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FIGURE 2-23
Properties of the integration operator.

EXERCISE

7 1In the solution to diffusion problems, the factor F(w) = 1/(—iw)"? often arises as a
multiplier. To see the equivalent convolution operation, find a causal, sampled-time
representation f; of F(w) by identification of powers of Z in

o+ HZ+ 122+ P =1[(—iw) 2¥(1 + 2)/(0 — 2)

Solve numerically for f, through f;.
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SPECTRAL FACTORIZATION

As we will see, there is an infinite number of time functions with any given spectrum.
Spectral factorization is a method of finding the one time function which is also
minimum phase. The minimum-phase function has many uses. It, and it alone,
may be used for feedback filtering. It will arise frequently in wave propagation
problems of later chapters. It arises in the theory of prediction and regulation for
the given spectrum. We will further see that it has its energy squeezed up as close
as possible to ¢ = 0. It determines the minimum amount of dispersion in viscous
wave propagation which is implied by causality. It finds application in two-dimen-
sional potential theory where a vector field magnitude is observed and the com-
ponents are to be inferred.

This chapter contains four computationally distinct methods of computing
the minimum-phase wavelet from a given spectrum. Being distinct, they offer
separate insights into the meaning of spectral factorization and minimum phase.

3-1 ROOT METHOD

The time function (2, 1) has the same spectrum as the time function (I, 2). The
autocorrelation is (2, 5, 2). We may utilize this observation to explore the multi-
plicity of all time functions with the same autocorrelation and spectrum. It would
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seem that the time reverse of any function would have the same autocorrelation
as the function. Actually, certain applications will involve complex time series;
therefore we should make the more precise statement that any wavelet and its
complex-conjugate time-reverse share the same autocorrelation and spectrum. Let
us verify this for simple two-point time functions. The spectrum of (by, by) is

() 3@~ (50 +5) 052

= BIZbO + (50 bo + Blbl) + BO blz (3'1'1)

The conjugate-reversed time function (b;, bo) with Z transform B(Z)=b,+b,Z
has a spectrum

B(2) 5@ (b1 + %) 6452

= bOZEI + (bobo + by b)) + b b Z (3-1-2)

We see that the spectrum (3-1-1) is indeed identical to (3-1-2). Now we wish to
extend the idea to time functions with three and more points. Full generality may
be observed for three-point time functions, say B(Z) = b, + b,Z + b, Z*. First,
we call upon the fundamental theorem of algebra (which states that a polynomial
of degree n has exactly n roots) to write B(Z) in factored form.

B(Z)=by(Z, - 2Z)2,~-Z)  (3-1-3)

Its spectrum is

N T P e A

Now, what can we do to change the wavelet (3-1-3) which will leave its
spectrum (3-1-4) unchanged? Clearly, b, may be multiplied by any complex num-
ber of unit magnitude. What is left of (3-1-4) can be broken up into a product of
factors of form (Z; — 1/Z)(Z; — Z). But such a factor is just like (3-1-1). The time
function of (Z; — Z) is(Z;, —1), and its complex-conjugate time-reverse is (— 1, Z).
Thus, any factor (Z; — Z) in (3-1-3) may be replaced by a factor (—1+ Z;Z). Ina
generalization of (3-1-3) there could be N factors [(Z; — Z),i=1,2, ..., N)]. Any
combination of them could be reversed. Hence there are 2V different wavelets which
may be formed by reversals, and all of the wavelets have the same spectrum. Let us
look off the unit circle in the complex plane. The factor (Z; — Z) means that Z; is
a root of both B(Z) and R(Z). If we replace (Z; — Z) by (-1 + Z.Z)in B(Z), we
have removed a root at Z; from B(Z) and replaced it by another at Z = 1/Z;. The
roots of R(Z) have not changed a bit because there were originally roots at both
Z, and 1/Z; and the reversal has merely switched them around. Summarizing the
situation in the complex plane, B(Z) has roots Z; which occur anywhere, R(Z) must
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FIGURE 3-1
Roots of B(1/Z) B(Z).

have all the roots Z; and, in addition, the roots 1/Z;. Replacing some particular
root Z; by 1/Z; changes B(Z) but not R(Z). The operation of replacing a root at
Z; by one at 1/Z; may be written as

zZ-1)Z,

B =177

B(Z) (3-1-5)
The multipyling factor is none other than the all-pass filter considered in an earlier
chapter. With that in mind, it is obvious that B’(Z) has the same spectrum as B(Z).
In fact, there is really no reason for Z; to be a root of B(Z). If Z,; is a root of B(Z),
then B’(Z) will be a polynomial; otherwise it will be an infinite series.

Now let us discuss the calculation of B(Z) from a given R(Z). First, the roots
of R(Z) are by definition the solutions to R(Z)=0. If we multiply R(Z) by ZV
(where R(Z) has been given up to degree N), then Z¥R(Z) is a polynomial and the
solutions Z; to ZVR(Z) = 0 will be the same as the solutions of R(Z) = 0. Finding
all roots of a polynomial is a standard though difficult task. Assuming this to have
been done we may then check to see if the roots come in the pairs Z; and 1/Z;.
If they do not, then R(Z) was not really a spectrum. If they do, then for eve;y
zero inside the unit circle, we must have one outside. Refer to Fig. 3-1. Thus,
if we decide to make B(Z) be a minimum-phase wavelet with the spectrum R(Z),
we collect all of the roots outside the unit circle. Then we create B(Z) with

BZ)=b\(Z~Z,Z—-2Z,).. (Z—Zy) (3-1-6)

This then summarizes the calculation of a minimum-phase wavelet from a
given spectrum. When N is large, it is computationally very awkward compared
to meihods yet to be discussed. The value of the root method is that it shows
certain basic principles.

1 Every spectrum has a minimum-phase wavelet which is unique within a
complex scale factor of unit magnitude.

2 There are infinitely many time functions with any given spectrum.

3 Not all functions are possible autocorrelation functions.
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The root method of spectral factorization was apparently developed by
economists in the 1920s and 1930s. A number of early references may be found in
Wold’s book, Stationary Time Series [Ref. 10].

EXERCISES

How can you find the scale factor by in (3-1-6)?

2 Compute the autocorrelation of each of the four wavelets 4,0, —1), (2,3, —-2),
(=2,3,2), (1,0, —4).

3 A power spectrum is observed to fit the form P(w)= 38 4 10 cos w — 12 cos 2w.
What are some wavelets with this spectrum? Which is minimum phase? [HINT:
cos 2w =2cos*w—1;2cosw= Z + 1/Z; use quadratic formula.]

4 Show that if a wavelet b, = (bo, by ,..., ba) s real, the roots of the spectrum R comein

the quadruplets Zo, 1/Zo, Zo, and 1/Z,. Look into the case of roots exactly on the

unit circle and on the real axis. What is the minimum multiplicity of such roots?

—

3-2 ROBINSON’S ENERGY DELAY THEOREM [Ref. 11}

We will now show that a minimum-phase wavelet has less energy delay than any
other one-sided wavelet with the same spectrum. More precisely, we will show
that the energy summed from zero to any time ¢ for the minimum-phase wavelet is
greater than or equal to that of any other wavelet with the same spectrum. Refer
to Fig. 3-2.

We will compare two wavelets P, and P,,, which are identical except for
one zero, which is outside the unit circled for Py, and inside for P;,. We may
write this as

Pou(2) = (b + SZ)PZ)

P,(Z) = (s + bD)P(Z)

where b is bigger than s and P is arbitrary but of degree n. Next we tabulate the terms
in question.

n Time

FIGURE 3-2
Percent of total energy in a filter between time O and time ¢.
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The difference, which is given in the right-hand column, is clearly always positive.

. To prove th.at the miminum-phase wavelet delays energy the least, the pre-
ceding argument is repeated with each of the roots until they are all outside the
unit circle.

EXERCISE

I Do the foregoing minimum-energy-delay proof for complex-valued b, s, and P.
[cauTioN: Does Py, = (s + bZ)P or Py, = (§ + bZ)P?

3-3 THE TOEPLITZ METHOD

The Toeplitz method of spectral factorization is based on special properties of
Toeplitz matrices [Ref. 12]. In this chapter we introduce the Toeplitz matrix to
perform spectral factorization. In later chapters we will refer back several times
to the algebra described here. When one desires to predict a time series, one can
do thi.s with a so-called prediction filter. This filter is found as the so’lution to
Toeplitz simultaneous equations. Norman Levinson, in his explanatory appendix
of Norbert Wiener’s Time Series, first introduced the Toeplitz matrix to engineers;
hoyvever, it had been widely known and used previously in the field of econometrics’
It is only natural that it should appear first in economics because there the data;
are observed at discrete time points, whereas in engineering the idea of discretized
time was rather artificial until the advent of digital computers. The need for pre-
diction in economics is obvious. In seismology, it is not the prediction itself but
the error in prediction which is of interest. Reflection seismograms are used in
.petr'oleum exploration. Ideally, the situation is like radar where the delay time is
in dlrgct proportion to physical distance. This is the case for the so-called primary
reflections. A serious practical complication arises in shallow seas where large
acoustic waves bounce back and forth between the sea surface and the sea floor

These are called multiple reflections. A mechanism for separation of the prirhar);
waves from the multiple reflections is provided by prediction. A multiple reflection
is predictable from earlier echoes, but a primary reflection is not predictable from
earlier echoes. Thus, the useful information is carried in the part of the seismo-
gram which is not predictable. An oil company computer devoted to interpreting
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seismic exploration data typically solves about 100,000 sets of Toeplitz simultaneous
equations in a day.

Another important application of the algebra associated with Toeplitz
matrices is in high-resolution spectral analysis. This is where a power spectrum is
to be estimated from a sample of data which is short (in time or space). The con-
ventional statistical and engineering knowledge in this subject is based on assump-
tions which are frequently inappropriate in geophysics. The situation was fully
recognized by John P. Burg who utilized some of the special properties of Toeplitz
matrices to develop his maximum-entropy spectral estimation procedure described
in a later chapter.

Another place where Toeplitz matrices play a key role is in the mathematical
physics which describes layered materials. Geophysicists often model the earth by
a stack of plane layers or by concentric spherical shells where each shell or layer
is homogeneous. Surprisingly enough, many mathematical physics books do not
mention Toeplitz matrices. This is because they are preoccupied with forward
problems; that is, they wish to calculate the waves (or potentials) observed in a
known configuration of materials. In geophysics, we are interested in both forward
problems and in inverse problems where we observe waves on the surface of the
earth and we wish to deduce material configurations inside the earth. A later
chapter contains a description of how Toeplitz matrices play a central role in such
inverse problems.

We start with a time function x, which may or may not be minimum phase.
Its spectrum is computed by R(Z) = X(1/Z)X(Z). As we saw in the preceding sec-
tions, given R(Z) alone there is no way of knowing whether it was computed from
a minimum-phase function or a nonminimum-phase function. We may suppose
that there exists a minimum phase B(Z) of the given spectrum, that is, R(Z) =
B(1/Z) B(Z). Since B(Z) is by hypothesis minimum phase, it has an inverse
A(Z) = 1/B(Z). We can solve for the inverse A(Z).in the following way:

(1 _B(1/2)
R(Z) = B(z) B2) == (3-3-1)
R(Z)A(Z) = B(—;) = by + -EZ—‘ Lo (332

To solve for A(Z), we identify coefficients of powers of Z. For the case where, for
example, A(Z) is the quadratic a; + ¢,Z + a, 72, the coefficient of Z° in (3-3-2)
is

Folo+7r_1a, +r_,a,=by  (3-3-3a)
The coefficient of Z*' is
riag+roay +r_ja, =0 (3-3-3b)
and the coefficient of Z? is

ryag+ria; +roa; =0 (3-3-3¢)
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Bringing these together we have the simultaneous equations

Fro r—y F_2]}4% Eo
ry Fo roi|la =0 (3-3-4)
r, ry Fg a, 0

It should be clear how to generalize this to a set of simultaneous equations of
arbitrary size. The main diagonal of the matrix contains r, in every position. The
diagonal just below the main one contains r; everywhere. Likewise, the whole
matrix is filled. Such a matrix is called a Toeplitz matrix. Let us define a; = a;/a, .
Recall by the polynomial division algorithm that b, = 1/d,. Define a positive
number v = 1/a,d,. Now, dividing the vector on each side of (3-3-4) by a,, we
get the most popular form of the equations

ro rog o211 v
re ro r_qlla{|=10 (3-3-5)
r, r, ro a, 0

This gives three equations for the three unknowns ay, a,, and v. To put (3-3-5)
in a form where standard simultaneous equations programs could be used one
would divide the vectors on both sides by v. After solving the equations, we get
a, by noting that it has magnitude 1/\/1) and its phase is arbitrary, as with the root
method of spectral factorization.

At this point, a pessimist might interject that the polynomial A(Z) = a,+
a,Z + a,Z* determined from solving the set of simultaneous equations might
not turn out to be minimum phase, so that we could not necessarily compute B(Z)
by B(Z) = 1/A(Z). The pessimist might argue that the difficulty would be especially
likely to occur if the size of the set (3-3-5) was not taken to be large enough.
Actually experimentalists have known for a long time that the pessimists were
wrong. A proof can now be performed rather easily, along with a description of
a computer algorithm which may be used to solve (3-3-5).

The standard computer algorithms for solving simultaneous equations require
time proportional to n*> and computer memory proportional to n?. The Levinson
computer algorithm [Ref. 13] for Toeplitz matrices requires time proportional to
n? and memory proportional to n. First notice that the Toeplitz matrix contains
many identical elements. Levinson utilized this special Toeplitz symmetry to
develop his fast method.

The method proceeds by the approach called recursion. That is, given the
solution to the k x k set of equations, we show how to calculate the solution to the
(k + 1) x (k + 1) set. One must first get the solution for k = 1; then one repeatedly
(recursively) applies a set of formulas increasing k by one at each stage. We will
show how the recursion works for real-time functions (r, = r_,;) going from the
3 x 3 set of equations to the 4 x 4 set, and leave it to the reader to work out the
general case. ‘

Given the 3 x 3 simultaneous equations and their solution a;

ro ri 1 v
re ro ri|la i=10 (3-3-6)
Fa Iy Fol 42 0
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then the following construction defines a quantity e given r; (or r; given €)

ro ry Fry I 1 v
ry ro ry rp a | _ 0 (3-3-7)
r, ry ro ry a, 0
ry ry, ry rg 0 e

The first three rows in (3-3-7) are the same as (3-3-6); the last row is the new defi-
nition of e. The Levinson recursion shows how to calculate the solution a’ to the
4 x 4 simultaneous equations which is like (3-3-6) but larger in size.

’

ro ry Iy I 1 v
!

ry ro ry rp ai | _ 0 (3-3-8)
I

r, ry ro rg a, 0

ry r, ry rol las 0

The important trick is that from (3-3-7) one can write a ““reversed” system
of equations. (If you have trouble with the matrix manipulation, merely write out
(3-3-8) as simultaneous equations, then reverse the order of the unknowns, and
then reverse the order of the equations.)

ro ry Fy I3 0
ry fo 1 T2 a;
ry ry o Iy a
ry ry ry rg 1

(3-3-9)

@ OOn

The Levinson recursion consists of subtracting a yet unknown portion c; of (3-3-9)
from (3-3-7) so as to get the result (3-3-8). That is

ro ry Ty I3 1 0 v e 1

a 0 0
SERANRATEEE P R PEVN Rel —c, (3-3-10)
rZ rl ro rl az al o O 0
ry ry ry Iy 0 1 e v

To make the right-hand side of (3-3-10) look like the right-hand side of (3-3-8), we
have to get the bottom element to vanish, so we must choose c3 = e/v. This
implies that v'=v—cye=v— e?/v = v[l — (e/v)*]. Thus, the solution to the
4 x 4 system is derived from the 3 x 3 by

2
ey airy_; (3-3-11)

i=0
1 1 0
a4l (3312
112 (12 1) al
a; 0 1

v’ o[l —(efv)?] (3-3-13)

We have shown how to calculate the solution of the 4 x 4 Toeplitz equations
from the solution of the 3 x 3 Toeplitz equations. The Levinson recursion consists
of doing this type of step, starting from 1 x 1 and working up to n x n.

Let us reexamine the calculation to see why A(Z) turns out to be minimum
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COMPLEX R,A,C,E,BOT,CONJG
C(1)=-1.; R(1)=1.; A(1)=1.; V(1)=1.
200 DO 220 J=2,N
A(J)=0.
E=0.
DO 210 I=2,J
210 E=E+R(I)*A(J-I+1)
C(J)=E/V(J-1)
FIGURE 3-3 V(J)=V(J-1)-E*CONJG(C (J))
A computer program to do the Levinson JH=(J+1) /2

. . : DO 220 I=1,JH
recursion. It is assumed that the input r, BOT=A (J~1+1)~C (J) *CONJG (A (1))
have been normalized by division by ro. A(I)=A(I)~C (J)*CONJG (A (J-I+1))

The complex arithmetic is optional. 220 A(J-TI+1)=RBOT

phase. First, we notice that v = 1/d, a, and v’ = 1/Gj a4 are always positive. Then
from (3-3-13) we see that —1 < e/v < + 1. (The fact that ¢ = /v is bounded by
unity will later be shown to correspond to the fact that reflection coefficients for
waves are so bounded.) Next, (3-3-12) may be written in polynomial form as

A(Z)= A(Z) - (e/v)Z3A(1/Z) (3-3-14)
We know that Z* has unit magnitude on the unit circle. Likewise (for real time
series), the spectrum of A(Z) equals that of 4(1/Z). Thus (by the theorem of adding

garbage to a minimum-phase wavelet) if A(Z) is minimum phase, then 4°(Z) will
also be minimum phase. Insummary, the following three statements are equivalent:

!
I R(Z)is of the form X(E)X(Z).
2 ol <1.
3 A(Z)is minimum phase.

If any one of the above three is false, then they are all false. A program for the
calculation of g, and ¢, fromr, is given in Fig. 3-3. In Chap. 8, on wave propagation
in layers, programs are given to compute r, from a, or ¢, .

EXERCISES

1 The top row of a4 x 4 Toeplitz set of simultaneous equations like (3-3-8) is (1, }, &, 1).
What is the solution a,?

2 How must the Levinson recursion be altered if time functions are complex? Specific-
ally, where do complex conjugates occur in (3-3-11), (3-3-12), and (3-3-13)?

3 Let An(Z) denote a polynomial whose coefficients are the solution to an m X m set of
Toeplitz equations. Show that if By(Z) = Z*A,(Z" ") then

l 2n
OnOnm = f RZ)BAZ)Z "dew n<m
. 277 0
which means that the polynomial B.(Z) is orthogonal to polynomial Z" over the unit

circle under the positive weighting function R. Utilizing this result, state why B, is
orthogonal to B,, that is,

1 %" (1
Uy Opm = 5 fo R(Z)B,(Z)B, (2) dw

(HINT: First consider n << m, then all n.)
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Toeplitz matrices are found in the mathematical literature under the topic of poly-
nomials orthogonal on the unit circle. The author especially recommends Atkinson’s
book (Ref. 14).

3-4 WHITTLE’S EXP-LOG METHOD [Ref. 15]

In this method of spectral factorization we substitute power series into other power
series. Thus, like the root method, it is good for learning but not good for comput-
ing. We start with some given autocorrelation r, where

R(Z)=---+r_IZ"+r0+rlZ+rZZZ+"'

If |R| > 2 on the unit circle then a scale factor should be divided out. Insert this
power series into the power series for logarithms.

U(Z) = In R(Z)

R-1)? R-1)®
( )+( >
2 3
=t U Z 7 ug+Z A w2+

=(R-1)— 0<R<2

Of course, in practice this would be a lot of effort, but it could be done in a sys'te-
matic fashion with a computer program. Now define U,” by dropping negative
powers of Z from U(Z)

U+(z)=‘129+ulz+uzzl+---

Insert this into the power series for the exponential

(U+)2 N (U+)3

BZ)=e"?=1+U" +—, 3!

+...

The desired minimum-phase wavelet is B(Z); its spectrum is R(Z). To see why
this is so, consider the following identities.

R(Z) = eln R(Z)
-1 u ©
= exp (@ +YuZ+ 2+ Y uka)
2 - 2 +1

—1 u ©
= exp (% + _Z ukZ") exp (?O + 2; ukZ")
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Thus we have factored R(Z) into the desired conjugate parts. Finally, let us see
why B(Z) = ev*® is minimum phase. All we need to know about U*(Z) is that
it is finite and does not contain powers of Z~*. There are two proofs.

The first proof goes by observing that the imaginary part of U(Z) on the
unit circle is the phase angle of B(Z). To be minimum phase, the phase of B(Z)
must not be augmented by multiples of 2z as Z goes around the unit circle. For
minimum phase, the phase should be periodic with period 2n. The phase
u; sin ® + u, sin 2w + - obviously satisfies this condition. The second proof is
more abstract. In the second proof we note that the only way for B(Z,) = eV %0
to be zero for some Z, would be if U*(Z,) were equal to —o0; in other words,
if U" were nonconvergent. This is impossible inside the unit circle because we
took the log series for U(Z) to be absolutely convergent on the unit circle; this
means U *(Z) is convergent (finite) inside the circle. Since B(Z) cannot have zeros
inside the unit circle, it must be minimum phase.

EXERCISES

[

How can you get B(Z) if |R| > 2 on the unit circle?

2 Suppose U*(Z) =aZ. For values of a = —1, 0, 1, 100, and 7 sketch the time function
associated with B(Z). Also sketch their spectra. Find one which resembles a gaussian.

3 Seismograms may be spectrally balanced by dividing the F.T. of each seismogram by

its magnitude and multiplying by the average magnitude. This amounts to convolution

with a symmetrical filter. How can spectral balancing be defined with causal filters?

4 Examine the coefficients of the Z derivative of In B(Z) = U(Z) to find a recurrence

for u, given b, and for b, given u;.

3-5 THE KOLMOGOROFF METHOD [Ref. 16]

If in a computer we have the coefficients (x,, x;, x;, ...) of a polynomial X(Z), we
say we are *“working in the time domain.” If we evaluate the polynomial X(Z)
at a number of positions on the unit circle, we have numbers, say X(e'?), X(e***),
..., X(e""), which we call a frequency-domain representation of the polynomial
X(Z). We have seen that the fast Fourier transform is a very cheap way of going
from time domain to frequency domain and back. This makes it very worthwhile
to look at Whittle’s factorization method in the frequency domain. Furthermore,
we will understand spectral factorization from yet another point of view.

We may begin with a time function or Z transform X(Z)=x, + x,Z + - -.
Let us denote by X, the transform of the time function, that is, X(Z) evaluated at
numerous (k =0, 1, ..., n) places on the unit circle. Consider the identities

Rk=Xka

= e (R _ LUk
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FIGURE 34 ™
Determination of the phase function. by

Now we add and subtract a still arbitrary function @, to the exponential

R, = exp[}(U, — i®)] exp [H(U, + i®y)]
= B, B,

Now the big question is what @, should be used to guarantee that B, transforms
to a minimum-phase, one-sided time function? By looking at Whittle’s method,
we note that the only significant properties of U™ (Z) are that it is finite and that the
time function u, vanishes before f = 0. Thus we expect that @, should be chosen
so that when U, + i®, is transformed into the time domain the resulting time
function ;" should vanish for negative time. This may be done as depicted in
Fig. 3-4.

To see how easy it really is to get the imaginary odd part 10, we fetch the
integration filter from Sec. 2-8 (on bilinear transformation) and display it in
Fig. 3-5.

To get ®, we take U, into the time domain, getting u,. Then we multiply
by the real step function of time in Fig. 3-5, obtaining ut =uy, uy, ..., . This
implies that in the frequency domain U, has been convolved with 8o + 7~ (90°
phase shift filter). Thus, ® has been generated.

Let us reconsider the operation of dropping all of the negative powers of Z
in U(Z) as we did in the previous section to get U*(Z). For simplicity, consider
the case r, real; then u, is real.

U@)="+uZ ' +ug+u,Z +u 2> + -
U = uy(cos 0) + 2u, cos o + 2u, cos 2w + -~

Now let us make up a new function ® by replacing cosine by sine in the foregoing
expression

® = 2u, sin w + 2u, sin 2w + -
We now see that combining U with i® we get U™.
U +i®) =dug + uZ + u, Z* + -+
=U%(2)

Notice that the operation of changing cos ¢ to sin ¢ would be called 90° phase shift
filtering. Here we have changed cos @ to sin @ with the result that U*(Z) has only
positive coefficients of Z.
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Re Re

Im = zero Im = l/iw

FIGURE 3-5
The transform pair used in the Hilbert transform.

The Kolmogoroff method of spectral factorization is very fast in a computer
because fast Fourier transforms may be used. Its principle disadvantage is that
summation around the unit circle is always slightly different than integration about
the circle. When the spectrum is simple but poles are very close to the unit circle,
then the Toeplitz method may prove more satisfactory. A simple program to do
spectral factorization is given in Fig. 3-6.

EXERCISES

1 Insert the additional arrows in Fig. 3-4 which are required when dealing with complex
time functions.

2 What is the meaning of minimum-phase waveform if the roles of time domain and
frequency domain are interchanged ?

3 Show how to do the inverse Hilbert transform, given ¢ find . What is the interpre-
tation of the fact that you cannot get uo?

4 Consider a model of a portion of the earth where x is the north coordinate, +z repre-
sents altitude above the earth, and magnetic bodies are distributed in the earth so as
to create no magnetic field component in the east-west direction. One may show that
the magnetic field & above the earth is represented by

hx(x’ Z) —J.+wF(k) "'ik fhx— 1klz dk
)] =) T Ik )¢
Here F(k) is some spatial frequency spectrum.
(a) By using Fourier transforms, how does one compute 4.(x, 0) from h.(x, 0) and
vice versa? )
(b) Given h(x, 0), how does one compute h.(x, z)?
(¢) Notice thatat z=10

+ o0

W) = k() + ih() = [ eFONK|+ k) dk

-
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LX=4 LX MUST BE A POWER OF 2.
WRITE(6,FMT) (CX(I),1=1,LX) PRINT THE TEST EXAMPLE.
CALL FORK(LX,CX,1.) FOURIER TRANSFORM.

DO 10 I=1,IX
10 CX(I)=.5*CLOG(CX(I)*CONJG(CX(I))) FORM THE LOG OF THE SPECTRUM
CALL FORK(LX,CX,-1.) BEGIN THE HILBERT TRANSFORM
K=LX/2 LX MUST BE EVEN
DO 20 J=2,K LEAVE T=0 ALONE
CX (J)=CX (J)+CX(J) DOUBLE VALUES AT POSITIVE TIME
20  CX(LX+2-J)=0. ZERO VALUES AT NEGATIVE TIME
CALL FORK(LX,CX,+1.) END HILBERT TRANSFORM
DO 30 I=1,LX
30 CX(I)=CEXP(CX(I)) EXPONENTIATE
CALL FORK(LX,CX,-1.) INVERSE FOURIER TRANSFORM

WRITE(6,FMT) (CX(1),1=1,LX) PRINT MINIMUM PHASE WAVELET.

IN: ( 0.0, 0.9), ( 0.0, 8.0), (16.0, 0.0), ( 0.0, 0.0},

oUT: (15.6,-0.0), ( 0.0,-8.7), (-0.4,-0.0), ( 0.0,-0.7),

FIGURE 3-6

A program to do spectral factorization by means of fast Fourier transform and
Hilbert transform. Complex arithmetic is mandatory. Results are approximate
since integration around the unit circle has been approximated by summation
over four points.

and that F(k)(|k| + k) is a one-sided function of k. With a total field magneto-
meter one observes

h2(x) + h:2(x) = w(x)w(x)

What can you say about getting F (k) from this?
(d) How unique are A.(x) and A.(x) if w(x)w(x) is given?

3-6 CAUSALITY AND WAVE PROPAGATION

The principle of causality, i.e., no response before a stimulus, places certain re-
straints upon the nature of wave propagation. Causality often seems to be violated
because of

I Approximations in a theory which are made to simplify it.
2 Fitting inappropriate curves to experimental observations.
3 Approximations made in converting differential equations to difference

equations.

Violations of causality often result from seemingly inconsequential approxi-
mations at spectral frequencies outside the range of practical interest. The seemingly
inconsequential approximations often take on significance because of the very
weak convergence in the Hilbert transform. With regard to 7 and 2, the violation
of causality may turn out to be a low price to pay compared with the cost of a more
precise analysis. With regard to 3 or computation in general, the violation of

i~
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o ikx -~

Y(0) Y(x)

FIGURE 3-7 o x[2 pikx/2
Modeling wave propagation with filters.

causality usually has disastrous consequences. Even though difference equations
may have proper behavior at frequencies of interest, exponential growth at other
frequencies is almost always so severe as to completely obliterate the desired
solution.

Most wave-propagation theories are worked out in the frequency domain in
homogeneous materials. If they are further done in cartesian geometry, the end
result is that propagation along the x axis is given by

Y(x) = Y0) e*.  (3-6-1)

What the wave theory provides is an expression for & in terms of frequency and
all the physical parameters such as velocity, viscosity, etc. We will now take an
“ after-the-derivation ”” look at k(w) and see if it satisfies causality. In other words,
(3-6-1) is like the filter situation depicted in Fig. 3-7. Y(0) is the filter input, Y(x)
is like the output, and ¢™** is a filter which models the effect of propagation. The
question is whether the filters are one-sided. This depends upon the detailed form
of k(w).

First, consider the simple case when k(w) is real for all real @. Then ™ is
an all-pass filter. Itis realizable, as shown on p. 42, if and only if k(w)x is a mono-
tonically increasing function of .

Next, suppose k(w) is complex. This means that attenuation will occur.
Clearly energy conservation requires that the real part of ikx be negative.

Define P(Z) to be a realizable all-pass filter and B(Z) to be a realizable
minimum-phase wavelet. Any realizable function can be represented in the form
B(Z)P(Z). We will require e* to be so represented.

B(Z)P(Z) = e™ = exp [i(k, + ik )x] (3-6-2)
Taking logs and using ¢ to denote phase, we have
In|B| + ipg + ipp = —k;x + ik, x (3-6-3)
Splitting into real and imaginary parts we obtain
In|B| = —k;x
¢p=k,x — g

First of all, from the attenuation —k; x = In| B| we can by Hilbert transform -
compute ¢5. When it is subtracted from k, x we are left with the phase shift ¢»
of the all-pass filter. Recall from Sec. 2-6 (on all-pass filters) that if and only if
¢p is monotonically increasing, we have a causal all-pass filter. In conclusion, the
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test of causality for a function k(w) lies in computing ¢p(w) and seeing whether it
is monotonically increasing for all frequencies.

A great deal of confusion results from attenuation laws which are thought
to be of the form k; ~ w? (gaussian attenuation) or k; ~| w| (sometimes called
constant Q). The reason is that these functions are not integrable so they do not
have convergent Hilbert transforms; that is, the ¢ turns out to be infinite. These
functions correspond to time pulses like the gaussian time function e~" which do
not have a time before which they are zero. Such functions cannot strictly be con-
sidered to be associated with any causal process; however, they may give excellent
practical approximations. In reality, physical dissipation is generally associated
with a relaxation phenomenon having a finite relaxation time. For frequency
values below the relaxation value, the attenuation may appear to be increasing
indefinitely with frequency, but, in fact, the attenuation decreases above the charac-
teristic relaxation frequency. The attenuation also provides a phase velocity
aberration because of the addition of ¢ to ¢, but this is generally considered to be
too small to measure.

Now let us take up an example of computer modeling of wave propagation.
The simplest example is propagation without dissipation. Then k = w/v where v is
the velocity. Rather than attempt to construct a filter which will carry waves a
long distance we will only attempt to carry them a distance Ax. The filter may be
used N times to propagate a distance x = N Ax. We will use the bilinear truncation
of the power series for exponential

en—= (3-64)

and the bilinear representation for iw At, namely

Z—-1
jw At = 2| ——) * (3-6-
iw (Z+1) (3-6-5)

With these and k = w/v and the definition a = Ax/v At we obtain

1+ (Z——l)
a
eikszeilEAx_ Z+1

_1 a(Z—l)
Z+1

_(Z+1)+a(Z—1)_(1—a)+(1+a)Z
T@Z+D)-azZ-1) (+a+(-aZ

That this is the general form of an all-pass filter may be seen by taking Z, =
—(1 + a)/(1 — a). Then (3-6-6) becomes

(3-6-6)

. —1YZy+Z
ik Ax [}
="' v -6-7
¢ T—zz, %D
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The denominator will be minimum phase and the all-pass filter will be realizable
if Zy > 1 or Ax/v At > 0. This means that present and past values of the inputs will
determine the output if the wave is being projected in the + x direction. If it is
desired to project the wave backwards in space (Ax negative), then Af must be

taken negative, so that present and future input values determine the present
output.

EXERCISE

1 What is the velocity error asa function of w for the filter of (3-6-6) for values of a = .1,
1., and 2. HINTS: Let £ = w/d so v/B = kvjw. Then note that

. 1 Z
ik Ax =Ine'*3* =InZ 41 ( 1)—1 -
n ZOZ+ nil Z

+ jw At —2Imin {1 z
m In 7.




