hz. Even presuming
that rock physics can supply us with a relationship between p and K, the
gap seriously interferes with the ability of a seismologist to predict a well log
before the well is drilled. What seismologists can do somewhat reliably is
predict a filtered log.

The observational situation described above has led reflection seismolo-
gists to a specialized use of the word velocity. To a reflection seismologist, ve-
locity means the low spatial frequency part of ‘“real velocity.” The high-
frequency part of the ‘‘real velocity” isn’t called velocsty: it is called
reflectivity. Density is generally disregarded as being almost unmeasurable by
surface reflection seismology.
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FIG. 1.4-3. Reliability of information obtained from surface seismic measure-
ments.

Mathematical Inverse Problems

In mathematics the solution to an inverse problem has come to mean the
‘““determination’ of material properties from wavefields. Often this is
achieved with a ‘“‘convergent sequence.” Geophysicists are less precise (or
more inclusive) about what they mean by ‘“‘determination.” In Chapters 1-2 of
this book reflectors are ‘‘determined’” by the exploding-reflection concept. In
Chapter 3 shot-to-geophone offset is incorporated, and reflectivity ¢ (z, 2)
and velocity v(z) are ‘‘determined” with a buried-experiment concept. In
Chapter 5 the concept is developed of suppressing multiple reflections and
finding the ‘“‘true’’ amplitudes of reflections by having the upcoming wave
vanish before the onset of the downgoing wave. Other imaging concepts seem
likely to result from future processing schemes. It might be possible to show
that some of our ‘‘determinations’ coincide with those of mathematicians, but
such coincidence is not our goal.

Derivation of the Acoustic Wave Equation

The acoustic wave equation describes sound waves in a liquid or gas.
Another more complicated set of equations describes elastic waves in solids.
Begin with the acoustic case. Define

mass per unit volume of the fluid
velocity flow of fluid in the z-direction
velocity flow of fluid in the z-direction
pressure in the fluid

we &®
o

I

Newton’s law of momentum conservation says that a small volume within a
gas will accelerate if there is an applied force. The force arises from pressure
differences at opposite sides of the small volume. Newton’s law says
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mass X acceleration = force = — pressure gradient
ou oP
2 = - == 3
P ot bz (8a)
ow oP
_ = - = 3b
T 0z (3b)

The second physical process is energy storage by compression and volume
change. If the velocity vector v at = + Az exceeds that at z, then the
flow is said to be diverging. In other words, the small volume between =z
and z + Az is expanding. This expansion must lead to a pressure drop.
The amount of the pressure drop is in proportion to a property of the fluid
called its incompressibility K. In one dimension the equation is

pressure drop = (incompressibility) X (divergence of velocity)
oP Ou
e = K — 4
ot oz (42)

In two dimensions it is

at Ty

oP Ju ow
K [ax 0z ]

(4b)

To arrive at the one-dimensional wave equation from (3a) and (4a), first
divide (3a) by p and take its z-derivative:

9.8, _ 2 10P )
Jr Ot dr p Ox

Second, take the time-derivative of (4). In the solid-earth sciences we are for-
tunate that the material in question does not change during our experiments.
This means that K is a constant function of time:

52P 9 0
L — _g £ 2
9t2 ot oz (6)
Inserting (5) into (6), the one-dimensional scalar wave equation appears.
o%P 9 1 9P
_— = K — = = 7
9t 2 or p Oz (72)
In two space dimensions, the exact, acoustic scalar wave equation is
52P 9 16 , 0 120
_ = K |———+4+ — —=— |P 7b
ot 2 0z p Oz + 0z p Oz (7b)

You will often see the scalar wave equation in a simplified form, in which it is
assumed that p is not a function of z and 2. Two reasons are often given
for this approximation. First, observations are generally unable to determine
density, so density may as well be taken as constant. Second, we will soon
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see that Fourier methods of solution do not work for space variable
coefficients. Before examining the validity of this approximation, its conse-
quences will be examined. It immediately reduces (7b) to the usual form of
the scalar wave equation:

P

ot? p Uozr? 552

a2p K ( 82 N 82 (8)

To see that this equation is a restatement of the geometrical concepts of
previous sections, insert the trial solution

P = exp(-twt +1 k,z +1k,2) (9)
What is obtained is the dispersion relation of the two-dimensional scalar wave
equation:
o k2 + k2 (10)
K/p z z

Earlier (Section 1.2, equation(8)) an equation like (10) was developed by con-
sidering only the geometrical behavior of waves. In that development the
wave velocity squared was found where K /p stands in equation (10). Thus
physics and geometry are reconciled by the association

v = —p— (11)

Last, let us see why Fourier methods fail when the velocity is space vari-
able. Assume that w, k,, and k, are constant functions of space. Substi-
tute (9) into (8) and you get the contradiction that w, k_,
space variable if the velocity is space variable. Try again assuming space
variability, and the resulting equation is still a differential equation, not an
algebraic equation like (10).

and Icz must be

Evanescence and Ground Roll

Completing the physical derivation of the dispersion relation,

2
2 2 __ w
k. + k,° = :)—2— (12)

we can now have a new respect for it. It carries more meaning than could
have been anticipated by the earlier geometrical derivation. The dispersion
relation was originally regarded merely as sin? 6 + cos? =1 where
sin = v k, /w. There was no meaning in sin § exceeding unity, in other
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words, in v k, exceeding w. Now there is. There was a hidden ambiguity
in two of the previous migration methods. Since data could be an arbitrary
function in the (¢, z )-plane, its Fourier transform could be an arbitrary func-
tion in the (w, k,)-plane. In practice then, there is always energy with an
angle sine greater than one. This is depicted in figure 4. What should be
done with this energy?

\— reflection—4 v(zy)
N\ 7
03-0 \
< 3
) NI v(z
’N\ Q;» \/ A //’ ( 1)
e \@
evanescent
[ — K
[y i x
) ~
v
)

FIG. 1.4-4. The triangle(s) of reflection energy |w| > v(z) |k, | become

narrower with velocity, hence with depth. Ground roll is energy that is prop-
agating at the surface, but evanescent at depth.

When v k, exceeds w, the familiar downward-extrapolation expression
is better rewritten as

ei:-'/wﬁ/vﬁ—kzzz _ e:t\/k;—wﬁ/vgz (13)

This says that the depth-dependence of the physical solution is a growing or a
damped exponential. These solutions are termed evanescent waves. In the
most extreme case, w =0, k, is real, and k, = +1 k,. For elastic waves,
that would be the deformation of the ground under a parked airplane. Only
if the airplane can move faster than the speed of sound in the earth will a
wave be radiated into the earth. If the airplane moves at a subsonic speed
the deformation is said to be quasi-static.

Perhaps a better physical description is a thought experiment with a
sinusoidally corrugated sheet. Such metallic sheet is sometimes used for roofs
or garage doorways. The wavelength of the corrugation fixes k,. Moving
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such a sheet past your ear at velocity V you would hear a frequency of
oscillation equal to V k,, regardless of whether V is larger or smaller than
the speed of sound in air. But the sound you hear would get weaker exponen-
tially with distance from the sheet unless it moved very fast, V > v, in
which case the moving sheet would be radiating sound to great distances.
This is why supersonic airplanes use so much fuel.

What should a migration program do with energy that moves slower
than the sound speed? Theoretically, such energy should be exponentially
damped in the direction going away from the source. The damping in the
offending region of (w, k,)-space is, quantitatively, extremely rapid. Thus,
simple exploding-reflector theory predicts that there should be almost no
energy in the data at these low velocities.

4 Il i i i x
~ L | gaithhi i HHELELY a
- - s R B (-——'_ 5» 4 B
‘ >y HPL > 3 y E L

b1] [} Y B
>3 > 3 ; 2 H2O
m::gé}‘ > \

v 4 2 S5 2 : A

FIG. 1.4-5. Florida shallow marine profile, exhibiting ground roll with fre-
quency dispersion. (Conoco, Yedlin)
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The reality is that, instead of tiny amounts of energy in the evanescent
region of (w, k, )-space, there is often a great deal. This is another breakdown
of the exploding-reflector concept. The problem is worst with land data.
Wayves that are evanescent in deep, fast rocks of interest can be propagating
in the low-velocity soil layer. This energy is called ground roll. Figure 5
shows an example. Like the surface of the earth, which varies greatly from
place to place, the immediate subsurface which controls the ground roll varies
substantially. So although figure 5 is a nice example, no example can really
be typical. This data is not a zero-offset section. The shot is on the left, and
the traces to the right are from geophones at increasing distances from the
shot. The straight line drawn onto the data defines a slope equal to the water
velocity. Steeper events are ground roll. In this figure there are two types of
ground roll, one at about half of water velocity, and a stronger one at about a
quarter of water velocity. The later and stronger one shows an interesting
feature known as frequency dispersion. Viewing the data from the side, you
should be able to notice that the high frequencies arrive before the low fre-
quencies.

Ground roll is unwanted noise since its exponential decay effectively
prevents it from being influenced by deep objects of interest. In practice,
energy in the offending region of (w, k, }space should be attenuated. A
mathematical description is to say that the composite mapping from model
space to data space and back to model space again is not an identity transfor-
mation but an idempotent transformation.

Reflections and the High-Frequency Limit

It is well known that the contact between two different materials can
cause acoustic reflections. A material contact is defined to be a place where
either K or p changes by a spatial step function. In one dimension either
OK [dz or 8p/8z or both would be infinite at a point, and we know that
either can cause a reflection. So it is perhaps a little surprising that while the
density derivative is explicitly found in (7b), the incompressibility derivative
is not. This means that dropping the density gradients in (7b) will not elim-
inate all possible reflections. Dropping the terms will slightly simplify further
analysis, however, and since constant density is a reasonable case, the terms
are often dropped.

There are also some well-known mathematical circumstances under which
the first-order terms may be ignored. Fix your attention on a wave going in
any particular direction. Then w, k,, and k, have some prescribed ratio.
In the limiting case that frequency goes to infinity, the P,, P, , and P,,
terms in (8) all tend to the second power of infinity. Suppose two media
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gradually blend into one another so that 9p/dz is less than infinity. The
terms neglected in going from (7b) to (8) are of the form p, P, and p, P,.

As frequency tends to infinity, these terms only tend to the first power of
infinity. Thus, in that limit they can be neglected.

These terms are usually included in theoretical seismology where the goal
is to calculate synthetic seismograms. But where the goal is to create earth
models from seismic fleld data — as in this book — these terms are generally
neglected. Earth imaging is more difficult than calculating synthetic seismo-
grams. But often the reason for neglecting the terms is simply to reduce the
clutter. These terms may be neglected for the same reason that equations are
often written in two dimensions instead of three: the extension is usually pos-
sible but not often required. Further, these terms are often ignored to facili-
tate Fourier solution techniques. Practical situations might arise for which
these terms need to be included. With the finite-difference method (Section
2.2), they are not difficult to include. But any effort to include them in data
processing should also take into account other factors of similar significance,
such as the assumption that the acoustic equation approximates the elastic
world.

EXERCISES

1. Soil is typically saturated with water below a certain depth, which is
known as the water table. Experience with hammer-seismograph systems
shows that seismic velocity typically jumps up to water velocity
(Vi,0 = 1500 m /s ) at the water table. Say that in a certain location,
the ground roll is observed to be greater than the reflected waves, so a
decision has been made to bury geophones. The troublesome ground roll
is observed to travel at six-tenths the speed of a water wave. How deep
must the geophones be buried below the water table to attenuate the
ground roll by a factor of ten? Assume the data contains all frequencies
from 10 to 100 Hz. (Hints: log, 10/=2, 27~<6, etc.)

2. Consider the function

1 iwt—ijw\/%zds
P(z,t) = Py——m— ¢ 0 (£) 1.4E1
(2, 0\/—5,—(;5 ( )
where

Po = constant

1

Y= TeRe
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as a trial solution for the one-dimensional wave equation:

® K(z) 9 \p _ K(z) 9 0P

ot p(z) 922 p(z)? 0z 0z
Substitute the trial solution (E1) into the wave equation (E2). Discuss
the trade-off between changes in material properties and the validity of
your solution for different wavelengths.

(1.4E2)

1.5 The Paraxial Wave Equation

The scalar wave equation, unlike Fourier equations, allows arbitrary spa-
tial variation in density and velocity. Because of this you might expect that
it would be used directly in the manufacture of migrated sections. But it is
used little for migration, and we will first review why this is so. Then we will
meet the pararial wave equation, which is the basis for most production
migration.

Philosophically, the paraxial wave equation is an intermediary between
the simple concepts of rays and plane waves and deeper concepts embodied in
the wave equation. (The paraxial wave equation is also called the single-
square-root equation. In Chapter 2, a specialization of it is called the para-
bolic wave equation). The derivation of the parabolic wave equation does not
proceed from simple concepts of classical physies. Its development is more
circuitous, like the Schroedinger equation of quantum physics. You must
study it for a while to see why it is needed. When 1 introduced the parabolic
wave equation to seismic calculations in 1970, it met with considerable suspi-
cion. Fortunately for you, years of experience have enabled me to do a better
job of explaining it, and fortunately for me, its dominance of the industrial
scene will give you the interest to persevere.

The paraxial equation will be introduced by means of Fourier methods.
Fourier methods are incompatible with space-variable coefficients. Since we
want to incorporate spatial variations in velocity, this limitation is ultimately
to be avoided, so after getting the paraxial equation in the Fourier domain,
tk, is replaced by 0/9z, and tk, is replaced by 0/0z. Then, being in the
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space domain, the velocity can be space-variable. The result is a partial
differential equation often solved by the finite-differencing method. This pro-
cedure turns out to be valid, but new students of migration understandably
regard it with misgiving. Thus, the final part of this section is a derivation of
the paraxial wave equation which makes no use of Fourier methods.

Why the Scalar Wave Equation is Rarely Used for Migration

Life would be simpler if migration could be done with the scalar wave
equation instead of the paraxial equation. Indeed, migration can be done with
the scalar wave equation, and there are some potential advantages (Kosloff
and Baysal [1983]). But more than 99% of current industrial migration is
done with the paraxial equation.

The main problem with the scalar wave equation is that it will generate
unwanted internal multiple reflections. The exploding-reflector concept can-
not deal with multiple reflections. Primary reflections can be modeled with
only upcoming waves, but multiple reflections involve both up and downgoing
paths. The multiple reflections observed in real life are completely different
from those predicted by the exploding-reflector concept. For the sea-floor
multiple reflection, a sea-floor two-way travel-time depth of ¢, yields sea-
floor multiple reflections at times 2t,, 3tq, 4ty - - - . In the exploding-
reflector conceptual model, a sea-floor one-way travel-time depth of ¢, yields
sea-floor multiple reflections at times 3¢, 5ty 7ty - --. In building a
telescope, microscope, or camera, the designer takes care to suppress back-
ward reflected light because it creates background noise on the image. Like-
wise, in building a migration program we do not want to have energy moving
around that does not contribute to the focused image. The scalar wave equa-
tion with space-variable coefficients will generate such energy. This unwanted
energy is especially troublesome if it is coherent and migrates to a time when
primaries are weak. It is annoying, as the reflection of a bright window seen
on a television sereen is annoying. So if you were trying to migrate with the
scalar wave equation, you would make the velocity as smooth as possible.

Another difficulty of imaging with the scalar wave equation arises with
evanescent waves. These are the waves that are exponentially growing or
decaying with depth. Nature extrapolates waves forward in time, but we are
extrapolating them in depth. Growing exponentials can have tiny sources,
even numerical round-off, and because they grow rapidly, some means must
be found to suppress them.

A third difficulty of imaging with the scalar wave equation derives from
initial conditions. The scalar wave equation has a second depth z-derivative.
This means that two boundary conditions are required on the z-axis. Since
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data is recorded at z==0, it seems natural that these boundary conditions
should be knowledge of P and OP /8z at z=0. But OP /9z isn't
recorded.

Luckily, in building an imaging device that operates wholly within a
computer, we have ideal materials to work with, i.e., reflectionless lenses.
Instead of the scalar wave equation of the real world we have the paraxial
wave equation.

Fourier Derivation of the Paraxial Wave Equation
Start from the dispersion relation of the scalar wave equation:

2
w
kx2 + lcz2 = -;? (1)

Take a square root.

w2

kz = = o T kz2 (2)
v

The simple act of selecting the minus sign in (2) includes the upcoming waves
and eliminates the downgoing waves. Equation (1) is the three-dimensional
Fourier transform of the scalar wave equation. Inverse transforming (2) will
give us an equation for upcoming (or downgoing) waves only, without the
other. Inverse Fourier transformation over a dimension is just a matter of
selecting one or more of the following substitutions:

-‘;—t - —iw (3a)
0 .
-6_.’1_? = 1 kz (3b)
ad .
- = t k, (3¢)

After inverse transformation over 2z there is a differential equation in z in
which the velocity may be taken to be z-variable. Likewise for z. Any
equation resulting from any of the substitutions of (3) into (2) is called a
paraxial equation. Chapter 2 of this book goes into great detail about the
meaning of these equations. Before beginning this interpretation the paraxial
wave equation will be derived without the use of Fourier transformation.
Besides giving a clear path to the basic migration equation, this derivation
also gives a better understanding of what the equation really does, and how it
differs from the scalar wave equation.
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MIGRATION 1.5 Paraxial Equation

Snell Waves

It is natural to begin studies of waves with equations that describe plane
waves in a medium of constant velocity. However, in reflection seismic sur-
veys the velocity contrast between shallowest and deepest reflectors ordinarily
exceeds a factor of two. Thus depth variation of velocity is almost always
included in the analysis of field data. Seismological theory needs to consider
waves that are just like plane waves except that they bend to accommodate
the velocity stratification v(z). Figure 1 shows this in an idealized geometry:
waves radiated from the horizontal flight of a supersonic airplane.

=

\/<L/< speed at depth z
speed at depth z

/

\/(7
J&
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FIG. 1.5-1. Fast airplane radiating a sound wave into the earth. From the
figure you can deduce that 0t /Jdz is the same at depth 2z, asit is at depth
z4. This leads (in isotropic media) to Snell’s law.

The airplane flies horizontally at a constant speed. It goes from
T = -00 to z = +oo. Imagine an earth of horizontal plane layers. In this
model there is nothing to distinguish any point on the z-axis from any other
point on the z-axis. But the seismic velocity varies from layer to layer.
There may be reflections, head waves, shear waves, and multiple reflections.
Whatever the picture is, it moves along with the airplane. A picture of the
wavefronts near the airplane moves along with the airplane. The top of the
picture and the bottom of the picture both move laterally at the same speed
even if the earth velocity increases with depth. If the top and bottom didn’t
go at the same speed, the picture would become distorted, contradicting the
presumed symmetry of translation. This horizontal speed, or rather its
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inverse 9t /dz, has several names. In practical work it is called the stepout.
In theoretical work it is called the ray parameter. It is very important to
note that 9t /0z does not change with depth, even though the seismic veloc-
ity does change with depth. In a constant-velocity medium, the angle of a
wave does not change with depth. In a stratified medium, 8t /0r does not
change with depth.

vdt 0
“\
5(0 dz

ray

FIG. 1.5-2. Downgoing fronts and rays in stratified medium wv(z). The
wavefronts are horizontal translations of one another.

Figure 2 illustrates the differential geometry of the wave. The diagram
shows that

ot sin @
% v (42)
ot cos 0
2 T v (4b)

These two equations define two (inverse) speeds. The first is a horizontal
speed, measured along the earth’s surface, called the horizontal phase velocity.
The second is a vertical speed, measurable in a borehole, called the vertical
phase velocity. Notice that both these speeds exceed the velocity v of wave
propagation in the medium. Projection of wave fronts onto coordinate axes
gives speeds larger than v, whereas projection of rays onto coordinate axes
gives speeds smaller than v. The inverse of the phase velocities is called the
stepout or the slowness.

Snell’s law relates the angle of a wave in one layer with the angle in
another. The constancy of equation (4a) in depth is really just the statement
of Snell’s law. Indeed, we have just derived Snell’s law. All waves in seismol-
ogy propagate in a velocity-stratified medium. So they cannot be called plane
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waves. But we need a name for waves that are near to plane waves. A Snell
wave will be defined to be the generalization of a plane wave to a stratified
medium v(z). A plane wave that happens to enter a medium of depth-
variable velocity wv(z) gets changed into a Snell wave. While a plane wave
has an angle of propagation, a Snell wave has instead a Snell parameter
p = 8t [ox.

It is noteworthy that Snell's parameter p = 0t [0z is directly observ-
able at the surface, whereas neither v nor 6 is directly observable. Since
p = 9t /dz is not only observable, but constant in depth, it is customary to
use it to eliminate 8 from equation (4):

_QL sin 4

8z v = 7 (52)
ot _ cosf 1 9 1/2
dz v o { v(z )2 P ] (5b)

Taking the Snell wave to go through the origin at time zero, an expres-
sion for the arrival time of the Snell wave at any other location is given by

2

tHz,z) = +£ cos @ (6a)
12
t(z,z) = px+f[v( dz (6b)

The validity of (6b) is readily checked by computing 9t /8z and 8t /9z,
then comparing with (5).

An arbitrary waveform f () may be carried by the Snell wave. Use (6)
to define a delay time ¢ for a delayed wave f [t—ty(z, z)] at the location

(z,2).

1/2

] dz (7)

SnellWave (t,z,2) = f t—p:c—f[
v(z)?

Time-Shifting Equations

An important task is to predict the wavefield inside the earth given the
waveform at the surface. For a downgoing plane wave this can be done by
the time-shifting partial differential equation

OP(t,z) _ 1 OP(t,z) (8)
v ot

0z
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as may be readily verified by substituting the trial solutions
P(t,z) = f[t——z—) for constant v (9)
v

or

P(t,z) = f[t—_g ] Jor v(z) (10)

This also works for nonvertically incident waves with the partial
differential equation

OP(t,z,z) __ Ot 9P(t ) (11)

, T, 2
0z 0z ot

which has the solution
: ot
P(t,z,z2) = [(t-pz~-[——dz) (12)
0 oz

In interpreting (11) and (12) recall that 1/(9t /3z) is the apparent velocity
in a borehole. The partial derivative of wavefield P (¢, z, z) with respect to
depth z is taken at constant z, i.e., the wave is extrapolated down the
borehole. The idea that downward extrapolation can be achieved by merely
time shifting holds only when a single Snell wave is present; that is, the
same arbitrary time function must be seen at all locations.

Substitution from (5) also enables us to rewrite (11) in the various forms

8P(t,z,2) __  cosf OP(t,z,z2) (13a)

0z v ot

OP(t,z,z) _ 1/2 oP(t,z,z) (13b)
ER v ot

oP(t,z,z) _ _ 1 _@]2 1/2 OP(t,z,z2) (13¢)
0z v(z)? Oz ot

Equation (13) is a paraxial wave equation. Since Jt¢t/9z=p can be meas-
ured along the surface of the earth, it seems that equation (13c), along with
an assumed velocity v(z) and some observed data P(t,z,z=0), would
enable us to determine 9P /Jz, which is the necessary first step of downward
continuation. But the presumption was that there was only a single Snell
wave and not a superposition of several Snell waves. Superposition of
different waveforms on different Snell paths would cause different time func-
tions to be seen at different places. Then a mere time shift would not achieve
downward continuation. Luckily, a complicated wavefield that is variable
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from place to place may be decomposed into many Snell waves, each of which
can be downward extrapolated with the differential equation (13) or its solu-
tion (12). One such decomposition technique is Fourier analysis.

Fourier Decomposition

Fourier analyzing the function f (z, ¢, z=0), seen on the earth’s sur-
face, requires the Fourier kernel exp(-{wt + ¢ k,z). Moving on the earth’s
surface at an inverse speed of 9t /dz = k, /w, the phase of the Fourier ker-
nel, hence the kernel itself, remains constant. Only those sinusoidal com-
ponents that move at the same speed as the Snell wave can have a nonzero
correlation with it. So if the disturbance is a single Snell wave, then all
Fourier components vanish except for those that satisfy p =k, /w. You
should memorize these basic relations:

14
ot sin 4 kz (14)

or v w

In theoretical seismology a square-root function often appears as a result of
using (14) to make a cosine.

Utilization of this Fourier domain interpretation of Snell’s parameter p
enables us to write the square-root equation (13) in an even more useful form.
But first the square-root equation must be reexpressed in the Fourier domain.
This is done by replacing the 8/dt operator in (13) by —tw. The result is
1/2
OP (w, k,, 2)

Oz

2

v(z)? w?

= 41w

P(wk,,z) (15)

At present it is equivalent to specify either the differential equation (15) or its
solution (12) with f as the complex exponential:

1/2

. ; k,*
Plwky,z)e*“" = exp)iw] [ 1 _ = dz (16)
o lv(z)? W2

Later, when we consider lateral velocity variation wv(z), the solution (16)
becomes wrong, whereas the differential equation (13¢) is a valid description of
any local plane-wave behavior. But before going to lateral velocity gradients
we should look more carefully at vertical velocity gradients.
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Velocity Gradients

Inserting the Snell wavefield expression into the scalar wave equation, we
discover that our definition of a Snell wave does not satisfy the scalar wave
equation. The discrepancy arises only in the presence of velocity gradients.
In other words, if there is a shallow constant velocity v; and a deep con-
stant velocity wv,o, the equation is satisfied everywhere except where v,
changes to v,. Solutions to the scalar wave equation must show amplitude
changes across an interface, because of transmission -coefficients. Our
definition of a Snell wave is a wave of constant amplitude with depth. The
paraxial wave equation could be modified to incorporate a transmission
coefficient effect. The reason it rarely is modified may be the same reason
that density gradients are often ignored. They add clutter to equations while
their contribution to better results — namely, more correct amplitudes and
possible tiny phase shifts — has marginal utility. Indeed, if they are included,
then other deeper questions should also be included, such as the question, why
use the acoustic equation instead of various other forms of scalar elastic equa-
tions?

Even if the paraxial wave equation were modified to incorporate a
transmission coefficient effect, its solution would still fail to satisfy the scalar
wave equation because of the absence of the reflected wave. But that is just
fine, because it is the paraxial equation, with its reflection-free lenses, that is
desired for data processing.

EXERCISES

1. Devise a mathematical expression for a plane wave that is an impulse
function of time with a propagation angle of 15° from the vertical z-axis
in the plus 2z direction. Express the result in the domain of

(a) (t,z,2)
(b) (w,z,2)
(c) (w,kys2)
(d) (w,p,z2)

2. Find an amplitude function A (2) which, when multiplied by f in
equation (12), yields an approximate solution to the scalar wave equation
for stratified media v(z). For p = 0O, the solution should reduce to the
solution of Exercise 2 in Section 1.4.
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1.6 Mastery of 2-D Fourier Techniques

Here is a collection of helpful tips for those of you who will be involved
in implementations of migration methods.

Signs and Scales in Fourier Transforms

In Fourier transforming ¢-, r-, and z-coordinates, a sign convention
must be chosen for each coordinate. Electrical engineers have chosen one con-
vention and physicists another. While both have good reasons for their
choices, our circumstances more closely resemble the circumstances of physi-
cists, so their convention will be used. For the tnverse Fourier transformation
this is

p(t,z,2) = [[fe T 2 Ripy b k) dwdk, dk, (1)

For the forward Fourier transform, the space variables carry a negative sign
and time carries a positive sign. The limits on the integrations and the scale
factor in the continuous case differ from the discrete case. We rarely do the
transforms analytically in either case. Since the extra notation required for
limits and scales usually clutters rather than clarifies a discussion, they will be
omitted altogether except when they play a useful role.

The sign convention is more important. Because there are so many space
axes (later, midpoint and offset space axes are introduced and transformed as
well), it is worthwhile to establish a good sign convention. Someone using the
approach of “changing the signs around until it works” is likely to be per-
plexed by the number of possible permutations. There are good reasons for
the sign conventions chosen by physicists, and once the reasons are known, it
is easy to remember the conventions.

Wayves should, by convention, move in the positive direction on the space
axis. This is especially evident on work for which the space axis is a radius.
Atoms, like geophysical sources, always radiate from a point to infinity, not
the other way around. So our convention will be always to choose waves
moving positively on any space axis. In equation (1) this means that the sign
on the spatial frequencies must be opposite to the sign on the temporal fre-
quency. This statement applies to both the forward and the inverse
transform.

This leaves the choice of whether to use the positive sign for the time
axis or the space axes. There are many space axes but only one time axis.
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There will be the fewest number of minus signs and the fewest sign changes if
the spatial gradient 8/8z, 9/8z, etc. is chosen to be associated with the
positive k-vector, i.e., with tk,, tk,, etc. Of course, this leaves the time
derivative with - 1 w.

This sign convention brings our practice into conflict with the practice of
electrical engineers, who rarely work with space axes and naturally enough
have chosen to associate 3/3t with +¢w. The only good reason I know to
adopt the engineering choice is that we compute with an array processor built
and microcoded by engineers who have of course used their own sign conven-
tion. It doesn’t matter for the programs that transform complex-valued time
functions to complex-valued frequency functions, because then the sign con-
vention is under the user’s control. But it does make a difference with the
program that converts real time functions to complex frequency functions.
The way to live in both worlds is to imagine that the frequencies produced by
the program do not range from O to +m as the description says, but from
0 to —m. Alternately, you could always take the complex conjugate of the
transform, which would swap the sign of the w-axis. With the Stolt algorithm
it is common to transform space first. Then the array processor convention
turns out to have our notation.

How to Transpose a Big Matrix

It is lucky that very large matrices can easily be transposed. This is
what makes wave-equation seismic data processing reasonable on a small min-
icomputer. By very large matrix, I mean one that is too big to fit in a
computer’s random access memory (RAM). If two copies of the data fit in the
RAM, then transposition is simply the copy operation T (i, j)= M(J, ¢).

The transpose algorithm for very large matrices is simple but tricky. I
shall begin, therefore, by describing a card trick. I have in my hands a deck
of cards from which I have removed the nines, tens, and face cards. Let a,
b, ¢, and d denote hearts, spades, clubs, and diamonds. Also, I have
arranged these cards in the following order (let ace be denoted by one):

la 10 1le¢ 1d 2a 2b 2¢ 2d 3a - 8d

Now I deal the cards face up alternately, one onto pile A and one onto pile
B. You see

Pile A: la 1c¢ 2a 2c 3a 3c --- 8a 8¢
Pile B: 1b 1d 2b 2d 3b 3d --- 8b 8d
Next I place pile A on top of (in front of) pile B, and again deal the cards out
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alternately onto pile A’ and pile B’. You see
Pile A': 1la 2 3a --- 8a 1b 20 --- 8b
Pie B': 1¢ 2¢c 3¢ ~-+- 8 1d 2d --- 8d

Now I place pile A’ on top of pile B'’. We started with all the aces
together, the twos together, etc. Now all the hearts are together, the spades
together, ete. So you see that in just two deals of the cards, I have tran-
sposed the deck. The cards were never spread out all over the table because
they never had to be randomly accessed. Transposition was done by making
sequential passes over the deck. In principle, this algorithm transposes a
matrix requiring four magnetic tapes but almost no core memory.

Now I will try the inverse transpose. Note that it takes me three deals
of the cards rather than the two deals it took for the original transpose. This
is because the deck has 22 = 4 suits and 23 = 8 numbers. Actually, there
is another algorithm which will allow me to do the inverse transpose in only
two passes rather than three. I just do everything backwards. I start with
piles A’ and B'. Then I create pile A by alternately selecting cards one
from pile A’ and one from pile B'. Likewise I create pile B. Then I
repeat this procedure. The first algorithm is called the sort algorithm, and
the second is called the merge algorithm. With these two algorithms, the
matrix transpose of a matrix of size 2" X 2™ can be done by the lesser of
n or m passes over the data.

A variety of generalizations are possible. With four card piles, techniques
could be developed for matrices of dimension 4". This would decrease the
number of passes but increase the required number of tape drives. Likewise,
it turns out that arbitrary order can be factored into primes, etc. But this
takes us too far afield.

Minimizing the number of passes over the data turns out to maximize the
number of tapes. In reality you won’t be using real tapes when you are tran-
sposing. Instead you will be simulating tape operations on a large disk
memory. Then the number of ‘“‘tapes” you choose to use will be controlled by
the ratio of the speed of random transfers to the speed of sequential transfers.

Rocca’s 2-D Fourier Transform without Transposing

The most direct method of two-dimensional Fourier transformation in a
computer is the repetitive application of a one-dimensional Fourier transform
method. The easiest part is the ‘‘fast’” direction. That is, if the data matrix
is stored by columns — as in the Fortran language — then the column
transforms are a trivial exercise in the repetitive use of a one-dimensional pro-
gram. Now for the rows. If the matrix fits in the RAM, then everything is
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easy: one row at a time can be copied into a vector; the vector can be Fourier
transformed and then copied back into the matrix row. The more typical
case is that the data doesn’t fit in the RAM but does fit in the ‘‘virtual”
memory. This means that the programmer could write T (¢, 7) = M(j, 1)
but the program would run prohibitively slowly because an entire page of vir-
tual memory would be fetched from disk just to find a single number.

Conceptually, an easy way to handle the transformation over the row
direction is to transpose the matrix, transform each column, and transpose
back. Fabio Rocca suggested a quicker and easier means of Fourier transfor-
mation over the row index. The basic Fourier transform program has certain
overhead calculations, such as computing or fetching sines and cosines. Ordi-
narily, these overhead calculations are repeated each time a Fourier transfor-
mation is performed. With Rocca’s method the overhead calculations are
done just once, and all the rows get Fourier transformed. So it is even
quicker than the straightforward approach. The method follows.

The data matrix can be regarded as a row vector whose entries are
columns. Taking the ‘“‘fast’’ index to range down the column, the columns
may be transformed by one-dimensional transforms either before or after the
row operations are done. To do the row operations, just modify an ordinary
one-dimensional Fourier transform program by replacing each scalar add or
multiply operation by the same operation on every element in the correspond-
ing column.

The order in which data is accessed makes Rocca’s row algorithm
efficient in a virtual memory environment. Before the days of virtual
memory, we implemented the Rocca row algorithm with reads and writes
around the inner loops.

To illustrate Rocca’s method, a row Fourier transformation program was
written based on the one-dimensional Fourier transformation program found
in FGDP. It is included in the next section. That program transforms com-
plex time functions to complex frequency functions. If you should decide to
write a real-to-complex Fourier transform, you should beware of the assump-
tion that real and imaginary parts are stored contiguously. This assumption
is true for the column index, but not for the row index.
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1.7 Sample Programs

The programs in this section generated many of the examples given in
this book. They were written for clarity and brevity, and they are excellent
for experimental work. Good production programs will be faster (by factors
of from 1.01 to about 4). Speed can be gained by taking advantage of various
special circumstances. For example, data is real, but these expository pro-
grams assume it to be complex.

RATional FORtran = Ratfor

Bare bones Fortran is our most universal computer language. But it is
hardly appropriate for expository discussion of algorithms. The ideal exposi-
tory language is Ratfor. Ratfor is Rational Fortran, namely, Fortran
without the blemishes. Ratfor programs (including the Ratfor preprocessor)
are readily converted to Fortran by means of the Ratfor preprocessor. Since
the preprocessor is publicly available Ratfor is practically as universal as For-
tran.t

You won’t really need the preprocessor or any precise definitions if you
already know Fortran or almost any other computer language, because then
the Ratfor language will be easy to understand. Statements on a line may be
separated by ‘;”. Statements may be grouped together with { }. Do loops
don’t require statement numbers because { } defines the range. Given that
“if ( )" is true, the statements in the following { } are done. “Else { }"’ does
what you would expect it to. Indentation is used for readability. Choose
your own style. I have overcondensed. Anything following # is a comment.
You may omit the braces { } when they contain only one statement. ‘‘Break”
will cause premature termination of the enclosing { }. “Break 2" escapes
from {{ }}. ‘““While () { }” repeats the statements in { } while the condition
()is true. “Repeat { } until ( )" is a loop that tests at the bottom. A loop-
ing statement more general than “do” is “for( initialize; condition; reinitialize)
{ }’. “Next” causes skipping to the end of any loop and a retrial of the test
condition. The Fortran relational operators .gt., .ge., .ne., etc. may be written
>, >=, =, etc. The logical operators .and. and .or. may be written &
and |. Anything that doesn’t make sense to the Ratfor preprocessor, such as

t+ Kernighan, B.W. and Plauger, P.J., 1976, Software Tools: Addison-Wesley Publishing
Company.
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Fortran input-output, is passed through without change.

Two-Dimensional Fourier Transformation

Two-dimensional Fourier transforms are based on the one-dimensional
Fourier transform. An extremely rapid way to compute the one-dimensional
Fourier transform exists and is called the Cooley-Tukey algorithm or the Fast
Fourier Transform. Unfortunately it bears little resemblance to the Fourier
integral. This method is so fast and effective that you will hardly ever see the
transform being done in the obvious way. All functions are taken to be
periodic, so physically transient functions must be regarded as functions of
very long period. Usually there is the further restriction that the period must
be exactly oV points long, where N is an integer. To understand this pro-
gram, you should look at FGDP or any number of electrical engineering
books. To write and use two-dimensional Fourier transform programs, it is
only necessary to know the one-dimensional definition of inputs and outputs.
Figure 1 shows that humans like to have ¢ =0 in the middle of the time axis
and w=0 in the middle of the frequency axis, whereas the standard one-
dimensional Fourier transform programs place t=0 and w=0 at one end
of a vector.

Humans
1 4 w
0 0
Computers
0 t 0 W

FIG. 1.7-1. Computer storage arrangement in one-dimensional Fourier
transform programs.

Take the one-dimensional Fourier transform of an eight-point time func-
tion. The zero frequency is output in the first vector element. The Nyquist
frequency m, which is the highest frequency representable on a mesh, namely
the function +1,-1,+1,-1, - - -, is in the fifth element of the eight point
function, after which follow the negative frequencies. The smallest nonzero
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negative frequency is in the eighth vector element. If there were a ninth ele-
ment, it would by periodicity be equal to the first element. It is a common
beginner’s error to find that the output of a migration is not real. The ima-
ginary part should be about 1075 of the real part, as expected for single preci-
sion arithmetic. A much larger imaginary part, proportional to 1/N where
N is the vector length, indicates a programming error.

Below is the test program for the two-dimensional program. The ‘“‘write”
statement is local Fortran, not Ratfor. The function being transformed is
something of a low-frequency function on the time axis, and very much a
low-frequency function on the space axis.

# Test case for two-dimensional Fourier Transformation
integer it,nt,ix,nx; complex cp(64,64), cwork(64)
open(4,file="plotfile’ status="new’,access="direct’ ,form="unformatted’ recl=1)
nx = 64, nt = 64;
do it=1,nt

do ix=1,nx

cp(it,ix)=0.

¢p(16,3)=1.; cp(16,4)=4.; cp(16,5)=6.; cp(16,6)=4.; cp(16,7)
cp(17,3)=1.; ¢p(17,4)=4.; cp(17,5)=6.; cp(17,6)=4.; c¢p(17,7)
call ft2d(nt,nx,cp,+1.,+1.,cwork)
write(4,rec=1) ({real(cp(it,ix)),it=1,nt),ix=1,nx)
stop; end

1.
1.

The most basic two-dimensional Fourier transform is shown below.

# 2D Fourier transform by using 1D program
subroutine ft2d (n1,n2,cp,signl,sign2,cwork)
complex cp(nl,n2),cwork(n2)

integer nl,n2

real  signl,sign2

do i2 = 1,n2 # transform over the fast dimension
call fork (nl,cp(1,i2),signl) # one-dimensional Fourier transform
do il = 1,nl { # transform over the slow dimension
do i2 = 1,n2

ework(i2) = cp(il,i2)
call fork (n2,cwork,sign2) # one-dimensional Fourier transform
do i2 = 1,n2

cp(il,i2) = cwork{i2)
}

return; end

Finally we have the one-dimensional fast Fourier transform program.
This one is the Ratfor version of Fortran ‘“fork” found in FGDP on p.12. As
usual, Ix is a power of 2, the output c¢x(1) is the zero frequency, cx(Ix/2+1) is
the so-called Nyquist frequency, and cx(lx) is the smallest negative frequency.
The algorithm is short, but tricky, and you should not expect the program to
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be readable unless you consult other references.

# 1D Tfast Fourier transform

subroutine fork(lx,cx,signi)

complex cx(Ix),carg,cexp,cw,ct

j=Lk=1, s¢ = sqri{1./Ix)

doi=1]Jx{
if (i<=j) { ct=cx(j)*sc; cx(j)=cx(i)*sc; cx(i)=ct }
m == Ix/2
while (j>m) { j=j-m; m=m/2; if (m<1) break }
J=}+m

repeat {
istep = 2*k
dom =1k {
carg = (0.,1.)%(3.14159265*signi*(m-1))/k; cw = cexp(carg)
do i = m,lx,istep
{ ct=cwxex(i+k); ex(i+k)=cx(i}-ct; ex(i)=cx(i)+ct }

2}
k = istep
} until(k>=Ix)
return; end

Fourier transforms have both real and imaginary parts. Sometimes both
are displayed. Often the imaginary part is ignored. This is because most of
our time functions vanish before ¢=0. Thus, their Fourier transforms must
satisfy certain conditions, namely, real and imaginary parts must be related
by Hilbert transform. Locally, one often looks like cosine, the other like sine.
So, seeing the real part, it is often easy to imagine the imaginary part. Figure
2 shows the output of the test program.

Stolt Migration

The Stolt migration program shown next uses linear interpolation to con-
vert the w-axis to the k,-axis. The scaling by dk,/dw has little effect, so it

was omitted to shorten the program. (Something needed to be saved for the
exercises). The test case is to make semicircles from impulses.
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FIG. 1.7-2. Output of two-dimensional Fourier transformation test program.

# Test case for Stolt migration.
real vdtodx; complex cp(256,64)
open(4,file="plotfile’ status="new’,access="direct’,form="unformatted’,recl=1)

integer it,nt,ix,nx;

nx = 64; nt = 256;

do it=1nt
do ix=1,nx

ep(it,ix)=0.
cp(32,9)=1.;  ¢p(64,17)=1;
call stolt(nt,nx,cp,vdtodx)
write{4,rec=1) ({real(cp(it,ix)),it=1,nt),ix=1,nx)

stop; end

vdtodx = 1./4.

cp(128,33)=1.
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# Stolt migration subroutine without cosine weight.
subroutine stolt(nt,nx,cp,vdtodx)
integer ikx,nx,nt,nth,iktau,ijom
real om,vkx,wl,wh,aktau,pi,pionth,vdtodx
complex cp(nt,nx),cbf(1025)
pi = 3.14159265; nth—=nt/2; pionth = pi/nth;
call ft2d{nt,nx,cp,1.,-1.,cbf)
do ikx = 1,nx
vkx = (ikx-1)*2 *pi*vdtodx/nx
if (ikx > nx/2 ) vkx = 2.*pi*vdtodx-vkx # negative k

cbf(1) =0 cbf(nt+1)=0. # cbf = working buffer
do iom = 1t
cbf(iom) = cp(iom,ikx) # Omit weighting
ep(1,ikx)=0. #£ Ignore zero freq
do iktau = 2nth+1 { # Stretch
aktau = (iktau-1.01)*pionth
om = sqrt(aktau*aktau+vkx*vkx); iom = 1+om/pionth
if(iom <nth) {
wl == jom-om/pionth; wh = 1.-wl
cp(iktau,ikx) = wl*cbf(iom)  +wh*cbf(iom+1)
cp(nt-iktau+2,ikx) = wlxcbf(nt-iom+2)+wh*cbf(nt-ilom+1)
else
cp(iktau,ikx) = 0.
}
}
call ft2d(nt,nx,cp,-1.,1.,cbf)
return; end

The output of this test program was shown in Section 1.3. To better
illustrate the periodic nature of the solution all but one semicircle was
removed and the result plotted with a nonlinear gain. Four identical plots
appear side-by-side in figure 3.

Rocca’s Row Fourier Transform

Rocca’s Fourier transform over rows is somewhat faster than the rudi-
mentary program because the basic overhead is done once, while every row
gets Fourier transformed. But the main advantage of the Rocca method over
the rudimentary method is that the data need not be transposed, and the pro-
gram runs efficiently even in a paged environment.
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FIG. 1.7-3. Periodicity of the output of the Stolt migration program.

# Try Rocca’s row Fourier transform.

# sign2 should be +1. or -1. it is the sign of i.

subroutine rowcc(n1,n2,cx,sign2,scale)
complex cx(nl,n2),emplx,cw,cdel

do il = 1,n1

do i2 = 1,n2
ex(i1,i2) = cx(i1,i2)*scale

i=1
doi=1,n2 {
if (i<=j})
m = n2/2

while (j>m) { j = j-m; m = m/2; if (m < 1) break }

j=j+m}
Istep =1
repeat {

istep = 2*Istep;

cw = 1.

call twidi(n1,ex(1,1),cx(1,j))

arg = sign2*3.14159265/Istep; cdel = cmplx(cos(arg),sin(arg))
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do m = 1Istep {
do i = m,n2,istep
call twid2(nl,cw,ex(1,1),ex(1,i+1step))
cw == cw*cdel

Istep = istep
} until(lstep>==n2)
return; end

subroutine twid1(n,cx,cy)

complex cx(n),cy(n),ct

doi=1n{ct=cx(i); cx(i)=cy(i); cyli)j=ct}
return; end

# 1f you feel like optimizing, this is the place.

subroutine twid2(n,cw,cx,cy)

complex cx(n),cy(n),ctemp,cw

doi= 1,n { ctemp = cw*cy(i); cy(i) = cx{i)-ctemp; cx(i) = cx(i)+ctemp }
return; end

EXERCISES

1. Most time functions are real. Their imaginary part is zero. Show that
this means that F (w, £) can be determined from F (~w, -k ).

2. Verify by using your computer and plotter that figure 2 is produced by
the program given.

3. The real part of the FT plotted in the previous exercise is somewhat
difficult to interpret because of the awkward placement of the negative
frequencies and wavenumbers. Modify the program so that F (w, k) has
its origin at the center (33,33) of the plotted grid. Hint: a simple
modification of f (¢, z) before Fourier transforming is sufficient; recall
the “‘shift theorem.” Write f (¢t,z) and the new, more easily inter-
preted F (w, k). Label axes. (Hale)

4. A point explosion on the earth’s surface at time ¢=0 and location
=32 provides synthetic observations in the (¢, z }-plane shown on the
left. On the right is the magnitude of the two-dimensional Fourier
transform, (w, k, )-plane. The origin is in the upper left corner of each
plot. What would these plots look like on an earth of half the velocity?
(Toldi)
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Insert the appropriate cosine obliquity function into the Stolt migration
program. Test, and verify little difference but some angle-dependent
scaling.

Write a program for diffraction by the Stolt method. That is, given
point scatterers inside the earth, generate the appropriate hyperbolas.

If you include the inverse cosine weighting function in a Stolt diffraction
program, beware of the pole at the evanescent edge. Is it better to
stretch before weighting or after? Why?

Interpolation error in the Stolt program may be reduced by reducing the
speed of oscillation of P (w) with w. To do this note that p(t) van-
ishes for negative t. So multiply P (w) by e ~*¥T before interpolation,
and then divide it out after. What is an appropriate value of the con-
stant 7 to use in the program?
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