Next: The accuracy of causal
Up: Z-plane, causality, and feedback
Previous: Smoothing with a triangle
Begin with a function in discretized time xt.
The Fourier transform with the substitution
is
the Z-transform
| ![\begin{displaymath}
X(Z) \eq \cdots\ + x_{-2} \,Z^{-2} \ +\ x_{-1} \,Z^{-1} \ +\ x_0
\ +\ x_1 \,Z \ +\ x_2 \,Z^2 \ +\ \cdots\end{displaymath}](img1.gif) |
(12) |
Define
(which will turn out to be an approximation
to
) by
| ![\begin{displaymath}
{1 \over -i \hat \omega \,\Delta t } \eq
{1 \over 2 }\ { 1\ +\ Z \over 1\ -\ Z }\end{displaymath}](img49.gif) |
(13) |
Define another signal yt
with Z-transform Y(Z) by
applying the operator to X(Z):
| ![\begin{displaymath}
Y(Z)\ \ \ =\ \ \ {1 \over 2 }\ { 1\ +\ Z \over 1\ -\ Z} \ X(Z)\end{displaymath}](img50.gif) |
(14) |
Multiply both sides by (1-Z):
| ![\begin{displaymath}
(1\ -\ Z)\ Y(Z)\ \ \ =\ \ \ {1 \over 2 }\ (1\ +\ Z)\ X(Z)\end{displaymath}](img51.gif) |
(15) |
Equate the coefficient of Zt on each side:
| ![\begin{displaymath}
y_t\ -\ y_{{t-1}}\ \ \ =\ \ \ {x_t\ +\ x_{{t-1}} \over 2 }\end{displaymath}](img52.gif) |
(16) |
Taking xt to be an impulse function,
we see that yt turns out
to be a step function, that is,
| ![\begin{displaymath}
x_t \eq \cdots 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, \cdots\end{displaymath}](img53.gif) |
(17) |
| ![\begin{displaymath}
y_t \eq \cdots 0, 0, 0, 0, 0, {1 \over 2 }, 1, 1, 1, 1, 1, 1, \cdots \end{displaymath}](img54.gif) |
(18) |
So yt is the discrete-domain representation of the integral
of xt from minus infinity to time t.
The operator (1+Z)/(1-Z) is called the
``bilinear transform."
Next: The accuracy of causal
Up: Z-plane, causality, and feedback
Previous: Smoothing with a triangle
Stanford Exploration Project
10/21/1998