
1.1 Exploding Reflectors 

The basic equipment for reflection seismic prospecting is a source for 
impulsive sound waves, a geophone (something like a microphone), and a mul- 
tichannel waveform display system. A survey line is defined along the earth's 
surface. I t  could be the path for a ship, in which case the receiver is called a 
hydrophone. About every 25 meters the source is activated, and the echoes 
are recorded nearby. The sound source and receiver have almost no direc- 
tional tuning capability because the frequencies that  penetrate the earth have 
wavelengths longer than the ship. Consequently, echoes can arrive from 
several directions a t  the same time. I t  is the joint task of geophysicists and 
geologists t o  interpret the results. Geophysicists assume the quantitative, 
physical, and statistical tasks. Their main goals, and the goal t o  which this 
book is mainly directed, is to  make good pictures of the earth's interior from 
the echoes. 

A Powerful Analogy 

Figure 1 shows two wave-propagation situations. The first is realistic 
field sounding. The second is a thought experiment in which the reflectors in 
the earth suddenly explode. Waves from the hypothetical explosion propagate 
up t o  the earth's surface where they are observed by a hypothetical string of 
geophones. 

Notice in the figure that  the raypaths in the field-recording case seem to  
be the same as those in the exploding-reflector case. I t  is a great conceptual 
advantage t o  imagine that  the two wavefields, the observed and the hypothet- 
ical, are indeed the same. If they are the same, then the many thousands of 
experiments that  have really been done can be ignored, and attention can be 
focused on the one hypothetical experiment. One obvious difference between 
the two cases is that  in the field geometry waves must first go down and then 
return upward along the same path, whereas in the hypothetical experiment 
they just go up. Travel time in field experiments could be divided by two. In 
practice, the data of the field experiments (two-way time) is analyzed 



1 . I  Exploding Rej lec tors  

Zero- oflset Section Exploding Reflectors 

FIG. 1.1-1. Echoes collected with a source-receiver pair moved t o  all points 
on the earth's surface (left) and the "exploding-reflectors" conceptual model 
(right). 

assuming the sound velocity to  be half its true value. 

Huygens Secondary Point Source 

Waves on the ocean have wavelengths comparable to  those of waves in 
seismic prospecting (15-500 meters), but ocean waves move slowly enough t o  
be seen. Imagine a long harbor barrier parallel t o  the beach with a small 
entrance in the barrier for the passage of ships. This is shown in figure 2. A 
plane wave incident on the barrier from the open ocean will send a wave 
through the gap in the barrier. I t  is an observed fact that  the wavefront in 
the harbor becomes a circle with the gap as its center. The difference between 
this beam of water waves and a light beam through a window is in the ratio 
of wavelength t o  hole size. 

Linearity is a property of all low-amplitude waves (not those foamy, 
breaking waves near the shore). This means that  two gaps in the harbor bar- 
rier make two semicircular wavefronts. Where the circles cross, the wave 
heights combine by simple linear addition. I t  is interesting t o  think of a bar- 
rier with many holes. In the limiting case of very many holes, the barrier 
disappears, being nothing but one gap alongside another. Semicircular wave- 
fronts combine t o  make only the incident plane wave. Hyperbolas do the 
same. Figure 3 shows hyperbolas increasing in density from left t o  right. All 
those waves a t  nonvertical angles must somehow combine with one another to  
extinguish all evidence of anything but the plane wave. 
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FIG. 1.1-2. Waves going through a gap in a barrier have semicircular wave- 
fronts (if the wavelength is long compared t o  the gap size). 

FIG. 1.1-3. A barrier with many holes (top). Waves, ( x ,  t )-space, seen 
beyond the barrier (bottom). 
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A Cartesian coordinate system has been superimposed on the ocean sur- 
face with x going along the beach and z measuring the distance from 
shore. For the analogy with reflection seismology, people are confined t o  the 
beach (the earth's surface) where they make measurements of wave height as 
a function of x and t . From this data they can make inferences about the 
existence of gaps in the barrier out in the ( x ,  2)-plane. Figure 4a shows the 
arrival time a t  the beach of a wave from the ocean through a gap. The earli- 
est arrival occurs nearest the gap. What mathematical expression determines 
the shape of the arrival curve seen in the ( a ,  t )-plane? 

FIG. 1.1-4. The left frame shows the hyperbolic wave arrival time seen a t  the 
beach. Frames t o  the right show arrivals a t  increasing distances out  in the 
water. (The x-axis is compressed from figure 2). (Gonzalez) 

at z0  (beach) at z l  at z 2  at z (barrier) 

The waves are expanding circles. An equation for a circle expanding with 
velocity v about a point (x 3, z 3) is 

Considering t t o  be a constant, i.e. taking a snapshot, equation (1) is that  of 
a circle. Considering z t o  be a constant, it is an equation in the (x, t )- 
plane for a hyperbola. Considered in the ( t  , x , z )-volume, equation (1) is that  
of a cone. Slices a t  various values of t show circles of various sizes. Slices 
of various values of z show various hyperbolas. Figure 4 shows four hyper- 
bolas. The first is the observation made a t  the beach z 0  = 0. The second is a 
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hypothetical set of observations at some distance z out in the water. The 

third set of observations is a t  z 2 ,  an even greater distance from the beach. 

The fourth set of observations is a t  z 3 ,  nearly all the way out t o  the barrier, 

where the hyperbola has degenerated t o  a point. All these hyperbolas are 
from a family of hyperbolas, each with the same asymptote. The asymptote 
refers t o  a wave that  turns nearly 90" a t  the gap and is found moving nearly 
parallel t o  the shore a t  the speed dx l d t  of a water wave. (For this water 
wave analogy i t  is presumed -incorrectly- that  the speed of water waves is 
a constant independent of water depth). 

If the original incident wave was a positive pulse, then the Huygens 
secondary source must consist of both positive and negative polarities t o  
enable the destructive interference of all but the plane wave. So the Huygens 
waveform has a phase shift. In the next section, mathematical expressions 
will be found for the Huygens secondary source. Another phenomenon, well 
known t o  boaters, is that  the largest amplitude of the Huygens semicircle is in 
the direction pointing straight towards shore. The amplitude drops t o  zero 
for waves moving parallel t o  the shore. In optics this amplitude dropoff with 
angle is called the obliquity factor. 

Migration Defined 

A dictionary gives many definitions for the word run. They are related, 
but they are distinct. The word migration in geophysical prospecting like- 
wise has about four related but distinct meanings. The simplest is like the 
meaning of the word move. When an object a t  some location in the (x , z )- 
plane is found a t  a different location a t  a later time t , then we say it moves. 
Analogously, when a wave arrival (often called an event) a t  some location in 
the (x , t )-space of geophysical observations is found a t  a different position for 
a different survey line a t  a greater depth z ,  then we say it migrates. 

T o  see this more clearly imagine the four frames of figure 4 being taken 
from a movie. During the movie, the depth z changes beginning at  the 
beach (the earth's surface) and going out to  the storm barrier. The frames 
are superimposed in figure 5a. Mainly what happens in the movie is that  the 
event migrates upward toward t =O. To  remove this dominating effect of 
vertical translation make another superposition, keeping the hyperbola tops 
all in the same place. Mathematically, the time t axis is replaced by a so- 
called retarded time axis t '=t +z / v  , shown in figure 5b. The second, more 
precise definition of migration is the motion of an event in ( x ,  t ')-space as z 
changes. After removing the vertical shift, the residual motion is mainly a 
shape change. By this definition hyperbola tops, or horizontal layers, don't 
migrate. 
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FIG. 1.1-5. Left shows a superposition of the hyperbolas of figure 4. At  the 
right the superposition incorporates a shift, called retardation t '=t +z /v , t o  
keep the hyperbola tops together. (Gonzalez) 

The hyperbolas in figure 5 really extend t o  infinity, but the drawing cuts 
each one off at a time equal fi times its earliest arrival. Thus the hyperbo- 
las shown depict only rays moving within 45" of the vertical. I t  is good t o  
remember this, tha t  the ratio of first arrival time on a hyperbola t o  any other 
arrival time gives the cosine of the angle of propagation. The cutoff on each 
hyperbola is a ray a t  45" .  Notice that  the end points of the hyperbolas on 
the drawing can be connected by a straight line. Also, the slope a t  the end of 
each hyperbola is the same. For any wavefront, the angle of the wave is 
t an  B = dx /dz in physical space. For any seismic event, the slope v dt /dx 
is sin 0, as you can see by considering a wavefront intercepting the earth's 
surface at angle 8. So, energy moving on a straight line in physical ( x ,  z )- 
space migrates along a straight line in data ( x ,  t >space. As z increases, the 
energy of all angles comes together t o  a focus. The focus is the exploding 
reflector. It is the gap in the barrier. This third definition of migration is 
that  it is the process that  somehow pushes observational data  - wave height 
as a function of x and t  - from the beach t o  the barrier. The third 
definition stresses not so much the motion itself, but the transformation from 
the beginning point t o  the ending point. 
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T o  go further, a more general example is needed than the storm barrier 
example. The barrier example is confined t o  making Huygens sources only at 
some particular z .  Sources are needed a t  other depths as well. Then, given 
a wave-extrapolation process t o  move data  t o  increasing z  values, 
exploding-reflector images are constructed with 

Image ( x ,  z )  = Wave ( t  =0, x ,  z )  (2) 

The fourth definition of migration also incorporates the definition of 
d i f i ac t i on  as the opposite of migration. 

observations model 

migration 

D i p a c t i o n  is sometimes regarded as the natural process that  creates and 
enlarges hyperboloids. Migration is the computer process that  does the 
reverse. 

Another aspect of the use of the word migration arises in Chapter 3, 
where the horizontal coordinate can be either shot-to-geophone midpoint y , 
or offset h . Hyperboloids can be downward continued in both the ( y  , t )- 
and the ( h  , t )-plane. In the ( y  , t )-plane this is called migration or imaging, 
and in the (h , t )-plane it is called focusing or velocity analysis. 

An Impulse in the Data 

The Huygens diffraction takes an isolated pulse function (delta function) 
in ( x ,  z )space and makes it into a hyperbola in (a, t >space a t  z =O. The 
converse is t o  start  from a delta function in (x , t >space a t  z  =O. This con- 
verse refers to  a seismic survey in which no echoes are recorded except a t  one 
particular location, and a t  that  location only one echo is recorded. What 
earth model is consistent with such observations? As shown in figure 6 this 
earth must contain a spherical mirror whose center is a t  the anomalous 
recording position. 

I t  is unlikely that  the processes of nature have created many spherical 
mirrors inside the earth. But when we look a t  processed geophysical data, we 
often see spherical mirrors. Obviously, such input data contains impulses that 
are not consistent with the wave-propagation theory being explained here. 
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FIG. 1.1-6. When the seismic source S is a t  the exact center of a semicircu- 
lar mirror, then, and only then, will an echo return t o  the geophone a t  the 
source. This semicircular reflector is the logical consequence of a dataset 
where one echo is found a t  only one place on the earth. 

This illustrates why petroleum prospectors study reflection seismic data pro- 
cessing, even though they personally plan t o  write no processing programs. 
The raw data is too complex t o  comprehend. The processed data gives an 
earth model, but its reliability is difficult t o  know. You may never plan t o  
build an automobile, but when you drive alone far out into the desert, you 
should know as much as you can about automobiles. 

Hand Migration 

Given a seismic event a t  (xO, to )  with a slope p = dt l dx  , let us deter- 

mine its position (x, , t, ) after migration. Consider a planar wavefront at 

angle 8 t o  the earth's surface traveling a distance dx in a time d t .  
Assuming a velocity v we have the wave angle in terms of measurable quan- 
tities. 

The vertical travel path is less than the angled path by 

- 
t, - t o c o s e  = t o  d m  ( 4 4  

A travel time t o  and a horizontal component of velocity v sin 8 gives the 

lateral location after migration: 

- x O -  t o  u sin 8 = ~ 0 - t ~ ~  v 
2 

xm - (4b) 

Consideration of a hyperbola migrating towards its apex shows why (4b) con- 
tains a minus sign. Equations (4a) and (4b) are the basic equations for 
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manual migration of reflection seismic data. They tell you where the point 
migrates, but they do not tell you how the slope p will change. 

FIG. 1.1-7. Left is a superposition of many hyperbolas. The top of each 
hyperbola lies along a straight line. That  line is like a reflector, but instead of 
using a continuous line, it is a sequence of points. Constructive interference 
gives an apparent reflection off to  the side. 

Right shows a superposition of semicircles. The bottom of each semicircle lies 
along a line that  could be the line of an observed plane wave. Instead the 
plane wave is broken into point arrivals, each being interpreted as coming 
from a semicircular mirror. Adding the mirrors yields a more steeply dipping 
reflector. 

Reflector Steepening 

Consider a vertical wall, a limiting case of a dipping bed. Its reflections, 
the asymptotes of a hyperbola, have a nonvertical steepness. This establishes 
that  migration increases the apparent steepness of dipping beds. I use the 
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words apparent steepness because it is the slope as seen in the ( x ,  t )-plane 
that  has steepened. Migration really produces its output in z . but z / v  is 
often overlain on t t o  create a migrated time section. When we say a 
hyperbola migrates t o  its apex, we are of course thinking of the migrated time 
section. Let us determine the steepening as a function of angle. 

Consider a point (xO+, t 0+) = x 0  + A, t o  + p A neighboring the origi- 

nal point (xO, to). By equation (4), this neighbor migrates t o  

Now we compute the stepout pm of the migrated event 

n- - P 1 - P  v - P - tan  0 
P m  - - -  

2 2 1 - p  v J- v 
(6) 

So slopes on migrated time sections, like slopes in Cartesian space, imply 
tangents of angles while slopes on unmigrated time sections imply sines. 

It may seem paradoxical that  dipping beds change slope on migration 
whereas flanks of hyperbolas do not change slope during downward continua- 
tion. One reason is that  migration is downward continuation plus imaging 
(selecting t =O). Another reason is that  a hyperbola is a special event that  
comes from a single source a t  a single depth whereas a dipping bed is a super- 
position of point sources from different depths. Figure 7 shows how points 
making up a line reflector diffract t o  a line reflection, and how points making 
up a line reflection migrate t o  a line reflector. 

Limitations of the Exploding-Reflector Concept 

The exploding-reflector concept is a powerful and fortunate analogy. For 
people who spend their time working entirely on data  interpretation rather 
than on processing, the exploding-reflector concept is more than a vital 
crutch. It's the only means of transportation! But for those of us who work 
on data processing, the exploding-reflector concept has a serious shortcoming. 
No one has yet figured out how t o  extend the concept t o  apply t o  data 
recorded a t  nonzero offset. Furthermore, most data is recorded a t  rather large 
offsets. In a modern marine prospecting survey, there is not one hydrophone, 
but hundreds, which are strung out in a cable towed behind the ship. The 
recording cable is typically 2-3 kilometers long. Drilling may be about 3 kilo- 
meters deep. So in practice the angles are big. Therein lie both new 
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problems and new opportunities, none of which will be considered until 
Chapter 3.  

Furthermore, even at zero offset, the exploding-reflector concept is not 
quantitatively correct. For the moment, note three obvious failings: figure 8 
shows rays that  are not predicted by the exploding-reflector model. These 
rays will be present in a zero-offset section. Lateral velocity variation is 
required for this situation t o  exist. 

FIG. 1.1-8. Two rays, not predicted by the exploding-reflector model, that  
would nevertheless be found on a zero-offset section. 

Second, the exploding-reflector concept fails with multiple reflections. 
For a flat sea floor with a two-way travel time t l ,  multiple reflections are 

predicted a t  times 2t l, 3t l, 4t  l, etc. In the exploding-reflector geometry 

the first multiple goes from reflector to  surface, then from surface t o  reflector, 
then from reflector t o  surface, for a total time 3 t  Subsequent multiples 

occur a t  times 5 t  l, 7 t  l, etc. Clearly the multiple reflections generated on 

the zero-offset section differ from those of the exploding-reflector model. 

The third failing of the exploding-reflector model is where we are able to  
see waves bounced from both sides of an  interface. The exploding-reflector 
model predicts the waves emitted by both sides have the same polarity. The 
physics of reflection coefficients says reflections from opposite sides have oppo- 
site polarities. 

Plate Tectonics Example 
Plate tectonic theory says the ocean floors are made of thin plates that  

are formed a t  volcanic ridges near the middle of the oceans. These plates 
move toward trenches in the deepest part of the ocean where they plunge 
back down into the earth. The best evidence for the theory is the lack of old 
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. 1.1-9. Top is 11 kilometers of reflection data from a survey line across 
Japan trench (Tokyo University Oceanographic Research Institute). Bot- 
shows the result of migration processing. (Ottolini) 

rocks on the floors of the earth's oceans. Generally, continents are older rocks 
jostled by the younger moving oceanic plates. The formation of plates by 
mid-ocean ridge volcanism is readily observed in a variety of ways. Whether 
the plates really do plunge a t  the trenches is not so clear observationally. 
The evidence comes from earthquake locations and from reflection seismology. 
Figure 9 shows some reflection data from the Japan trench. Two reflections 
dominate, the sea floor reflection and a deeper layer dipping down t o  the left. 
This latter is presumably the top part of a plate that  is beginning its descent 
into the earth. We can examine it for evidence of bending downward, such as 
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tension fractures near the surface. (The topmost layer is soft recent marine 
sediment loosely attached t o  the plate). 

kilometers 
0 1 2 3 4 5 6 

FIG. 1.1-10. Top is 6.5 kilometers of reflection data from a survey line 
offshore from the Texas coast of the Gulf of Mexico. Bottom shows the result 
of migration processing. (Rothman). 

Notice that  the top of the plot is not zero time. The time axis runs from 
9.5 t o  11.0 seconds. Before 9.5 sec there are no echoes - we are waiting for 
the waves t o  go between the ship and the ocean floor. Hyperbolic reflections 
around kilometers 1-3 are collapsed by migration to  form interesting "blocky" 
shapes. Look a t  the sea floor topography near kilometer 8 and the difference 
between migrated and unmigrated data sections. After migration, the sea 
floor diffraction hyperbolas move away from the plate echo (kilometer 4). 
Fractures (especially the one at  6.2 km) are more sharply defined. Finally, if 
the plate bends downward, it is not apparent from the data given. The bend- 
ing question really requires a more detailed analysis of lateral variation in 
seismic velocity. 
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For an example with petroleum interest, see figure 10, data from offshore 
Texas. Sediments are dropped where coastal rivers enter the Gulf of Mexico. 
The added weight causes slumping along steep faults. After a permeable 
sandstone layer has been identified by drilling, its reflection can be extrapo- 
lated up dip to  the nearest fault on data like figure 10. The fault is likely to  
break the continuity of the permeability trapping the upward flowing hydro- 
carbons. A sandstone a t  this depth can have a porosity of 25%. Assume a 
seismic velocity of 2.2 km/sec. Deduce the scale between physical volume and 
the data  in figure 10. Comparing the value of a volume of oil to  the size of 
that  same volume on figure 10, you can see the importance of good images. 

EXERCISES 

1. Prove the Pythagorean theorem, that  is, the length of the hypotenuse 
v t of a right triangle is determined by x 2  + z 2  = v 2 t  2. Hint: 

x 

2. Compute propagation angles for the hyperbola flanks in figure 9. 

3. Using the result of exercise 2, deduce the plunge angle of the plate. 

4. How deep is the Japan trench (water velocity is 1.5 km/sec)? 

5. On the Gulf Coast data, which direction is offshore? Why? 
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1.2 Wave Extrapolation as a 2-D Filter 

One of the main ideas in Fourier analysis is that  an impulse function (a 
delta function) can be constructed by the superposition of sinusoids (or com- 
plex exponentials). In the study of time series this construction is used for the 
impulse response of a filter. In the study of functions of space, it is used t o  
make a physical point source. 

Taking time and space together, Fourier components can be interpreted 
as monochromatic plane waves. Physical optics (and with it reflection 
seismology) becomes an extension t o  filter theory. In this section we learn the 
mathematical form, in Fourier space, of the Huygens secondary source. It is a 
two-dimensional (2-D) filter for spatial extrapolation of wavefields. 

Rays and Fronts 

Figure 1 depicts a ray moving down into the earth a t  an angle 0 from 
the vertical. Perpendicular t o  the ray is a wavefront. By elementary 
geometry the angle between the wavefront and the earth's surface is also 0. 
The ray increases its length at  a speed v .  The speed that  is observable on 
the earth's surface is the intercept of the wavefront with the earth's surface. 
This speed, namely v /sin 0, is faster than v . Likewise, the speed of the 
intercept of the wavefront and the vertical axis is v /cos 0. A mathematical 
expression for a straight line, like that  shown to  be the wavefront in figure 1, 

is 

z = z 0  - x tan 6' (1) 

In this expression z 0  is the intercept between the wavefront and the 
vertical axis. T o  make the intercept move downward, replace it by the 
appropriate velocity times time: 

z = 
t 

v--  x tan  0 
cos 0 

Solving for time gives 

z x 
t ( x ,  z )  = - cos 0 + - sin 0 

v v 

Equation (3) tells the time that  the wavefront will pass any particular location 
( x ,  z ) .  The expression for a shifted waveform of arbitrary shape is 

j ( t  - to). Using (3) t o  define the time shift t o  gives an expression for a 
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FIG. 1.2-1. Downgoing ray and wavefront. 

wavefield that  is some waveform moving on a ray. 

x Z 
moving wavefield = j sin 0 - - cos 0 

v I 
Waves in Fourier Space 

Arbitrary functions can be made from the superposition of sinusoids. 
Sinusoids and complex exponentials often occur. One reason they occur is 
that  they are the solutions t o  linear partial differential equations (PDEs) with 
constant coefficients. The PDEs arise because most laws of physics are 
expressible as PDEs. 

Using Fourier integrals on time functions we encounter the Fourier ker- 
nel exp(-iwt ). Specializing the arbitrary function in equation (4) t o  be the 
real part of the function exp[-i w(t -t o)] gives 

Z 
moving cosine wave = cos [-I 2 sin 8 + - cos o - t 

v v I (5) 

To  use Fourier integrals on the space-axis x the spatial angular frequency 
must be defined. Since we will ultimately encounter many space axes (three 
for shot, three for geophone, also the midpoint and offset), the convention will 
be t o  use a subscript on the letter k t o  denote the axis being Fourier 
transformed. So k, is the angular spatial frequency on the x-axis and 

exp(ik, x ) is its Fourier kernel. For each axis and Fourier kernel there is the 

question of the sign of i. The sign convention used here is the one used in 
most physics books, namely, the one that  agrees with equation (5). Reasons 
for the choice are given in Section 1.6. With this convention, a wave moves 
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in the positive direction along the space axes. Thus the Fourier kernel for 
( x ,  z ,  t )-space will be taken to  be 

Fourier kernel = 

- ik ,z  i k , z  - j u t  - e e e = exp[i(kxx + k , z  - w t ) ]  (6) 

Now for the whistles, bells, and trumpets. Equating (5) t o  the real part 
of (6), physical angles and velocity are related t o  Fourier components. These 
relations should be memorized! 

Equally important is what comes next. Insert the angle definitions into the 
familiar relation sin2 9 + cos2 9 = 1. This gives a most important relation- 
ship, known as the dispersion relation of the scalar wave equation. 

Angles and Fourier Components 

We'll encounter dispersion relations and the scalar wave equation later. The 
importance of (8) is that  it enables us to  make the distinction between an 
arbitrary function and a chaotic function that  actually is a wavefield. Take 
any function p ( t  , x , z ). Fourier transform i t  t o  P (w,  kz , kz ). Look in the 

(o, k,, k,)-volume for any nonvanishing values of P .  You will have a 

wavefield if and only if all nonvanishing P have coordinates that  satisfy (8). 
Even better, in practice the (x , t )-dependence a t  z =O is usually known, but 
the z -dependence is not. Then the z -dependence is found by assuming P is 
a wavefield, so the z-dependence is inferred from (8). 

kx 
sin 6' = - 

w 

Migration Improves Horizontal Resolution 

kz 
cos 9 = - 

W 

In principle, migration converts hyperbolas t o  points. In practice, hyper- 
bolas don't collapse t o  a point, they collapse t o  a focus. A focus has measur- 
able dimensions. Migration is said t o  be "good" because i t  increases spatial 
resolution. I t  squeezes a large hyperbola down to  a tiny focus. T o  quantita- 
tively describe the improvement of migration, the size of the hyperbola and 
the size of the focus must be defined. Figure 2 shows various ways of measur- 
ing the size of a hyperbola. 
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A ~1 l 
FIG. 1.2-2. Measurements of width parameters of a hyperbola. 

The hyperbola carries an impulsive arrival. So the w-bandwidth of the 
hyperbola is roughly given by the zero crossings on the time axis of the main 
energy burst. I'll mention 50 Hz as a typical value, though you could 
encounter values four times higher or four times lower. Knowledge of a 
seismic velocity determines depth resolution. I'll suggest 3 km/sec, though 
once again you could encounter velocities four times greater or four times less. 
These values imply a seismic wavelength of v / f = 60 meters. But the 
effective seismic wavelength is half the actual wavelength. The half comes 
from halving the velocity v in exploding reflector calculations, or 
equivalently, from realizing that  the seismic wavelength is divided equally into 
upgoing and downgoing parts. Resolving power is customarily defined as 
about half the effective wavelength or about 15 meters. (Whether seismic 
resolution should be half the effective wavelength or a smaller fraction is an 
issue that  involves signal-to-noise considerations outside our present study). 

The lateral resolution requires estimates of hyperbola width and focus 
width. Figure 2 shows three hyperbola widths. The widest, A x l,  includes 

about three-quarters of the energy in the hyperbola. Next is the width A x2, 
called the Fresnel Zone. I t  is measured across the hyperbola a t  the time 
when the first arrival has just changed polarity. Third is the smallest measur- 
able width, found far out on a flank. This width, A x3, is the shortest 
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horizontal wavelength t o  be found. Resolution is the study of the size of 
error, and it is not especially useful t o  be precise about the error in the error. 
The main idea is that  A x l  > A x 2  > Ax,. The bandwidth of the spatial 

k, spectrum is roughly l / A  x 3 .  How small a focus can migration make? It 

will be limited by the available bandwidth in the k, spectrum. The size of 

the focus will be about the same as A x ,. 

FIG. 1.2-3. Fresnel zone in ( x  , x )-space (left) and in ( x  , t >space (right). 

Figure 3 shows the geometry of the Fresnel zone concept. A Fresnel zone 
is an  intercept of a spherical wave with a plane. The intercept is defined 
when the spherical wave penetrates the plane t o  a depth of a half wavelength. 
What is the meaning of the Fresnel width A x2? Imagine yourself in Berlin. 

There is a wall there. You may not go near it. Imagine a hole in the wail. 
You are shouting to  a friend on the opposite side. How does the loudness of 
the sound depend on the size of the hole A X ?  It is not obvious, but i t  is 
well known, both theoretically and experimentally, that  holes larger than the 
Fresnel zone cause little attenuation, but smaller holes restrict the sound in 
proportion t o  their size. 

Wave propagation is a convolutional filter that  smears information from 
a region A x 2  along a reflector (or A x in the subsurface) t o  a point on 

the surface. Migration, the reverse of wave propagation, is the deconvolution 
operation. The final amount of lateral resolution is limited by the spatial 
bandwidth of the data. 

Migration may be called for even where reflectors show no dip. When a 
well site is t o  be chosen within an accuracy of less than A x 2  then the 



MIGRA TION 1.2  Extrapolation as a 2-D Filter 

interpreter is looking a t  subtle changes in amplitude or waveform along the 
reflector. Migration causes these amplitude and waveform variations t o  
change and t o  move horizontally along the reflector. The distance moved is 
about equal the Fresnel zone. 

FIG. 1.2-4. Hyperboloids for an earth of velocity increasing with depth. 
Observable lateral wavelengths get longer with increasing depth. Thus lateral 
resolving power decreases with depth. 

A basic fact of seismology is the resolution limitation caused by the 
increase with depth of the seismic velocity. What happens is that  as the 
waves get deeper into the earth, their spatial wavelengths get longer because 
of the increasing velocity. The case of vertical resolution is simply this: longer 
wavelengths, less resolution. The case of horizontal resolution is similar, but  
the horizontal wavelength is directly measurable a t  the earth's surface. Fig- 
ure 4 demonstrates this. Hyperboloids from shallow and deep scatterers are 
shown. Shallow hyperbolas have early tops and steep asymptotes. Deep 
scatterers have late tops and less steep asymptotes. The less steep asymp- 
totes have longer horizontal wavelength. Horizontal wavelengths measured a t  
the surface are unchanged a t  depth, even though velocity increases with 
depth. (This implication of Snell's law is shown in Section 1.5). Thus, lateral 
spatial resolution gets worse with depth. Compounding the above reason for 
decreasing resolution is the loss of high-frequency energy a t  late travel time. 
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Two-Dimensional Fourier Transform 

Before going any further, let us review some basic facts about two- 
dimensional Fourier transformation. A two-dimensional function is 
represented in a computer as numerical values in a matrix. A one- 
dimensional Fourier transform in a computer is an operation on a vector. A 
two-dimensional Fourier transform may be computed by a sequence of one- 
dimensional Fourier transforms. You may first transform each column vector 
of the matrix and then transform each row vector of the matrix. Alternately 
you may first do the rows and later do the columns. This is diagramed as fol- 
lows: 

A notational problem on the diagram is that  we cannot maintain the 
usual convention of using a lower-case letter for the domain of physical space 
and an upper-case letter for the Fourier domain, because that  convention can- 
not include the mixed objects P ( t  , k, ) and P (w, x ). Rather than invent 

some new notation it seems best to  let the reader use the context t o  cope with 
this notational problem. The arguments of the function must help name the 
function. 

An example of these transformations on typical deep-ocean data is shown 
in figure 5. 

In the deep ocean, sediments are fine-grained and deposit slowly in flat, 
regular, horizontal beds. The lack of permeable rocks like sandstone severely 
reduces the potential for petroleum production from the deep ocean. The 
fine-grained shales overlay irregular, igneous, basement rocks. In the plot of 
P ( t  , k, ) the lateral continuity of the sediments is shown by the strong spec- 

trum a t  low k,. The igneous rocks show a k, spectrum extending t o  such 

large k, tha t  the deep data may be somewhat spatially aliased (sampled too 

coarsely). The plot of P(w, x )  shows that  the data contains no low- 
frequency energy. At  large w the energy is not dropping off as fast as one 
might like, which indicates temporal frequency aliasing. This aliasing is also 
apparent in the plot of p ( t  , x ) in the steplike appearance of the sea-floor 
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FIG. 1.2-5. A deep-marine dataset p ( t  , x ) from Alaska (U.S. Geological 
Survey) and the real part of various Fourier transforms of it. Because of the 
long travel time through the water, the time axis does not begin a t  t =O. 

arrival. The dip of the sea floor shows up in (w, k,)-space as the energy 

crossing the origin a t  an angle. 

Altogether, the two-dimensional Fourier transform of a collection of 
seismograms involves only twice as much computation as the one-dimensional 
Fourier transform of each seismogram. This is lucky. Let us write some 
equations t o  establish that  the asserted procedure does indeed do a two- 
dimensional Fourier transform. Say first that  any function of x and t 



MIGRA TION 1 .2  Extrapolation as a 2-D Filter 

may be expressed as a superposition of sinusoidal functions: 
- iwt+i kzz  

P ( ~ , x )  = Is P (w, k, ) d w dk, 

(Sign convention used in Fourier transformation is explained in Section 1.6). 
The kernel in this inverse Fourier transform has the form of a wave moving 
in the plus x direction. Likewise, in the forward Fourier transform, the signs 
of both exponentials change, preserving the fact that  the kernel is a wave 
moving positively. The scale factor and the infinite limits are omitted a .  a 
matter of convenience. (The limits and scale both differ from the sampled- 
time computation, so why bother?) The double integration can be nested t o  
show tha t  the temporal transforms are done first (inside): 

P ( ~ , x )  = J e  ' k z z  [J e-iwt P(w,  k,) dw] dk, 

The quantity in brackets is a Fourier transform over w done for each and 
every k,. Alternately, the nesting could be done with the k,-integral on the 

inside. That  would imply rows first instead of columns (or vice versa). I t  is 
the separability of exp(-iwt + i k, x )  into a product of exponentials that  

makes the computation this easy and cheap. 

The Input-Output Relation 

At  the heart of the migration process is the operation of downward con- 
tinuing data. Given the input data on the plane of the earth's surface z =0, 
we must manufacture the data that  could be recorded a t  depth z .  This is 
most easily done in the Fourier domain. The method will be seen t o  be sim- 
ply multiplication by a complex exponential, namely, 

Since the operation is a multiplication in the Fourier domain, i t  may be 
described as an engineering diagram. 

Filter 
input I I output 

Downward continuation is a product relationship in both the w-domain 
and the k,-domain. What does the filter look like in the time and space 
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domain? I t  turns out like a cone, that  is, i t  is roughly an impulse function of 
2 + z - v t 2. More precisely, it is the Huygens secondary wave source 
that  was exemplified by ocean waves entering a gap through a storm barrier. 
Adding up the response of multiple gaps in the barrier would be convolution 
over x .  Superposing many incident ocean waves would be convolution over 
t .  

Now let us see why the downward continuation filter has the mathemati- 
cal form stated. Every point in the (w, k,)-plane refers t o  a sinusoidal plane 

wave. The variation with depth will also be sinusoidal, namely exp(ik, z ). 
The value of k, for the plane wave is found simply by solving equation (8): 

w 
= f - cos 9 

v 

Choice of the plus sign means that  exp(-i wt + i k, z ) is a downgoing wave 

(because the phase will stay constant if z increases a s  t increases). Choice 
of a minus sign makes the wave upcoming. The exploding-reflector concept 
requires upcoming waves, so we nearly always use the minus sign, whether we 
are migrating or modeling. 

The input-output filter, being of the form e '4, appears t o  be a phase- 
shifting filter with no arnplitude scaling. This bodes well for our plans t o  
deconvolve. I t  means that  signal-to-noise power considerations will be much 
less relevant for migration than for ordinary filtering. 

EXERCISES 

1. Suppose that  you are able t o  observe some shear waves a t  ordinary 
seismic frequencies. Is the spatial resolution better, equal, or worse than 
usual? Why? 

2. Scan this book for hyperbolic arrivals on field data  and measure the 
Fresnel zone width. Where zero offset recordings are not made, a valid 
approximation is to  measure A x 2  along a tilted line. 

3. Explain the horizontal "layering" in figure 1.2-5 in the plot of P (w, x ) .  
What determines the "layer" separation? What determines the "layer" 
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slope? 

4. Evolution of a wavefield with time is described by 

dlc, dt, 

Let P (k,, k, , 0) be constant, signifying a point source at the origin in 
( x ,  z)-space. Let t be very large, meaning that  phase = = 

[-w(k,, k,) + t, (x / t  ) + k, (z / t  )]t  in the integration is rapidly alter- 
nating with changes in k, and k,. Assume that  the only significant 

contribution t o  the integral comes when the phase is stationary, that  is, 
where dq!J/dk, and aq!J/dk, both vanish. Where is the energy in 

(x , z , t )-space? 

5. Downward continuation of a wave is expressed by 

Let P (k, , 0, w )  be constant, signifying a point source a t  the origin in 
(x , t )-space. Where is the energy in (x , z , t )-space? 

1.3 Four Wide-Angle Migration Methods 

The four methods of migration of reflection seismic data  that  are 
described here are all found in modern production environments. As a group 
they handle wide-angle rays easily. As a group they are used less successfully 
t o  deal with lateral velocity variation. 

Travel-Time Depth 

Conceptually, the output of a migration program is a picture in the 
(x , z )-plane. In practice the vertical axis is almost never depth z ;  it is the 
vert ical  travel t i m e  T. In a constant-velocity earth the time and the depth are 
related by a simple scale factor. The meaning of the scale factor is that  the 
(x , T)-plane has a vertical exaggeration compared t o  the (x , z )-plane. In 
reconnaissance work, the vertical is often exaggerated by about a factor of 
five. By the time prospects have been sufficiently narrowed for a drill site to  
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be selected, the vertical exaggeration factor in use is likely t o  be about unity 
(no exaggeration). 

The travel-time depth T is usually defined to  include the time for both 
the wave going down and the wave coming up. The factor of two thus intro- 
duced quickly disappears into the rock velocity. Recall that  zero-offset data 
sections are generally interpreted a s  exploding-reflector wavefields. T o  make 
the correspondence, the rock velocity is cut in half for the wave analysis: 

2 2 
T = - -  

2 - -  
'true half 

The first task in interpretation of seismic data is t o  figure out the 
approximate numerical value of the vertical exaggeration. It probably won't 
be printed on the data header because the seismic velocity is not really 
known. Furthermore, the velocity usually increases with depth, which means 
that  the vertical exaggeration decreases with depth. For velocity-stratified 
media, the time-to-depth conversion formula is 

Hyperbola-Summation and Semicircle-Superposition Methods 

The methods of hyperbola summation and semicircle superposition are 
the most comprehensible of all known methods. 

Recall the equation for a conic section, that  is, a circle in ( x ,  2)-space 
or a hyperbola in ( x ,  t >space. Converting t o  travel-time depth T 

2 x + z 2  = v 2 t 2  (34 

Figure 1 illustrates the semicircle-superposition method. (Both the 
figure and its caption are from Schneider's classic paper [1971]). Taking the 
data  field t o  contain a few impulse functions, the output should be a superpo- 
sition of the appropriate semicircles. Each semicircle denotes the spherical- 
reflector earth model that  would be implied by a dataset with a single pulse. 
Taking the data field t o  be one thousand seismograms of one thousand points 
each, then the output is a superposition of one million sen~icircles. Since a 
seismogram has both positive and negative polarities, about half the semicir- 
cles will be superposed with negative polarities. The resulting superposition 
could look like almost anything. Indeed, the semicircles might mutually de- 

stroy one another almost everywhere except a t  one isolated impulse in (x , 7)- 



1 .3  Wide-Angle Migration 

space. Should this happen you might rightly suspect that  the input data sec- 
tion in ( x ,  t )-space is a Huygens secondary source, namely, energy concen- 
trated along a hyperbola. This leads us to  the hyperbola-summation method. 

SOURCE x - RECEIVER 

LOCI OF EOUAL 
TRAVEL TIMES 

INPUT TRACE 

FIG. 1.3-1. The process may be described in numerous ways. Two very sim- 
ple and equally valid representations are indicated in figures 1 and 2. Shown 
here is a representation of the process in terms of what happens t o  a single 
input trace plotted in depth (time may also be used) midway between its 
source and receiver. Each amplitude value of this trace is mapped into the 
subsurface along a curve representing the loci of points for which the travel 
time from source t o  reflection point t o  receiver is constant. If the velocity is 
constant, these curves are ellipses with source and receiver as foci. The pic- 
ture produced by this operation is simply a wavefront chart modulated by the 
trace amplitude information. This clearly is not a useful image in itself, but 
when the map is composited with similar maps from neighboring traces (and 
common-depth-point traces of different offsets), useful subsurface images are 
produced by virtue of constructive and destructive interference between wave- 
fronts in the classical Huygens sense. For example, wavefronts from neighbor- 
ing traces will all intersect on a diffraction source, adding constructively to  
produce an image of the diffractor as a high-amplitude blob whose ( 2 ,  x )  
resolution is controlled by the pulse bandwidth and the horizontal aperture of 
the array of neighboring traces composited. For a reflecting surface, on the 
other hand, wavefronts from adjacent traces are tangent t o  the surface and 
produce an image of the reflector by constructive interference of overlapping 
portions of adjacent wavefronts. In subsurface regions devoid of reflecting 
and scattering bodies, the wavefronts tend t o  cancel by random addition. 
(from Schneider, W. A., 1971 [by permission]) 
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The hyperbola-summation method of migration is depicted in figure 2. 
The idea is t o  create one point in ( x ,  r jspace at a time, unlike in the semi- 
circle method, where each point in ( x ,  T)-space is built up bit by bit as the 
one million semicircles are stacked together. T o  create one fixed point in the 
output (x , T)-space, imagine a hyperbola, equation (3b), set down with its top 
on the corresponding position of (x ,  t )-space. All data values touching the 
hyperbola are added together t o  produce a value for the output at the 
appropriate place in ( x ,  T)-space. In the same way, all other locations in 
( x ,  T)-space are filled. We can wonder whether the hyperbola-migration 
method is better or  worse than or equivalent t o  the semicircle method. 

OUTPUT TRACE 

FIG. 1.3-2. A second description of the process is provided here. The process 
is represented in terms of how an output trace is developed from an ensemble 
of input traces, shown as CDP-stacked traces in the upper half of the figure. 
The output in the lower half reflects how each amplitude value a t  ( x ,  x )  is 
obtained by summing input amplitudes along the travel-time curve shown. 
This curve defines a diffraction hyperbola. If a diffraction source existed in 
the subsurface a t  the output point shown, then a large amplitude would 
result. The process also works for reflectors since a reflector may be regarded 
as a continuum of diffracting elements whose individual images merge t o  pro- 
duce a smooth continuous boundary. (also from Schneider, 1971) 
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The opposite of data processing or building models from data  is con- 
structing synthetic data from models. With a slight change, the above two 
processing programs can be converted t o  modeling programs. Instead of 
hyperbola summation or senzicircle superposition, you do hyperbola superposi- 
tion or semicircle sumnzation. We can also wonder whether the processing 
programs really are inverse to  the modeling programs. Some factors that  need 
t o  be considered are (1) the angle-dependence of amplitude (the obliquity 
function) of the Huygens waveform, (2) spherical spreading of energy, and (3) 
the phase-shift on the Huygens waveform. I t  turns out that  results are rea- 
sonably good even when these complicating factors are ignored. 

As other methods of migration were developed, the deficiencies of the 
earlier methods were more clearly understood and found t o  be largely correct- 
able by careful implementation. One advantage of the later methods is that  
they implement true all-pass filters. Such migrations preserve the general 
appearance of the data. This suggests restoration of high frequencies, which 
tend t o  be destroyed by hyperbolic integrations. Work with the Kirchhoff 
diffraction integral by Trorey [I9701 and Hilterman [I9701 led t o  forward 
modeling programs. Eventually (Schneider [1977]) this work suggested quanti- 
tative means of bringing hyperbola methods into agreement with other 
methods, at least for constant velocity. Common terminology nowadays is t o  
refer t o  any hyperbola or semicircular method as a Kirchhoff method, 
although, strictly speaking, the Kirchhoff integral applies only in the 
constant-velocity case. 

Spatial Aliasing 

Spatial aliasing means insufficient sampling of the data along the space 
axis. This difficulty is so universal, that  all migration methods must consider 
it. 

Data should be sampled a t  more than two points per wavelength. Other- 
wise the wave arrival direction becomes ambiguous. Figure 3 shows synthetic 
data  that  is sampled with insufficient density along the x-axis. You can see 
that  the problem becomes more acute a t  high frequencies and steep dips. 

There is no generally-accepted, automatic method for migrating spatially 
aliased data. In such cases, human beings may do better than machines, 
because of their skill in recognizing true slopes. When the data  is adequately 
sampled, however, computer migration based on the wave equation gives 
better results than manual methods. Contemporary surveys are usually ade- 
quately sampled along the line of the survey, but there is often difficulty in 
the perpendicular direction. 
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FIG. 1.3-3. Insufficient spatial sampling of synthetic data. T o  better perceive 
the ambiguity of arrival angle, view the figures a t  a grazing angle from the 
side. 

The hyperbola-sum-type methods run the risk of the migration operator 
itself becoming spatially aliased. This should be avoided by careful imple- 
mentation. The first thing t o  realize is that  you should be integrating along 
a hyperbolic trajectory. A summation incorporating only one point per trace 
is a poor approximation. I t  is better t o  incorporate more points, as depicted 
in figure 4. The likelihood of getting an aliased operator increases where the 
hyperbola is steeply sloped. In production examples an aliased operator often 
stands out above the sea-floor reflection, where - although the sea floor may 
be flat - it acquires a noisy precursor due to the steeply flanked hyperbola 
crossing the sea floor. 

The Phase-Shift Method (Gazdag) 

The phase-shift method proceeds straightforwardly by extrapolating 
downward with exp(ik, z ) and subsequently evaluating the wavefield at  

t =O (the reflectors explode a t  t =O). Of all the wide-angle methods it most 
easily incorporates depth variation in velocity. Even the phase angle and 
obliquity function are correctly included, automatically. Unlike Kirchhoff 
methods, with this method there is no danger of aliasing the operator. 
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FIG. 1.3-4. For a low-velocity hyperbo- 
la, integration will require more than 
one point per channel. 

The phase-shift method begins with a two-dimensional Fourier transform 
(2D-FT) of the dataset. (Some practical details about 2D-FT are described in 
Section 1.7). Then the transformed data values, all in the (w, k, >plane, are 

downward continued t o  a depth Az by multiplying by 
2 1/2 

i k,Az  
e 

kx 
= exp { i  1 [,I ] AT] 

Ordinarily the time-sample interval AT for the output-migrated section is 
chosen equal to  the time-sample rate of the input data  (often 4 milliseconds). 
Thus, choosing the depth Az = v AT, the downward-extrapolation operator 
for a single time unit is 

Data will be multiplied many times by C ,  thereby downward continuing it 
by many steps of AT. 

Next is the task of imaging. A t  each depth an inverse Fourier transform 
is followed by selection of its value a t  t =O. (Reflectors explode a t  t =O). 
Luckily, only the Fourier transform at  one point, t =0, is needed, so that  is 
all tha t  need be computed. The computation is especially easy since the value 
a t  t =O is merely a summation of each w frequency component. (This may 
be seen by substituting t =O into the inverse Fourier integral). Finally, 
inverse Fourier transform kz t o  x .  The migration process, computing the 

image from the upcoming wave u , may be summarized as follows: 
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U (w, k, ) = FT [ u ( t  , x )I 
For T = AT,   AT, . - - , end of time axis on seismogram { 

For all & { 
Image (k, 9 T) = 0. 

For all w { 
C = exp ( - i  wArd-) 

U(o,  k,) = U(w, k.,) * C 
Image (k, , T) = Image (k, , T) + U (w, k, ) 
} 

} 
image ( x ,  T) = FT [Image (k, , T)] 

1 

Inverse migration (modeling) proceeds in much the same way. Beginning 
from an upcoming wave that  is zero a t  great depth, the wave is marched 
upward in steps by multiplication with exp(i k, A z) .  As each level in the 

earth is passed, exploding reflectors from that  level are added into the upcom- 
ing wave. The program for modeling the upcoming wave u is 

Image (k, , z ) = FT [ image (x , z )] 
For all w and all k, 

U (w, k, ) = 0. 

For all w { 
For all k, { 
For z = zm,, z,,Az, z m ax -2Az, . . . ,O { 

c = exp( + i ~z w d- ) 
U (w, k, ) = U (w, k, ) * C + Image (k, , z ) 
} > I  

u ( t  , x )  = FT [ U(w, k,)] 

The positive sign in the complex exponential is a combination of two nega- 
tives, the upcoming wave and the upward extrapolation. The three loops on 
w, k, , and z are interchangeable. When the velocity v is a constant func- 

tion of depth the program can be speeded by moving the computation of the 
complex exponential C out of the inner loop on z .  

The velocity is hardly ever known precisely, so although i t  may be 
increasing steadily with depth, it is often approximated as constant in layers 
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instead of slowly changing a t  each of the thousand or so time points on a 
seismogram. The advantage of this approximation is economy. Once the 
square root and the sines and cosines in (5) have been computed, the complex 
multiplier (5) can be reused many times. With a 4-millisecond sample rate 
and a layer 200 milliseconds thick, the complex multiplier gets used 50 times 
before it is abandoned. 

The Stolt Method 

On most computers the Stolt method of migration is the fastest one - 
by a wide margin. For many applications, this will be its most important 
attribute. For a constant-velocity earth it incorporates the Huygens wave 
source exactly correctly. Like the other methods, this migration method can 
be reversed and made into a modeling program. One drawback, a matter of 
principle, is that  the Stolt method does not handle depth variation in velocity. 
This drawback is largely offset in practice by an approximate correction that  
uses an axis-stretching procedure (Section 4.5). A practical problem is the 
periodicity of all the Fourier transforms. In principle this is no problem a t  all, 
since it can be solved by adequately surrounding the data  by zeroes. 

A single line sketch of the Stolt method is this: 

T o  see why this works, begin with the input-output relation for down- 
ward extrapolation of wavefields: 

i kzr 
P(w,k , ,  z )  = e P (w, k,, z =O) 

Perform a two-dimensional inverse Fourier transform: 

i k,z-iwt+i k z z  
p ( t , x , z )  = JJ e P (w, k, , 0) d w dk, 

Apply the idea that  the image a t  ( x ,  z )  is the exploding-reflector wave a t  
time t =0: 

i k z x  
Image (x , z ) = JJ e e ( P (w, k, , 0) d w dk, 

Equation (7) gives the final image, but it is in an unattractive form, since 
it implies that  a two-dimensional integration must be done for each and every 
z-level. The Stolt procedure converts the three-dimensional calculation thus 
implied by (7) to  a single two-dimensional Fourier transform. 

So far nothing has been done t o  specify an upcoming wave instead of a 
downgoing wave. The direction of the wave is defined by the relationship of 
z and t that  is required t o  keep the phase constant in the expression 
exp(-i wt + ilc, z ). If w were always positive, then +k, would always refer 
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t o  a downgoing wave and -k, t o  an upcoming wave. Negative frequencies 

w as well as positive frequencies are needed t o  describe waves that  have real 
(not complex) values. So the proper description for a downgoing wave is that  
the signs of w and k, must be the same. The proper description for an 

upcoming wave is the reverse. With this clarification the integration variable 
in (7) will be changed from w to  k,. 

w = - sgn (k, ) v Jm 

Pu t  (8) into (7), and include also a minus sign so that  the integration on k, 

goes from minus infinity to  plus infinity as was the integration on w. 

Image(x, z )  = (9) 

= J J e i k , ~ + q t  Ikz I 
P [ ~ ( k , ,  k, ), k,, 01 dk, dk, 

J- 

Equation (9) states the result as a two-dimensional inverse Fourier transform. 
The Stolt migration method is a direct implementation of (9). The steps of 
the algorithm are 

1. Double Fourier transform data from p ( t  , x , 0) t o  P (w, Ic, , 0). 

2. Interpolate P onto a new mesh so that  it is a function of k, and 

k,. Multiply P by the scale factor (which has the interpretation 

cos el. 
3. Inverse Fourier transform t o  (x , z )-space. 

Samples of Stolt migration of impulses are shown in figure 5. You can 
see the expected semicircular smiles. You can also see a semicircular frown 
hanging from the bottom of each semicircle. The worst frown is on the 
deepest spike. The semicircular mirrors have centers not only a t  the earth's 
surface z =0 but also a t  the bottom of the model z =z,,. It is known 

that  these frowns can be suppressed by interpolating more carefully. (Interpo- 
lation is the way you convert from a uniform mesh in w, t o  a uniform mesh 
in k, ). Interpolate with say a sinc function instead of a linear interpolator. 

(See Section 4.5). A simpler alternative is t o  stay away from the bottom of 
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the model, i.e. pad with lots of zeroes. 

FIG. 1.3-5. Response of Stolt method t o  data with impulses. Semicircles are 
seen, along with computation artifacts. 

I t  seems that  an extraordinary amount of zero padding is required on the 
time axis. T o  keep memory requirements reasonable, the algorithm can be 
reorganized as described in an exercise. Naturally, the periodicity in x also 
requires padding the x-axis with zeroes. 

Hyperbola Summation Refined into the Kirchhoff Method 

Schneider [I9781 states the analytic representation for the Huygens secon- 
dary wavelet 

where r is the distance d- between the (exploding reflector) 

source and the receiver. The function (10) contains a pole and the derivative 
of a step function. Because of the infinities it really cannot be graphed. But 
from the mathematical form you immediately recognize that  the disturbance 
concentrates on the expected cone. The derivative of the step function gives 
a positive impulsive arrival on the cone. The derivative of the inverse square 
root gives the impulse a tail of negative polarity decaying with a -312 power. 
The cosine obliquity arises because the derivative is a z derivative and not 
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an r derivative. 

Equation (10) states the two-dimensional I-Iuygens wavelet, not the 
three-dimensional wavelet (which differs in some minor aspects). Although 
waves from point sources are mainly spherical, the focusing of bent layers is 
mainly a two-dimensional focusing, i.e., bent layers are more like cylinders 
than spheres. 

FIG. 1.3-6. The Huygens wavelet (top) and a smoothed time integral (bot- 
tom). 

You might wonder why anyone would prefer approximations, given the 
exact inverse transform (10). The difficulty of graphing (10) shows up in prac- 
tice as a difficulty in convolving it with data. That  is why early Kirchhoff 
migrations were generally recognizable by precursor noise above a flat sea 
floor. Chapters 2 and 4 are largely devoted to  extensions of (10) that  are 
valid with variable velocity and that  are better representations on a data 
mesh. 

In the Fourier domain, the Huygens secondary source function is simple 
and smooth. I t  is a straightforward matter t o  evaluate the function on a rec- 
tangular mesh and inverse transform with the programs in Section 1.7. Fig- 
ure 6 shows the result on a 256 X 64 point mesh. (In practice the mesh 
would be about 1024 X 256 or more, but the coarser mesh used here provides 
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a plot of suitable detail). Because of the difficulty in plotting functions that  
resemble an impulsive doublet, a second plot of the time integral, (with gentle 
band limiting) is displayed in the lower part of figure 6. 

Data Model Migrated Time Section 

FIG. 1.3-7. Velocity error sensitivity increases with angle up t o  90" . Migra- 
tion of a data  impulse as a function of velocity. Three possible choices of con- 
stant velocity are shown superposed on one plane. 

Sensitivity of Migration to Velocity Error 

Figure 7 shows how the migration impulse response depends on velocity. 
Recall that  migrated data is ordinarily displayed as a time section. Arbitrary 
velocity error makes no difference for horizontal bedding. 

Different people have different accuracy criteria. A reasonable criterion is 
that  the positioning error of the energy in the semicircles should be less than 
a half-wavelength. For the energy moving horizontally, the positioning error 
is simply related t o  the dominant period A T  and the travel time T .  The 
ratio T / A T  is rarely observed t o  exceed 100. This 100 seems t o  be a fun- 
damental observational parameter of reflection seismology in sedimentary 
rock. (Theoretically, it might be related t o  the "Q " of sedimentary rock or it 
may relate t o  generation of chaotic internal multiple reflections. Larger 
values than 100 occur when (1) much of the path is in water or (2) a t  time 
depths greater than about 4 seconds). Figure 8 compares two nearby migra- 
tion velocities. The separation of the curves increases with angle. For the 
separation t o  be less than a wavelength, for 90" dip the velocity error must be 
less than one part in 100. For 45" migration velocity error could be larger by 
a. 



FIG. 1.3-8. Timing error of the 

1 .3  Wide-Angle Migration 

Velocities are rarely known this accurately. So we may question the 
value of migration a t  wide angles. 

Subjective Comparison and Evaluation of Methods 

The three basic methods of migration described in this section are com- 
pared subjectively in table 1. 

TABLE 1.3-1. Subjective comparison of three wide-angle migration methods. 

~ ( 2 )  

wide angle? 

correct phase and 
obliquity? 

wraparound noise? 

~ ( 2 )  

side boundaries 
and irregular spac- 
ing 
Speed 
memory organiza- 

- tion 

Hyperbola Sum or 
Semicircle Super- 
pose 

ray tracing 

Beware of data  
alias and operator 
alias. 

possible with some 
effort for const 
v  

no 

Production pro- 
grams have serious 
pitfalls. 

excellent 

slow 
awkward 

Phase Shift 

easily 

Beware of data 
alias. 

easy for any v  (z  ) 

on z , see Section 
4.5 to alleviate on 
t 
approximately by 
iteration and 
interpolation 

poor 

average 
good 

Stolt 

approximately by 
stretching 

Beware of data 
alias. 

for const v  

on z , see Section 
4.5 t o  alleviate on 
( t ,  z )  
no known program 

poor 

very fast 
good 
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The perspective of later chapters makes it possible to  remark on the 
quality of the wide-angle methods as a group, and it is useful t o  do that  now. 
Their greatest weakness is their difficulties with lateral velocity variation. 
Their greatest strength, wide-angle capability, is reduced by the weakness of 
other links in the data collection and processing chain, namely: 

1. Shot-to-geophone offset angles are often large but ignored. A CDP 
stack is not a zero-offset section. 

2. Why process t o  the very wide angles seen in the survey line when 
even tiny angles perpendicular t o  the line are being ignored? 

3. Data is often not sampled densely enough to  represent steeply dip- 
ping data  without aliasing. 

4. Accuracy in the knowledge of velocity is seldom enough t o  justify 
processing to  wide angles. 

5. Noise eventually overpowers all echoes and this also implies an angle 
cutoff. For example, imagine oil reservoirs a t  a time depth of two 
seconds, where data recording stopped a t  four seconds. The implied 
angle cutoff is a t  60". 

EXERCISES 

I. The wave modeling program sketch assumes that  the exploding reflectors 
are impulse functions of time. Modify the program sketch for wave 
modeling t o  include a source waveform s (t ). 

2. The migration program sketch allows the velocity t o  vary with depth. 
However the program could be speeded considerably when the velocity is 
a constant function of depth. Show how this could be done. 

3. Define the program sketch for the inverse t o  the Stolt algorithm - that  
is, create synthetic data from a given model. 

4. The Stolt algorithm can be reorganized to reduce the memory require- 
ment of zero padding the time axis. First Fourier transform x t o  k , .  

Then select, from the ( t ,  k,)-plane of data, vectors of constant k , .  
Each vector can be moved into the space of a long vector, then zero pad- 
ded and interpolated. Sketch the implied program. 

5. Given seismic data that  is cut off at  four seconds, what is the deepest 
travel time depth from which 80" dips can be observed? 
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The Physical Basis 

Previous sections have considered the geometr ica l  aspects of wave propa- 
gation and how they relate t o  seismic imaging. Now we will consider how the 
physical  aspects relate t o  imaging. The propagation medium has a mass den- 
sity and compressibility. The waves have a material acceleration vector and a 
pressure gradient. Static deformation, ground roll, shear, rigidity, dissipation, 
sedimentary deposition - how are these related t o  image construction? 

Because of the complexity of sedimentary rocks, there is not universal 
agreement on an appropriate mathematical description. T o  help you under- 
stand the degree t o  which theory can be used as a guide, I will point t o  some 
inconsistencies between theory and current industrial practice. 

The Clastic Section 

Generally speaking, most petroleum reservoir rocks are sandstones. 
Sandstones are most often made by the sands that  are deposited near the 
mouths of rivers where the water velocity is no longer sufficient to  move 
them. The sands deposit along the terminus of the sand bars found a t  the 
river mouth, often along a slope of 25" or so, as depicted in figure 1. 
Although the sands are not laid down in flat layers, the process may build a 
horizontal layer. 

river 

FIG. 1.4-1. Sands (petroleum reservoir rocks) deposit on fairly steep slopes 
where rivers run into the ocean. 
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Clays are more fine-grained materials (dirt) that are carried out t o  deeper 
water before they settle to  make shale. Shale deposits tend t o  be layered 
somewhat more horizontally than sandstones. Specific locations of sand depo- 
sition change with the passing of storms and seasons, leaving a wood-grain- 
like appearance in the rock. 

The river delta itself is a complicated, ever-changing arrangement of 
channels and bars, constantly moving along the coastline. At  any one time 
the delta seems t o  be moving seaward as deposits are left, but later settling, 
compression, or  elevation of sea level can cause it t o  move landward. 

Sand is important because its porosity enables oil t o  accumulate and its 
permeability enables the oil t o  move to  a well. Shale is important because it 
contains the products of former life on earth, and their hydrocarbons. These 
escape t o  nearby sands, but often not t o  the earth's surface, because of cover- 
ing impermeable shales. The acoustic properties of sands and shales often 
overlap, though there is a slight tendency for shales t o  have a lower velocity 
than sands. Geophysicists on the surface see with seismic wavelengths (E 30 
meters) the final interbedded three-dimensional mixture of sands and shales. 

Mixtures of sands and shales are called clastic rocks. The word clast 
means break. Clastic rocks are made from broken bits of crystalline rock. 
Most sedimentary rocks are clastic rocks. Most oil is found in clastic rocks. 
But much oil is also found in association with carbonates such as limestone. 
Carbonates are formed in shallow marine environments by marine organisms. 
Many carbonates (and elastics) contain oil that  cannot be extracted because of 
lack of permeability. Permeability in carbonate rocks arises through several 
obscure processes. The seismologist knows carbonates as rocks with greater 
velocity than clastic rocks. Typically, a carbonate has a 20-50% greater ve- 
locity than a nearby clastic rock. Clastic rock sometimes contains limestone, 
in which case it is called marl. 

Chrono-Stratigraphy 

Strange as i t  may seem, there is not universal agreement about the exact 
nature of seismic reflections. Physicists tend t o  think of the reflections as 
caused by the interface between rock types, as a sand-to-shale contact. The 
problem with this view is that  sands and shales interlace in complex ways, 
both larger and smaller than the seismic wavelength. Many geologists, partic- 
ularly a group known as seismic stratigraphers, have a different concept. (See 
Seismic Stratigraphy - Applications to  Hydrocarbon Exploration, memoir 26 
of the American Association of Petroleum Geologists). They have studied 
thousands of miles of reflection data along with well logs. They believe a 
reflection marks a constant geological time horizon. They assert that  a long, 
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continuous reflector could represent terrigenous deposition on one end and 
marine deposition on the other end with a variety of rock types in between. 
Data  interpretation based on this assumption is called chrono-stratigraphy. 
The view of the seismic stratigrapher seems reasonable enough for areas that  
are wholly clastic, but when carbonates and other rocks are present, the 
physicist's view seems more appropriate. For further details, the book of 
Sheriff [I9801 is recommended. 

Nonobservation of Converted Shear Waves 

In earthquake seismology and in laboratory measurement there are two 
clearly observed velocities. The faster velocity is a pressure wave ( P  -wave), 
and the slower velocity is a shear wave (S-wave). The shear wave can be 
polarized with ground motion in a horizontal plane (SH)  or in a vertical plane 

(SV). Theory, field data, and laboratory measurement are in agreement. 
Successful experimental work with S-waves in the prospecting environment 
was done by Cherry and Waters [I9681 and Erickson, Miller and Waters 
[1968]. 

It is remarkable that  more than 99% of industrial petroleum prospecting 
ignores the existence of shear waves. Mathematically the earth is treated as if 
it were a liquid or a gas. The experimental work with shear waves used spe- 
cial equipment t o  generate and record vibration perpendicular t o  the survey 
line, i.e. SH-waves. The picture of the earth given by these transverse waves 
is often impaired by the soil layers, but sometimes the SH-wave picture is 
clear and consistent. Surprisingly, even good SH-wave data is often difficult 
t o  relate t o  the P-wave picture. These experimental studies show that  the 
shear waves typically travel about half the speed of the pressure waves except 
in the soil layer, where the shear wave speed is often much slower and more 
variable. Observed shear waves usually have lower frequency than pressure 
waves. A shear wave with half the frequency and half the velocity of a pres- 
sure wave has just the same wavelength and hence the same resolving power 
as  the pressure wave. Indeed, experimental work shows that  shear waves do 
offer us about the same spatial resolution as pressure waves. Most land 
seismic data  shows only the vertical component of motion, and all marine 
seismic data records the pressure. So in the conventional recording geometry, 
ideally we should never see SH-waves. More precisely, SH-waves should be 
small, arising only from the earth's departure from simple stratification. 

The puzzling aspect of shear waves in reflection seismology is the failure 
of petroleum prospectors using the standard operating arrangement t o  rou- 
tinely observe P -teS conversions. Theory predicts that  P -waves hitting an 
interface at an angle should be partially converted t o  SV-waves. 
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Furthermore, for the 30 " -60 " angle reflections that  are routinely encountered, 
these converted waves should have a size comparable t o  the P-wave. 

The routine geometry of recording and processing discriminates some- 
what against converted shear waves. But i t  discriminates against multiple 
reflections too (in much the same way) and we see multiples all the time. 
Furthermore the signature of converted waves should resemble that  of multi- 
ples, but be distinctly different. Converted waves should show up routinely in 
velocity surveys (Chapter 3) .  Figure 2 shows a zero-offset section containing 
some multiple reflections. The multiple reflection is recognizable as a replica 
of earlier topography. Converted waves would replicate the topography but 
the time scaling would be in the ratio of about 312 instead of exactly 412. 
With a sufficiently complex topography, as in figure 2, the probability is low 
tha t  the converted wave would be mistaken for another primary reflection. 

FIG. 1.4-2. A zero-offset section from east Africa with multiple reflections. 
(Teledyne) 
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Converted waves should have good diagnostic value in exploration. But 
the likelihood of seeing converted shear waves in conventional data seems to  
be so remote that  most interpreters have given up looking. Why aren't con- 
verted waves seen in conventional data? Some reasons can be offered: 

I. In marine data there would have t o  be an additional conversion t o  
P for the water path. 

2. In land data the soil is especially absorptive of shear. 

3. Vertical component recorders tend t o  see P better than S. This 
is especially so because rays bend toward the vertical in the near 
surface. 

Of all the reasons why converted shear waves should be weaker than 
pressure waves, none is overwhelming. A wide range of amplitudes are 
recorded in a wide variety of environments. Data are often displayed with 
automatic gain control (AGC). Weakened amplitude appears t o  be 
insufficient cause for the failure of observation. We should keep looking. 
Converted waves are certainly more prevalent than our recognition of them. 
(I have never identified a converted shear wave on conventional recordings). 

So although converted shear waves might some day play a significant role 
in reflection seismology, we now return to  the mainstream - how t o  deal 
effectively with that  which is routinely observable. 

Reliability of Reverberation Modeling 

The seismological literature contains an abundance of theory to  describe 
seismic waves in layered media. A significant aspect of applied seismology is 
the general neglect of intrabed reverberation. When a wave reflects from an 
interface, the strength of the reflected wave is a small fraction, typically less 
than lo%, of the strength of the incident wave. This reflected wave is the 
one that  is mainly dealt with in this book. However, the reflected wave itself 
reflects again and again, ad infinitum. For short path geometries, there can 
be very many of these rays. The question is whether these reverberations can 
ever amount t o  enough t o  make considering them worthwhile. The answer 
seems t o  be that  although reverberation may be significant, seismologists are 
rarely able t o  improve interpretation of reflection survey data with the more 
complicated theory that  is required to  incorporate reverberation. A few more 
details are in Section 5.5. 

The situation is somewhat improved when well logs are available, but 
even then there are serious difficulties. The best possible lateral resolving 
power, say about 20-50 meters, is obtained after migration. The well log, 
however, is not a 20-50 meter lateral average of the earth. Next time you see 
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a highway cut through sedimentary rocks, think of the difference between a 
point and a lateral average over 20-50 meters. In practice, people smooth the 
well log (vertical smoothing). Too little smoothing gives too much reverbera- 
tion. Too much smoothing gives no reverberation. The amount of vertical 
smoothing is an empirically determined parameter, and results are 
significantly sensitive t o  it. Vertical averages of the well log may or may not 
be a satisfactory approximation t o  the required horizontal average. 

Failure of Newtonian Viscosity 

Also remarkable is the failure of basic textbook seismology t o  explain the 
observed frequency-dependence of the dissipation parameter Q . The simplest 
theoretical approach t o  dissipation is to  add a strain-rate term t o  Hooke's 
stress-strain law. This predicts stronger relative dissipation of high frequen- 
cies than of low frequencies. Experimentally, relative dissipation is observed 
t o  be roughly constant over many decades of frequency. Other simple 
Newtonian theories yield polynomial ratios in -i w for the stress/strain ratio. 
These theories contain scale lengths and characteristic frequencies. They do 
not predict constant Q .  The heterogeneity of the rock a t  all scales seems t o  
be an essential attribute of a successful theory (Section 4.6). 

Philosophy of Inverse Problems 

Physical processes are often simulated with computers in much the same 
way they occur in nature. The machine memory is used as a map of physical 
space, and time evolves in the calculation as i t  does in the simulated world. 
A nice thing about solving problems this way is that  there is never any ques- 
tion about the uniqueness of the solution. Errors of initial data and model 
discretization do not tend to  have a catastrophic effect. Exploration geophysi- 
cists, however, rarely solve problems of this type. Instead of having (x , z )- 
space in the computer memory and letting t evolve, we usually have (x , t )- 
space in memory and extrapolate in depth z .  This is our business, taking 
information (data) a t  the earth's surface and attempting t o  extrapolate t o  
information a t  depth. Stable time evolution in nature provides no "existence 
proof" that  our extrapolation goals are reasonable, stable, or even possible. 

The time-evolution problems are often called forward problems and the 
depth-extrapolation problems inverse  problems. In a forward problem, such as 
one with acoustic waves, it is clear what you need and what you can get. 
You need the density p(x , z ) and the incompressibility K (x , z ), and you 
need t o  know the initial source of disturbance. You can get the wavefield 
everywhere a t  later times but you usually only want it a t  the earth's surface 
for comparison t o  some data. In the inverse problem you have the waves seen 



h4IGRA TION 1.4 The Physical Basis 

a t  the surface, the source specification, and you would like t o  determine the 
material properties p(x, z )  and K (x , z). What has been learned from 
experience is that  routine observations do not give reasonable estimates of 
images or maps of p and K .  

What You Can Get from Reflection Seismology 

Luckily, i t  has been discovered that  certain functions of p and K can 
be reliably determined and mapped. The velocity v and the acoustic 
impedance R are given by the equations 

v = J r r 7 i ;  ( l a )  

R = m  ( l b )  

Mathematically, it is a simple job t o  back-solve equation (I), which gives 

In practice, the solution (2) has little value because the two parameters v 
and R are seen through nonoverlapping spectral windows. The acoustic 
impedance R is seen through the typical 10 t o  100 Hz spectral window of 
good quality reflection data. Since the low frequency part of the spectrum is 
missing, it is common to  say that  it is not the impedance which is seen, but 
the gradient repectivity = c (x , z ) = v log (R ). 

The velocity v is seen through a much smaller window. Observation of 
i t  involves studying travel time as shot-to-geophone offset varies and will be 
described in Chapter 3. With this second window it is hard t o  discern sixteen 
independent velocity measurements on a 4-second reflection time axis. So this 
window goes from zero t o  about 2 Hz, as depicted in figure 3. 

Note that  there is an information gap from 2-10 Hz. Even presuming 
tha t  rock physics can supply us with a relationship between p and K ,  the 
gap seriously interferes with the ability of a seismologist t o  predict a well log 
before the well is drilled. What seismologists can do somewhat reliably is 
predict a filtered log. 

The observational situation described above has led reflection seismole 
gists t o  a specialized use of the word velocity. To a reflection seismologist, ve- 
locity means the low spatial frequency part of "real velocity." The high- 
frequency part of the "real velocity" isn't called velocity: it is called 
repectivity. Density is generally disregarded as being almost unmeasurable by 
surface reflection seismology. 
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FIG. 1.4-3. Reliability of information obtained from surface seismic measure- 
ments. 

Mathematical Inverse Problems 

In mathematics the solution t o  an inverse problem has come to  mean the 
"determination" of material properties from wavefields. Often this is 
achieved with a "convergent sequence." Geophysicists are less precise (or 
more inclusive) about what they mean by "determination." In Chapters 1-2 of 
this book reflectors are "determined" by the exploding-reflection concept. In 

Chapter 3 shot-to-geophone offset is incorporated, and reflectivity c ( x ,  z )  
and velocity v ( z  ) are "determined" with a buried-experiment concept. In 
Chapter 5 the concept is developed of suppressing multiple reflections and 
finding the "true" amplitudes of reflections by having the upcoming wave 
vanish before the onset of the downgoing wave. Other imaging concepts seem 
likely t o  result from future processing schemes. It might be possible t o  show 
that  some of our "determinations" coincide with those of mathematicians, but 
such coincidence is not our goal. 

Derivation of the Acoustic Wave Equation 

The acoustic wave equation describes sound waves in a liquid or gas. 
Another more complicated set of equations describes elastic waves in solids. 
Begin with the acoustic case. Define 

P = mass per unit volume of the fluid 
7 u - velocity flow of fluid in the x-direction 

w = velocity flow of fluid in the z-direction 
P = pressure in the fluid 

Newton's law of momentum conservation says that  a small volume within a 
gas will accelerate if there is an applied force. The force arises from pressure 
differences at opposite sides of the small volume. Newton's law says 
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m a s s  X acceleration = force = - pressure gradient 

The second physical process is energy storage by compression and volume 
change. If the velocity vector u a t  x + Ax exceeds that  at x , then the 
flow is said to  be diverging. In other words, the small volume between x 
and x + Ax is expanding. This expansion must lead t o  a pressure drop. 
The amount of the pressure drop is in proportion t o  a property of the fluid 
called its incompressibil i ty  K .  In one dimension the equation is 

pressure drop = ( incompressibil i ty)  X (divergence of velocity)  

In two dimensions it is 

To  arrive a t  the one-dimensional wave equation from (3a) and (4a), first 
divide (3a) by p and take its x -derivative: 

Second, take the time-derivative of (4). In the solid-earth sciences we are for- 
tunate that  the material in question does not change during our experiments. 
This means that  K is a constant function of time: 

Inserting (5) into (6), the one-dimensional scalar wave equation appears. 

In two space dimensions, the exact, acoustic scalar wave equation is 

You will often see the scalar wave equation in a simplified form, in which i t  is 
assumed that  p is not a function of x and z . Two reasons are often given 
for this approximation. First, observations are generally unable t o  determine 
density, so density may as well be taken as constant. Second, we will soon 
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see that  Fourier methods of solution do not work for space variable 
coefficients. Before examining the validity of this approximation, its conse- 
quences will be examined. I t  immediately reduces (7b) t o  the usual form of 
the scalar wave equation: 

T o  see that  this equation is a restatement of the geometrical concepts of 
previous sections, insert the trial solution 

P = exp(-iwt + i  k,x + i  k z z )  (9) 

What is obtained is the dispersion relation of the two-dimensional scalar wave 
equation: 

Earlier (Section 1.2, equation(8)) an equation like (10) was developed by con- 
sidering only the geometrical behavior of waves. In that  development the 
wave velocity squared was found where K l p  stands in equation (10). Thus 
physics and geometry are reconciled by the association 

Last, let us see why Fourier methods fail when the velocity is space vari- 
able. Assume that  w, k,, and kz are constant functions of space. Substi- 

tute (9) into (8) and you get the contradiction that  w, k,, and k, must be 

space variable if the velocity is space variable. Try again assuming space 
variability, and the resulting equation is still a differential equation, not an 
algebraic equation like (10). 

Evanescence and Ground Roll 

Completing the physical derivation of the dispersion relation, 

we can now have a new respect for it. It carries more meaning than could 
have been anticipated by the earlier geometrical derivation. The dispersion 
relation was originally regarded merely as sin2 6' + cos2 0 = 1 where 
sin 0 = v k, l w .  There was no meaning in sin 0 exceeding unity, in other 
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words, in v k, exceeding w. Now there is. There was a hidden ambiguity 

in two of the previous migrat,ion methods. Since data could be an arbitrary 
function in the ( t  , a:)-plane, its Fourier transform could be an arbitrary func- 
tion in the (w, k,)-plane. In practice then, there is always energy with an 

angle sine greater than one. This is depicted in figure 4. What should be 
done with this energy? 

+ reflection -4 v ( z  2) 

FIG. 1.4-4. The triangle(s) of reflection energy I w I > v ( z  ) I k, I become 
narrower with velocity, hence with depth. Ground roll is energy that  is prop- 
agating a t  the surface, but evanescent a t  depth. 

When v k;, exceeds w, the familiar downward-extrapolation expression 

is better rewritten as 

This says that  the depth-dependence of the physical solution is a growing or a 
damped exponential. These solutions are termed evanescent waves. In the 
most extreme case, w = 0, k, is real, and kz = ki  Ic,.  For elastic waves, 

that  would be the deformation of the ground under a parked airplane. Only 
if the airplane can move faster than the speed of sound in the earth will a 
wave be radiated into the earth. If the airplane moves a t  a subsonic speed 
the deformation is said to  be quasi-static. 

Perhaps a better physical description is a thought experiment with a 
sinusoidally corrugated sheet. Such metallic sheet is sometimes used for roofs 
or garage doorways. The wavelength of the corrugation fixes k,. Moving 
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such a sheet past your ear a t  velocity V you would hear a frequency of 
oscillation equal t o  V k., , regardless of whether V is larger or  smaller than 

the speed of sound in air. But the sound you hear would get weaker exponen- 
tially with distance from the sheet unless i t  moved very fast, V > v ,  in 
which case the moving sheet would be radiating sound t o  great distances. 
This is why supersonic airplanes use so much fuel. 

What should a migration program do with energy tha t  moves slower 
than the sound speed? Theoretically, such energy should be exponentially 
damped in the direction going away from the source. The damping in the 
offending region of (w, kz)-space is, quantitatively, extremely rapid. Thus, 

simple exploding-reflector theory predicts that  there should be almost no 
energy in the data a t  these low velocities. 

FIG. 1.4-5. Florida shallow marine profile, exhibiting ground roll with fre- 
quency dispersion. (Conoco, Yedlin) 
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The reality is that ,  instead of tiny amounts of energy in the evanescent 
region of (w, k, )-space, there is often a great deal. This is another breakdown 

of the exploding-reflector concept. The problem is worst with land data. 
Waves that  are evanescent in deep, fast rocks of interest can be propagating 
in the low-velocity soil layer. This energy is called ground roll. Figure 5 
shows an example. Like the surface of the earth, which varies greatly from 
place t o  place, the immediate subsurface which controls the ground roll varies 
substantially. So although figure 5 is a nice example, no example can really 
be typical. This data is not a zero-offset section. The shot is on the left, and 
the traces t o  the right are from geophones at increasing distances from the 
shot. The straight line drawn onto the data defines a slope equal t o  the water 
velocity. Steeper events are ground roll. In this figure there are two types of 
ground roll, one a t  about half of water velocity, and a stronger one at about a 
quarter of water velocity. The later and stronger one shows an  interesting 
feature known as frequency dispersion. Viewing the data from the side, you 
should be able t o  notice that  the high frequencies arrive before the low fre- 
quencies. 

Ground roll is unwanted noise since its exponential decay effectively 
prevents i t  from being influenced by deep objects of interest. In practice, 
energy in the offending region of (w, k,)-space should be attenuated. A 
mathematical description is t o  say that  the composite mapping from model 
space t o  data  space and back t o  model space again is not an identity transfor- 
mation but an idempotent transformation. 

Reflections and the High-Frequency Limit 

It is well known that  the contact between two different materials can 
cause acoustic reflections. A material contact is defined t o  be a place where 
either K or p changes by a spatial step function. In one dimension either 
dK /ax or apldx or both would be infinite a t  a point, and we know that  
either can cause a reflection. So it is perhaps a little surprising that  while the 
density derivative is explicitly found in (7b), the incompressibility derivative 
is not. This means that  dropping the density gradients in (7b) will not elim- 
inate all possible reflections. Dropping the terms will slightly simplify further 
analysis, however, and since constant density is a reasonable case, the terms 
are often dropped. 

There are also some well-known mathematical circumstances under which 
the first-order terms may be ignored. Fix your attention on a wave going in 
any particular direction. Then w, k,, and k, have some prescribed ratio. 

In the limiting case that  frequency goes t o  infinity, the Ptt , P Z Z ,  and PZZ 

terms in (8) all tend t o  the second power of infinity. Suppose two media 
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gradually blend into one another so that  ap /ax  is less than infinity. The 
terms neglected in going from (7b) to  (8) are of the form p, P, and p, P,. 
As frequency tends t o  infinity, these terms only tend t o  the first power of 
infinity. Thus, in that  limit they can be neglected. 

These terms are usually included in theoretical seismology where the goal 
is t o  calculate synthetic seismograms. But where the goal is t o  create earth 
models from seismic field data - as in this book - these terms are generally 
neglected. Earth imaging is more difficult than calculating synthetic seismo- 
grams. But often the reason for neglecting the terms is simply t o  reduce the 
clutter. These terms may be neglected for the same reason that  equations are 
often written in two dimensions instead of three: the extension is usually pos- 
sible but not often required. Further, these terms are often ignored t o  facili- 
tate Fourier solution techniques. Practical situations might arise for which 
these terms need t o  be included. With the finite-difference method (Section 
2.2), they are not difficult t o  include. But any effort t o  include them in data  
processing should also take into account other factors of similar significance, 
such as the assumption that  the acoustic equation approximates the elastic 
world. 

EXERCISES 

1. Soil is typically saturated with water below a certain depth, which is 
known as the water table. Experience with hammer-seismograph systems 
shows that  seismic velocity typically jumps up t o  water velocity 
(VHSO = 1500 m /s ) a t  the water table. Say that  in a certain location, 

the ground roll is observed t o  be greater than the reflected waves, so a 
decision has been made to  bury geophones. The troublesome ground roll 
is observed t o  travel a t  six-tenths the speed of a water wave. How deep 
must the geophones be buried below the water table to  attenuate the 
ground roll by a factor of ten? Assume the data contains all frequencies 
from 10 t o  100 Hz. (Hints: log, 10E2, 2n-6, etc.) 

2. Consider the function 

1 
i w t  - i / w  ' J x d F  

P ( 2 ,  t )  = P o  0 K ( 0  JYoe (1.4El) 

where 

P o  = constant 
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as a trial solution for the one-dimensional wave equation: 

Substitute the trial solution (E l )  into the wave equation (E2). Discuss 
the trade-off between changes in material properties and the validity of 
your solution for different wavelengths. 

1.5 The Paraxial Wave Equation 

The scalar wave equation, unlike Fourier equations, allows arbitrary spa- 
tial variation in density and velocity. Because of this you might expect that  
i t  would be used directly in the manufacture of migrated sections. But i t  is 
used little for migration, and we will first review why this is so. Then we will 
meet the paraxial wave equation, which is the basis for most production 
migration. 

Philosophically, the paraxial wave equation is an intermediary between 
the simple concepts of rays and plane waves and deeper concepts embodied in 
the wave equation. (The paraxial wave equation is also called the single- 
square-root equation. In Chapter 2, a specialization of it is called the para- 
bolic wave equation). The derivation of the parabolic wave equation does not 
proceed from simple concepts of classical physics. Its development is more 
circuitous, like the Schroedinger equation of quantum physics. You must 
study i t  for a while t o  see why i t  is needed. When I introduced the parabolic 
wave equation t o  seismic calculations in 1970, it met with considerable suspi- 
cion. Fortunately for you, years of experience have enabled me t o  do a better 
job of explaining it, and fortunately for me, its dominance of the industrial 
scene will give you the interest t o  persevere. 

The paraxial equation will be introduced by means of Fourier methods. 
Fourier methods are incompatible with space-variable coefficients. Since we 
want t o  incorporate spatial variations in velocity, this limitation is ultimately 
t o  be avoided, so after getting the paraxial equation in the Fourier domain, 

ik, is replaced by d l d z ,  and ikz is replaced by a / d x .  Then, being in the 
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space domain, the velocity can be space-variable. The result is a partial 
differential equation often solved by the finite-differencing method. This pro- 
cedure turns out t o  be valid, but new students of migration understandably 
regard it with misgiving. Thus, the final part of this section is a derivation of 
the paraxial wave equation which makes no use of Fourier methods. 

Why the Scalar Wave Equation is Rarely Used for Migration 

Life would be simpler if migration could be done with the scalar wave 
equation instead of the paraxial equation. Indeed, migration can be done with 
the scalar wave equation, and there are some potential advantages (Kosloff 
and Baysal (19831). But more than 99% of current industrial migration is 
done with the paraxial equation. 

The main problem with the scalar wave equation is that  it will generate 
unwanted internal multiple reflections. The exploding-reflector concept can- 
not deal with multiple reflections. Primary reflections can be modeled with 
only upcoming waves, but multiple reflections involve both up and downgoing 
paths. The multiple reflections observed in real life are completely different 
from those predicted by the exploding-reflector concept. For the sea-floor 
multiple reflection, a sea-floor two-way travel-time depth of t o  yields sea- 

floor multiple reflections a t  times 2t0 ,  3t0,  4t0, . . . . In the exploding- 

reflector conceptual model, a sea-floor one-way travel-time depth of t o  yields 

sea-floor multiple reflections at  times 3t0,  s t 0 ,  7 t0 ,  . . - . In building a 

telescope, microscope, or camera, the designer takes care t o  suppress back- 
ward reflected light because i t  creates background noise on the image. Like- 
wise, in building a migration program we do not want t o  have energy moving 
around that  does not contribute t o  the focused image. The scalar wave equa- 
tion with space-variable coefficients will generate such energy. This unwanted 
energy is especially troublesome if it is coherent and migrates t o  a time when 
primaries are weak. I t  is annoying, a s  the reflection of a bright window seen 
on a television screen is annoying. So if you were trying t o  migrate with the 
scalar wave equation, you would make the velocity as smooth as possible. 

Another difficulty of imaging with the scalar wave equation arises with 
evanescent waves. These are the waves that  are exponentially growing or 
decaying with depth. Nature extrapolates waves forward in time, but we are 
extrapolating them in depth. Growing exponentials can have tiny sources, 
even numerical round-off, and because they grow rapidly, some means must 
be found t o  suppress them. 

A third difficulty of imaging with the scalar wave equation derives from 
initial conditions. The scalar wave equation has a second depth z -derivative. 
This means that  two boundary conditions are required on the z-axis. Since 
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data  is recorded a t  z  =0, i t  seems natural that  these boundary conditions 
should be knowledge of P and a P  / d z  a t  z  =O. But d P / a z  isn't 
recorded. 

Luckily, in building an imaging device that  operates wholly within a 
computer, we have ideal materials t o  work with, i.e., reflectionless lenses. 
Instead of the scalar wave equation of the real world we have the paraxial 
wave equation. 

Fourier Derivation of the Paraxial Wave Equation 

Start from the dispersion relation of the scalar wave equation: 

Take a square root. 

The simple act of selecting the minus sign in ( 2 )  includes the upcoming waves 
and eliminates the downgoing waves. Equation (1) is the three-dimensional 
Fourier transform of the scalar wave equation. Inverse transforming ( 2 )  will 
give us an equation for upcoming (or downgoing) waves only, without the 
other. Inverse Fourier transformation over a dimension is just a matter of 
selecting one or more of the following substitutions: 

After inverse transformation over z  there is a differential equation in z  in 
which the velocity may be taken t o  be z-variable. Likewise for x . Any 
equation resulting from any of the substitutions of (3) into (2) is called a 
paraxial equation. Chapter 2 of this book goes into great detail about the 
meaning of these equations. Before beginning this interpretation the paraxial 
wave equation will be derived without the use of Fourier transformation. 
Besides giving a clear path t o  the basic migration equation, this derivation 
also gives a better understanding of what the equation really does, and how it 
differs from the scalar wave equation. 
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Snell Waves 

It is natural to  begin studies of waves with equations that  describe plane 
waves in a medium of constant velocity. However, in reflection seismic sur- 
veys the velocity contrast between shallowest and deepest reflectors ordinarily 
exceeds a factor of two. Thus depth variation of velocity is almost always 
included in the analysis of field data. Seismological theory needs t o  consider 
waves that  are just like plane waves except that  they bend t o  accommodate 
the velocity stratification v ( z  ). Figure 1 shows this in an idealized geometry: 
waves radiated from the horizontal flight of a supersonic airplane. 

P 

speed at depth z 

ed at depth z 

FIG. 1.5-1. Fast airplane radiating a sound wave into the earth. From the 
figure you can deduce that  d t  / a x  is the same at depth z as i t  is at depth 
z 2 .  This leads (in isotropic media) to  Snell's law. 

The airplane flies horizontally a t  a constant speed. It goes from 
x = -GO t o  x = +oo. Imagine an earth of horizontal plane layers. In this 
model there is nothing to distinguish any point on the x-axis from any other 
point on the x-axis. But the seismic velocity varies from layer t o  layer. 
There may be reflections, head waves, shear waves, and multiple reflections. 
Whatever the picture is, it moves along with the airplane. A picture of the 
wavefronts near the airplane moves along with the airplane. The top of the 
picture and the bottom of the picture both move laterally at the same speed 
even if the earth velocity increases with depth. If the top and bottom didn't 
go a t  the same speed, the picture would become distorted, contradicting the 
presumed symmetry of translation. This horizontal speed, or  rather its 
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inverse d t  / a x ,  has several names. In practical work it is called the stepout. 
In theoretical work i t  is called the ray parameter. I t  is very important t o  
note that  d t  / ax  does not change with depth, even though the seismic veloc- 
ity does change with depth. In a constant-velocity medium, the angle of a 
wave does not change with depth. In a stratified medium, d t  / ax  does not 
change with depth. 

FIG. 1.5-2. Downgoing fronts and rays in stratified medium v (z).  The 
wavefronts are horizont a1 translations of one another. 

Figure 2 illustrates the differential geometry of the wave. The diagram 
shows that  

d t  - - sin 0 - - 
dx v 
d t - - cos 0 - - 
d z v 

These two equations define two (inverse) speeds. The first is a horizontal 
speed, measured along the earth's surface, called the horizontal phase velocity. 
The second is a vertical speed, measurable in a borehole, called the vertical 
phase velocity. Notice that  both these speeds exceed the velocity v of wave 
propagation in the medium. Projection of wave fronts onto coordinate axes 
gives speeds larger than v ,  whereas projection of rays onto coordinate axes 
gives speeds smaller than v . The inverse of the phase velocities is called the 
stepout or the slowness. 

Snell's law relates the angle of a wave in one layer with the angle in 
another. The constancy of equation (4a) in depth is really just the statement 
of Snell's law. Indeed, we have just derived Snell's law. All waves in seismol- 
ogy propagate in a velocity-stratified medium. So they cannot be called plane 
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waves. But we need a name for waves that  are near t o  plane waves. A Snell 
wave will be defined t o  be the generalization of a plane wave t o  a stratified 
medium v ( 2 ) .  A plane wave that  happens t o  enter a medium of depth- 
variable velocity v ( z )  gets changed into a Snell wave. While a plane wave 
has an angle of propagation, a Snell wave has instead a Snell parameter 
p = d t / d x .  

I t  is noteworthy that  Snell's parameter p = d t  / d x  is directly observ- 
able at the surface, whereas neither v nor 0 is directly observable. Since 
p = d t  / d x  is not only observable, but constant in depth, it is customary to  
use i t  t o  eliminate 8 from equation (4): 

d  t  - - sin 0 - -  - 
d x  v P 

Taking the Snell wave t o  go through the origin a t  time zero, an expres- 
sion for the arrival time of the Snell wave a t  any other location is given by 

2 
sin 0 cos 8 

~ ( x , z )  = - x  +I -  dz 
v 0 

The validity of ( 6 b )  is readily checked by computing d t  / d x  and d t  / d z  , 
then comparing with (5) .  

An arbitrary waveform j ( t  ) may be carried by the Snell wave. Use ( 6 )  
t o  define a delay time t o  for a delayed wave j [ t  -t O ( x ,  z )] at the location 

( 2 ,  2 ). 

z 
1 S n e l l W a v e ( t , x , z )  = j p ) ' z  ( I )  

Time-Shifting Equations 

An important task is t o  predict the wavefield inside the earth given the 
waveform a t  the surface. For a downgoing plane wave this can be done by 
the time-shifting partial differential equation 
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as may be readily verified by substituting the trial solutions 

z for constant v (9) 

This also works for nonvertically incident waves with the partial 
differential equation 

which has the solution 

In interpreting (11) and (12) recall that  l / ( d t  / d z )  is the apparent velocity 
in a borehole. The partial derivative of wavefield P ( t  , x , z ) with respect t o  
depth z is taken a t  constant x ,  i.e., the wave is extrapolated down the 
borehole. The idea that  downward extrapolation can be achieved by merely 
time shifting holds only when a single Snell wave is present; that  is, the 
same arbitrary time function must be seen a t  all locations. 

Substitution from (5) also enables us t o  rewrite (11) in the various forms 

Equation (13) is a paraxial wave equation. Since d t  /dx = p  can be meas- 
ured along the surface of the earth, it seems that  equation (13c), along with 

an assumed velocity v ( z  ) and some observed data P ( t  , x , z =O), would 
enable us t o  determine d P  / d z ,  which is the necessary first step of downward 
continuation. But the presumption was that  there was only a single Snell 
wave and not a superposition of several Snell waves. Superposition of 
different waveforms on different Snell paths would cause different time func- 
tions t o  be seen a t  different places. Then a mere time shift would not achieve 
downward continuation. Luckily, a complicated wavefield that  is variable 
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from place t o  place may be decomposed into many Snell waves, each of which 
can be downward extrapolated with the differential equation (13) or  its solu- 
tion (12). One such decomposition technique is Fourier analysis. 

Fourier Decomposition 

Fourier analyzing the function f (x , t , z =O), seen on the earth's sur- 
face, requires the Fourier kernel exp(- iw t  + i Ic, x) .  Moving on the earth's 

surface at an inverse speed of d t / ax  = Ic, lw, the phase of the Fourier ker- 

nel, hence the kernel itself, remains constant. Only those sinusoidal com- 
ponents that  move a t  the same speed as the Snell wave can have a nonzero 
correlation with it. So if the  disturbance is a single Snell wave, then all 
Fourier components vanish except for those that  satisfy p = kz lw. You 

should memorize these basic relations: 

In theoretical seismology a square-root function often appears as a result of 
using (14) t o  make a cosine. 

Utilization of this Fourier domain interpretation of Snell's parameter p 
enables us t o  write the square-root equation (13) in an  even more useful form. 
But first the square-root equation must be reexpressed in the Fourier domain. 
This is done by replacing the d l d t  operator in (13) by -i w. The result is 

At present i t  is equivalent t o  specify either the differential equation (15) or its 
solution (12) with j as the complex exponential: 

Later, when we consider lateral velocity variation v (x ) ,  the solution (16) 
becomes wrong, whereas the differential equation (13c) is a valid description of 
any local plane-wave behavior. But before going t o  lateral velocity gradients 
we should look more carefully at vertical velocity gradients. 
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Velocity Gradients 

Inserting the Snell wavefield expression into the scalar wave equation, we 
discover that  our definition of a Snell wave does not satisfy the scalar wave 
equation. The discrepancy arises only in the presence of velocity gradients. 
In other words, if there is a shallow constant velocity v l  and a deep con- 

stant  velocity v 2 ,  the equation is satisfied everywhere except where v l  
changes t o  v2. Solutions t o  the scalar wave equation must show amplitude 

changes across an interface, because of transmission coefficients. Our 
definition of a Snell wave is a wave of constant amplitude with depth. The 
paraxial wave equation could be modified t o  incorporate a transmission 
coefficient effect. The reason i t  rarely is modified may be the same reason 
that  density gradients are often ignored. They add clutter t o  equations while 
their contribution t o  better results - namely, more correct amplitudes and 
possible tiny phase shifts - has marginal utility. Indeed, if they are included, 
then other deeper questions should also be included, such as the question, why 
use the acoustic equation instead of various other forms of scalar elastic equa- 
tions? 

Even if the paraxial wave equation were modified t o  incorporate a 
transmission coefficient effect, its solution would still fail t o  satisfy the scalar 
wave equation because of the absence of the reflected wave. But that  is just 
fine, because i t  is the paraxial equation, with its reflection-free lenses, that  is 
desired for data processing. 

EXERCISES 

1. Devise a mathematical expression for a plane wave that  is an impulse 
function of time with a propagation angle of 15 " from the vertical z-axis 
in the plus z direction. Express the result in the domain of 

(8) ( t  , x , Z ) 

(b) (w, x , z ) 

( 4  (w, lc, 9 2 )  

(4 (w, P 7 2 ) 
2. Find an amplitude function A ( z )  which, when multiplied by j in 

equation (12), yields an approximate solution t o  the scalar wave equation 
for stratified media v (2) .  For p = 0, the solution should reduce t o  the 
solution of Exercise 2 in Section 1.4. 



I 

I1fIGRA TION 1.6 2-D Fourier Technique 

1.6 Mastery of 2-D Fourier Techniques 

Here is a collection of helpful tips for those of you who will be involved 
in implementations of migration methods. 

Signs and Scales in Fourier Transforms 

In Fourier transforming t -, x -, and z -coordinates, a sign convention 
must be chosen for each coordinate. Electrical engineers have chosen one con- 
vention and physicists another. While both have good reasons for their 
choices, our circumstances more closely resemble the circumstances of physi- 
cists, so their convention will be used. For the inverse Fourier transformation 
this is 

- i w t  + i  k,z + i  k , z  
p ( t , x , z )  = J J J e  P (0, k, , k, ) d 0 dk, dk, 

For the forward Fourier transform, the space variables carry a negative sign 
and time carries a positive sign. The limits on the integrations and the scale 
factor in the continuous case differ from the discrete case. We rarely do the 
transforms analytically in either case. Since the extra notation required for 
limits and scales usually clutters rather than clarifies a discussion, they will be 
omitted altogether except when they play a useful role. 

The sign convention is more important. Because there are so many space 
axes (later, midpoint and offset space axes are introduced and transformed as 
well), it is worthwhile t o  establish a good sign convention. Someone using the 
approach of "changing the signs around until i t  works" is likely t o  be per- 
plexed by the number of possible permutations. There are good reasons for 
the sign conventions chosen by physicists, and once the reasons are known, it 
is easy t o  remember the conventions. 

Waves should, by convention, move in the positive direction on the space 
axis. This is especially evident on work for which the space axis is a radius. 
Atoms, like geophysical sources, always radiate from a point t o  infinity, not 
the other way around. So our convention will be always t o  choose waves 
moving positively on any space axis. In equation (1) this means that  the sign 
on the spatial frequencies must be opposite t o  the sign on the temporal fre- 
quency. This statement applies t o  both the forward and the inverse 
transform. 

This leaves the choice of whether to  use the positive sign for the time 
axis or the space axes. There are many space axes but only one time axis. 
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There will be the fewest number of minus signs and the fewest sign changes if 
the spatial gradient a l a s ,  d / d z ,  etc. is chosen t o  be associated with the 

positive k -vector, i.e., with i , ikz , etc. Of course, this leaves the time 

derivative with - i w. 

This sign convention brings our practice into conflict with the practice of 
electrical engineers, who rarely work with space axes and naturally enough 
have chosen t o  associate d / d t  with +i w. The only good reason I know to  
adopt the engineering choice is that  we compute with an array processor built 
and microcoded by engineers who have of course used their own sign conven- 
tion. I t  doesn't matter for the programs that  transform complex-valued time 
functions to complex-valued frequency functions, because then the sign con- 
vention is under the user's control. But it does make a difference with the 
program that  converts real time functions t o  complex frequency functions. 
The way t o  live in both worlds is t o  imagine that  the frequencies produced by 
the program do not range from 0 to  +n as the description says, but from 
0 t o  -T. Alternately, you could always take the complex conjugate of the 
transform, which would swap the sign of the *axis. With the Stolt algorithm 
it is common to  transform space first. Then the array processor convention 
turns out t o  have our notation. 

How to Transpose a Big Matrix 

I t  is lucky that  very large matrices can easily be transposed. This is 
what makes wave-equation seismic data  processing reasonable on a small min- 
icomputer. By very large matrix, I mean one that  is too big t o  fit in a 
computer's random access memory (RAM). If two copies of the data  fit in the 

RAM, then transposition is simply the copy operation T (1, j) = M ( j ,  i). 

The transpose algorithm for very large matrices is simple but tricky. I 
shall begin, therefore, by describing a card trick. I have in my hands a deck 
of cards from which I have removed the nines, tens, and face cards. Let a ,  
b , c , and d  denote hearts, spades, clubs, and diamonds. Also, I have 
arranged these cards in the following order (let ace be denoted by one): 

Now I deal the cards face up alternately, one onto pile A and one onto pile 
B . You see 

Pile A :  l a  l c  2a 2c 3a 3c - . - 8a 8c 

Pile B: l b  I d  2b 2d 36 3d . - .  8b 8 d  

Next I place pile A on top of (in front of) pile B, and again deal the cards out 
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alternately onto pile A ' and pile B '. You see 

Pile A': l a  2a 3a . . . 8 a  l b  2b - . .  8b 

Pile B': l c  2c 3c - - -  8c  Id 2d - - . 8d 

Now I place pile A '  on top of pile B'. We started with all the aces 
together, the twos together, etc. Now all the hearts are together, the spades 
together, etc. So you see that  in just two deals of the cards, I have tran- 
sposed the deck. The cards were never spread out all over the table because 
they never had t o  be randomly accessed. Transposition was done by making 
sequential passes over the deck. In principle, this algorithm transposes a 
matrix requiring four magnetic tapes but almost no core memory. 

Now I will t ry the inverse transpose. Note that  i t  takes me three deals 
of the cards rather than the two deals it took for the original transpose. This 
is because the deck has 22 = 4 suits and 23 = 8 numbers. Actually, there 
is another algorithm which will allow me t o  do the inverse transpose in only 
two passes rather than three. I just do everything backwards. I s tart  with 
piles A ' and B'. Then I create pile A by alternately selecting cards one 
from pile A ' and one from pile B'. Likewise I create pile B. Then I 
repeat this procedure. The first algorithm is called the sort algorithm, and 
the second is called the merge algorithm. With these two algorithms, the 
matrix transpose of a matrix of size 2n X 2'" can be done by the lesser of 
n or m passes over the data. 

A variety of generalizations are possible. With four card piles, techniques 
could be developed for matrices of dimension 4 n .  This would decrease the 
number of passes but increase the required number of tape drives. Likewise, 
it turns out that  arbitrary order can be factored into primes, etc. But this 
takes us too far afield. 

Minimizing the number of passes over the data turns out t o  maximize the 
number of tapes. In reality you won't be using real tapes when you are tran- 
sposing. Instead you will be simulating tape operations on a large disk 
memory. Then the number of "tapes" you choose t o  use will be controlled by 
the ratio of the speed of random transfers to  the speed of sequential transfers. 

Rocca 's  2-D F o u r i e r  T r a n s f o r m  w i t h o u t  T r a n s p o s i n g  

The most direct method of two-dimensional Fourier transformation in a 
computer is the repetitive application of a one-dimensional Fourier transform 
method. The easiest part is the "fast" direction. That  is, if the data matrix 
is stored by columns - as in the Fortran language - then the column 
transforms are a trivial exercise in the repetitive use of a one-dimensional pro- 
gram. Now for the rows. If the matrix fits in the RAM, then everything is 
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easy: one row at a time can be copied into a vector; the vector can be Fourier 
transformed and then copied back into the matrix row. The more typical 
case is that  the data  doesn't fit in the RAM but does fit in the "virtual" 
memory. This means that  the programmer could write T (i , j ) = M ( j , i ) 
but the program would run prohibitively slowly because an entire page of vir- 
tual memory would be fetched from disk just t o  find a single number. 

Conceptually, an easy way t o  handle the transformation over the row 
direction is t o  transpose the matrix, transform each column, and transpose 
back. Fabio Rocca suggested a quicker and easier means of Fourier transfor- 
mation over the row index. The basic Fourier transform program has certain 
overhead calculations, such as computing or fetching sines and cosines. Ordi- 
narily, these overhead calculations are repeated each time a Fourier transfor- 
mation is performed. With Rocca's method the overhead calculations are 
done just once, and all the rows get Fourier transformed. So i t  is even 
quicker than the straightforward approach. The method follows. 

The data  matrix can be regarded as a row vector whose entries are 
columns. Taking the "fast" index t o  range down the column, the columns 
may be transformed by one-dimensional transforms either before or after the 
row operations are done. To  do the row operations, just modify an ordinary 
one-dimensional Fourier transform program by replacing each scalar add or 
multiply operation by the same operation on every element in the correspond- 
ing column. 

The order in which data  is accessed makes Rocca's row algorithm 
efficient in a virtual memory environment. Before the days of virtual 
memory, we implemented the Rocca row algorithm with reads and writes 
around the inner loops. 

T o  illustrate Rocca's method, a row Fourier transformation program was 
written based on the one-dimensional Fourier transformation program found 
in FGDP. It is included in the next section. That  program transforms com- 
plex time functions t o  complex frequency functions. If you should decide to  
write a real-to-complex Fourier transform, you should beware of the assump- 
tion that  real and imaginary parts are stored contiguously. This assumption 
is true for the column index, but not for the row index. 
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1.7 Sample Programs 

The programs in this section generated many of the examples given in 
this book. They were written for clarity and brevity, and they are excellent 
for experimental work. Good production programs will be faster (by factors 
of from 1.01 to  about 4). Speed can be gained by taking advantage of various 
special circumstances. For example, data is real, but these expository pro- 
grams assume i t  t o  be complex. 

RATional FORtran = Ratfor 

Bare bones Fortran is our most universal computer language. But it is 
hardly appropriate for expository discussion of algorithms. The ideal exposi- 
tory language is Ratfor. Ratfor is Rational For t ran ,  namely, Fortran 
without the blemishes. Ratfor programs (including the Ratfor preprocessor) 
are readily converted t o  Fortran by means of the Ratfor preprocessor. Since 
the preprocessor is publicly available Ratfor is practically as universal as For- 
tran.t 

You won't really need the preprocessor or any precise definitions if you 
already know Fortran or almost any other computer language, because then 
the Ratfor language will be easy t o  understand. Statements on a line may be 
separated by ";". Statements may be grouped together with { ). Do loops 
don't require statement numbers because { ) defines the range. Given that  
'Lif ( )" is true, the statements in the following { ) are done. "Else { )" does 
what you would expect it to. Indentation is used for readability. Choose 
your own style. I have overcondensed. Anything following # is a comment. 
You may omit the braces { ) when they contain only one statement. "Break" 
will cause premature termination of the enclosing { ). "Break 2" escapes 
from {{  )). "While ( ) { )" repeats the statements in { ) while the condition 
( ) is true. "Repeat { ) until ( )" is a loop that  tests a t  the bottom. A loop- 
ing statement more general than "do" is "for( initialize; condition; reinitialize) 

{ 1". "Next" causes skipping t o  the end of any loop and a retrial of the test 
condition. The Fortran relational operators .gt., .ge., .ne., etc. may be written 
>, >=, !=, etc. The logical operators .and. and .or. may be written & 
and I .  Anything that  doesn't make sense t o  the Ratfor preprocessor, such as 

t Kernighan, B.W. and Plauger, P.J., 1976, Software Tools: Addison-Wesley Publishing 
Company. 
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Fortran input-output, is passed through without change. 

Two-Dimensional Fourier Transformation 

Two-dimensional Fourier transforms are based on the one-dimensional 
Fourier transform. An extremely rapid way t o  compute the one-dimensional 
Fourier transform exists and is called the Cooley-Tukey algorithm or the Fast 
Fourier Transform. Unfortunately it bears little resemblance t o  the Fourier 
integral. This method is so fast and effective that  you will hardly ever see the 
transform being done in the obvious way. All functions are taken t o  be 
periodic, so physically transient functions must be regarded as functions of 
very long period. Usually there is the further restriction that  the period must 
be exactly 2N points long, where N is an integer. To  understand this pro- 
gram, you should look a t  FGDP or any number of electrical engineering 
books. T o  write and use two-dimensional Fourier transform programs, it is 
only necessary t o  know the one-dimensional definition of inputs and outputs. 
Figure 1 shows that  humans like t o  have t =O in the middle of the time axis 
and ~3=0 in the middle of the frequency axis, whereas the standard one- 
dimensional Fourier transform programs place t =O and w=O a t  one end 
of a vector. 

Humans , 

Computers 

FIG. 1.7-1. Computer storage arrangement in one-dimensional Fourier 
transform programs. 

Take the one-dimensional Fourier transform of an eight-point time func- 
tion. The zero frequency is output in the first vector element. The Nyquist 
frequency T, which is the highest frequency representable on a mesh, namely 
the function +1, -1, +1, -1, - . . , is in the fifth element of the eight point 
function, after which follow the negative frequencies. The smallest nonzero 
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negative frequency is in the eighth vector element. If there were a ninth ele- 
ment, it would by periodicity be equal t o  the first element. I t  is a coinmon 
beginner's error t o  find that  the output of a migration is not real. The ima- 
ginary part should be about lo-' of the real part, as expected for single preci- 
sion arithmetic. A much larger imaginary part, proportional t o  1/N where 
N is the vector length, indicates a programming error. 

Below is the test program for the two-dimensional program. The "write" 
statement is local Fortran, not Ratfor. The function being transformed is 
something of a low-frequency function on the time axis, and very much a 
low-frequency function on the space axis. 

# Test case for two-dimensional Fourier Transformation 
integer it,nt,k,nx; complex cp(64,64), cwork(64) 
0~en(4,file=~~lotfile),status='new',access='direct',form='unformatted',recl=l) 
nx = 64; n t  = 64; 
do i t=l ,nt  

do ix=l,nx 
c p(it,ix)=O. 

cp(16,3)=1.; cp(16,4)=4.; cp(16,5)=6.; cp(16,6)=4.; cp(16,7)=1. 
cp(17,3)=1.; cp(17,4)=4.; cp(17,5)=6.; cp(17,6)=4.; cp(17,7)=1. 
call ft2d(ntlnx,cp,+l.,+l.,cwork) 
write(4,rec=l) ((real(cp(it,ix)),it=l,nt),ix=llnx) 
stop; end 

The most basic two-dimensional Fourier transform is shown below. 

# 2D Fourier transform by using 1D program 
subroutine ft2d (nl,n2,cplsignl,sign2,cwork) 
complex cp(nl1n2),cwork(n2) 
integer nl,n2 
real signl,sign2 
do i2 = l,n2 # transform over the fast dimension 

call fork (nl,cp(l1i2),signl) # one-dimensional Fourier transform 
do i l  = 1,n l  { # transform over the slow dimension 

do i2 = l ,n2  
cwork(i2) = cp(i1 ,i2) 

call fork (nZ,cwork,sign2) # one-dimensional Fourier transform 
do i2 = l ,n2 

cp(il,i2) = cwork(i2) 
1 

return; end 

Finally we have the one-dimensional fast Fourier transform program. 
This one is the Ratfor version of Fortran "fork" found in FGDP on p.12. As 
usual, lx is a power of 2, the output cx(1) is the zero frequency, cx(lx/2+1) is 
the secalled Nyquist frequency, and cx(1x) is the smallest negative frequency. 
The algorithm is short, but tricky, and you should not expect the program to  
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be readable unless you consult other references. 

# 1D fast Fourier transform 
subroutine fork(lx,cx,signi) 
complex cx(lx),carg,cexp,cw,ct 
j = l ; k =  1; sc = sqrt(l./lx) 
do i = 1,lx { 

if (i<=j) { ct=cx(j)*sc; cx(j)=cx(i)*sc; cx(i)=ct ) 
m = k / 2  
while (j  > m) { j=j-m; m=m/2; if (m< 1) break ) 
j = j+m 

repeat 1 
istep = 2*k 
do m = 1,k { 

carg = (0.,1.)*(3.14159265*signi*(m-l))/k; cw = cexp(carg) 
do i = m,lx,istep 

{ ct=cw*cx(i+k); cx(i+k)=cx(i)-ct; cx(i)=cx(i)+ct ) 
1 

k = istep 
) until(k>=lx) 

return; end 

Fourier transforms have both real and imaginary parts. Sometimes both 
are displayed. Often the imaginary part is ignored. This is because most of 
our time functions vanish before t =O. Thus, their Fourier transforms must 
satisfy certain conditions, namely, real and imaginary parts must be related 
by Hilbert transform. Locally, one often looks like cosine, the other like sine. 
So, seeing the real part, it is often easy t o  imagine the imaginary part. Figure 
2 shows the output of the test program. 

Stolt Migration 

The Stolt migration program shown next uses linear interpolation to  con- 
vert the w-axis t o  the k,-axis. The scaling by dlc, / d  w has little effect, so it 

was omitted t o  shorten the program. (Something needed to  be saved for the 
exercises). The test case is t o  make semicircles from impulses. 
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W 

FIG. 1.7-2. Output of two-dimensional Fourier transformation test program. 

# Test case for Stolt migration. 
integer it,nt,k,nx; real vdtodx; complex cp(256,64) 
open(4,fi1e='p1otfi1e',status='new',access='direct1,form='unformatted',rec1=l) 
nx = 64; nt = 256; vdtodx = 1.14. # vdtodx = v dt / dx 
do it=l,nt 

do ix=l,nx 
cp(it,ix)=O. 

cP(32,9)=1.; cp(64,17)=1.; cp(128,33)=1. 
call stolt(nt,nx,cp,vdtodx) 
write(4,rec=l) ((real(cp(it,k)),it=l,nt),ix=l,nx) 
stop; end 
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# Stolt migration subroutine without cosine weight. 
subroutine stolt~(nt,nx,cp,vdtodx) 
integer ikx,nx,nt,nth,iktau,iom 
real om,vkx,wl,wh,aktau,pi,pionth,vdtodx 
complex cp(nt,nx),cbf(1025) 
pi = 3.14159265; nth=nt/2; pionth = pi/nth; 
call ft32d(nt,nx,cp,l.,-l.,cbf) 
do ikx = 1,nx { 

vkx = (ikx-1)*2.*pi*vdtodx/nx 
if ( ikx > nx/2 ) vkx = 2.*pi*vdtodx-vkx # negative kz 
cbf(1) = 0.; cbf(nt+l)=O. # cbf = working buffer 
do iom = 1,nt 

cbf(iom) = cp(iom,ikx) # Omit weighting 
cp(1 ,ikx)=O. # Ignore zero freq 
do iktau = 2,nth+l { # Stretch 

aktau = (iktau-l.Ol)*pionth 
om = sqrt(aktau*aktau+vkx*vkx); iom = l+om/pionth 
if(iom<nth) { 

wl = iom-om/pionth; wh = 1.-wl 
iktau,ikx) = wl*cbf(iom) +wh*cbf(iom+l) 
nbiktau+2,ikx) = wl*cbf(nt-iom+2)+wh*cbf(nbiom+l) 

} 
else 

cp(iktau,ikx) = 0. 

1 
1 

call ft2h(nt,nx,cp,-l.,l.,cbf) 
return; end 

The output of this test program was shown in Section 1.3. T o  better 
illustrate the periodic nature of the solution all but one semicircle was 

removed and the result plotted with a nonlinear gain. Four identical plots 
appear side-by-side in figure 3. 

Rocca's Row Fourier Transform 

Rocca's Fourier transform over rows is somewhat faster than the rudi- 
mentary program because the basic overhead is done once,  while every  row 
gets Fourier transformed. But the main advantage of the Rocca method over 
the rudimentary method is that  the data need not be transposed, and the pro- 
gram runs efficiently even in a paged environment. 



1.7 Sample P~og~ams  

FIG. 1.7-3. Periodicity of the output of the Stolt migration program. 

# Try Rocca's row Fourier transform. 
# sign2 should be + l .  or -1. it  is the sign of i. 
subroutine rowcc(nl,n2,cx,sign2,scale) 
complex cx(nl,n2),cmplx,cw,cdel 
do i l  = 1,nl 

do i2 = 1,112 
cx(il,i2) = cx(il,i2)*scale 

j = 1 

if (i<=j) call t~idl(nI,cx(i,i),cx(i,j)) 
m = n2/2 
while (j > m) { j = j-m; m = m/2; if (m < 1) break ) 
j = j + m )  

lstep = 1 
repeat { 

istep = 2*lstep; cw = 1. 
arg = sign2*3.14159265/lstep; cdel = cmplx(cos(arg),sin(arg)) 
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do m = 1,lstep { 
do i = m,n2,istep 

call twid2(nl,cw,cx(l,i),cx(l,i+Istep)) 
cw = cw*cdel 
1 

]step = istep 
) until(1step > =n2) 

return; end 

subroutine twidl(n,cx,cy) 
complex cx(n),cy(n),ct 
do i = 1,n { ct  = cx(i); cx(i) = cy(i); cy(i) = ct ) 
return; end 

# If you feel like optimizing, this is the place. 
subroutine twid2(n,cw,cx,cy) 
complex cx(n),cy(n),ctemp,cw 
do i = 1,n { ctemp = cw*cy(i); cy(i) = cx(i)-ctemp; cx(i) = cx(i)+ctemp ) 
return; end 

EXERCISES 

1. Most time functions are real. Their imaginary part is zero. Show that  
this means that F (w,  k ) can be determined from F (-w, -k ). 

2. Verify by using your computer and plotter that  figure 2 is produced by 
the program given. 

3. The real part of the F T  plotted in the previous exercise is somewhat 
difficult t o  interpret because of the awkward placement of the negative 
frequencies and wavenumbers. Modify the program so that  F (w, k )  has 
its origin a t  the center (33,33) of the plotted grid. Hint: a simple 
modification of j ( t ,  x )  before Fourier transforming is sufficient; recall 
the "shift theorem." Write j ( t  , x ) and the new, more easily inter- 
preted F (w, k ). Label axes. (Hale) 

4. A point explosion on the earth's surface a t  time t =O and location 
x =32 provides synthetic observations in the ( t  , x )-plane shown on the 
left. On the right is the magnitude of the two-dimensional Fourier 
transform, (w, k,)-plane. The origin is in the upper left corner of each 

plot. What would these plots look like on an earth of half the velocity? 
(Toldi) 
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5. Insert the appropriate cosine obliquity function into the Stolt migration 
program. Test, and verify little difference but some angle-dependent 
scaling. 

6. Write a program for diffraction by the Stolt method. That  is, given 
point scatterers inside the earth, generate the appropriate hyperbolas. 

7. If you include the inverse cosine weighting function in a Stolt diffraction 
program, beware of the pole a t  the evanescent edge. Is it better t o  
stretch before weighting or after? Why? 

8. Interpolation error in the Stolt program may be reduced by reducing the 
speed of oscillation of P(w) with w. To do this note that  p ( t  ) van- 
ishes for negative t . So multiply P (w)  by e wT before interpolation, 
and then divide it out after. What is an appropriate value of the con- 
stant T to  use in the program? 


