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Preface

Age and treachery will always overcome youth and skill. –anonymous

You may copy this book but not sell copies. “Geophysical Image Estimation by Exam-
ple,” is copyrighted and it is licensed under the Creative Commons Attribution-Sharealike
4.0 International License. To view a copy of the license, visit
http://creativecommons.org/licenses/by-sa/4.0/.
The electronic version of this book as well as my four earlier books are freely available

at my web site1. At that web site, find (1) two versions, one for classroom use, the other
with many unfinished loose ends, and (2) videos of me narrating this book for use in my
newly “flipped” class. If you have this book in print in your hands, you have the free limited
edition version of it. A final version will be sold by Some University Press.

I produced this book for graduate students, to convert them from scholars to investi-
gators. Example data here are drawn from diverse easy-to-understand physical situations
where widely occurring issues are worked through, preparing them for their particular ap-
plications.

I have had the good fortune of having excellent computer access all my professional life
and the further good fortune of 47 years of continuous close association with a stream of
excellent graduate students, typically a dozen at any time. From this I have prepared five
textbooks, this to be the last, on the topic of geophysical data analysis. I tell the students,
“We get paid to add value to data that has been collected at great expense. We do theoretical
work based on the data we see; and from that theory and data we try to coax value.”

In this book I have mostly avoided examples from my own field of specialization, reflec-
tion seismology, as they are covered in my earlier books, and they tend to be complicated,
a competitive activity feeding an aggressive industry, the construction of 3-D subsurface
landform images, an activity where it is not easy to build yourself a niche. See a touch of
it here in the final chapter.

Instead, here find basic examples from wide ranging applications chosen for their diver-
sity and for their lack of application-specific complexity, thus leading us soon to the kind
of complications likely to turn up wherever you go. Young people new to building images
from complicated models of data wishing to join the forefront of an established field, need

1 http://sep.stanford.edu/sep/prof/
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help overcoming frustrations long since overcome by oldsters like me. Before jumping into
the fray, they could use experience with the simpler examples in this book.
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Overview

The difference between theory and practice is smaller in theory than it is in practice. –folklore

This book is about the estimation and construction of geophysical images. Geophysical
images are used to visualize petroleum and mineral resource prospects, for subsurface wa-
ter, contaminent transport (environmental pollution), archeology, lost treasure, graves, and
for simple curiosity. What does it look like inside the earth? Here we follow physical mea-
surements from a wide variety of geophysical sounding devices to a geophysical image, a
1-, 2-, or 3-dimensional Cartesian mesh that is easily transformed to a graph, map image,
or computer movie.

Beyond “simulation” the fields of geophysics, engineering, statistics, and applied mathe-
matics include a topic called “inverse theory” which concerns the reverse — fitting models
to data. The bulk of this theory is based on the idea that data contains noise. Our data is
good data. Reality in science, geophysics, and research engineering is that misfit means the
data contains information the model is not cognizant of. Identifying its meaning is the real
prize. This book aspires to lead you there. With such a grandiose ambition, the best route I
can see is an excursion past many examples, each by necessity of minimal complexity.

Geophysical sounding data used in this book comes from acoustics, radar, seismology,
and even bits of astrophysics and biology. Sounders are operated along tracks on the earth
surface (or tracks in the ocean, air, or earth orbit). A basic goal of data processing is an
image that shows the earth itself, not an image of our data-acquisition tracks. We want to
hide our data acquisition footprint.

To enable this book to move rapidly along from one application to another, we avoid ap-
plications where the transform from model to data is mathematically complicated, but we
include the central techniques of constructing the adjoint of any such complicated transfor-
mation. By setting aside application-specific complications, we soon uncover and deal with
universal difficulties such as: (1) irregular geometry of recording, (2) locations where no
recording took place and, (3) locations where crossing tracks made inconsistent measure-
ments, (4) merging the data of various illumination directions. Noise itself comes in four
flavors: (1) drift (zero to low frequency), (2) white or steady and stationary broad band,
and (3) bursty, i.e., occasional but large and erratic, and (4) all at once (aaack!). This book
has all four kinds.
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Missing data and inconsistent data are two humble, though universal problems. Because
they are universal problems, science and engineering have produced a cornucopia of ideas
ranging from mathematics (Hilbert adjoint) to statistics (stationary, inverse covariance)
to physics (multi-dimensional spectral, scale-invariant) to numerical analysis (conjugate
direction, preconditioner) to computer science (object oriented) to simple common sense.
Besides geophysical imaging, a journey through this maze is good preparation for many
other fields! A course in applied mathematics might often turn out to be more narrowly
focused. Our guide through this maze of opportunities, digressions, and misconceptions is
the test of what works on real data, what will make a better image.

Inverse theory is too theoretical.

We make discoveries about reality by examining the discrepancy between theory and prac-
tice. There is a well-developed theory about the difference between theory and practice,
and it is called “geophysical inverse theory.” In this book we investigate the practice of the
difference between theory and practice. As the folklore tells us, there is a big difference.
Inverse theory provides a logical basis for learning from geophysical data. But in practice
it often fails. Inverse theory says data is noisy. Practice tells us to find aspects of the data
that are missing in the theory. As with computer coding, our first attempts nearly always
fail. Inverse theory is the fine art of dividing by zero (inverting a singular matrix).

The first problem with all mathematical theory is that it is based on assumptions. Math-
ematicians are very good at stating exactly what the assumptions are. But the practitioner
often fails to recognize the significance of all the assumptions. For example in 2009 we
were in a financial crisis. America’s biggest financial institutions were in a state of collapse.
People who had been fabulously wealthy were no longer. A major contributing reason is
that Nobel prize winning economists have propagated theories dependent on the “station-
arity assumption,” an assumption ignored by financial leaders because they never saw so
many examples of its failures as we are going to see here!

Closer to home, academics often take the world to be homogeneous, one dimensional,
or two dimensional when in reality it is three dimensional, heterogeneous, and sometimes
time variable as well. My colleagues in exploration seismology for example, often adopt
the doubtful assumptions that they have an impulsive point source, that they can neglect
multiple reflections, shear waves, anisotropy, and that they already have an adequate ve-
locity model.

Synthetic data is often used as a test of new software. That’s fine, as far as it goes, but the
real opportunities lie just beyond, when the real data fits a model somewhat different from
what we have planned. That’s where this book fills a need. I have chosen a wide collection
of geophysical data types from among those areas where the basic theory is dirt simple.
Then when theory fails (as it always does when we are starting out) it is not so hard to
recognize what is happening.

Another big problem with inverse theory in geophysics is the problem of dimensionality.
In geophysics we often construct a map or an image which is a specialized form of data
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display. Your computer screen has about 1000 × 1000 pixels. Currently, high definition
television is about 2000×1000 pixels. A low resolution geophysical image would be 100×
100 pixels. For each pixel in such a small image we must find its value by something
like inverse theory. Basic application of inverse theory implies a calculation like m =

(F∗F)−1F∗d. But for that, even the small image m has 10, 000 = 104 unknowns so the
matrix F∗F has 108 elements. Even with such a tiny image, the matrix is too big to invert
on today’s computers. The cost rises with the third power of the number of pixels which
is the sixth power of the resolution. Clearly, most geophysical tasks present computational
challenges too steep for straightforward application of inverse theory.

Weights, filters, and theory we don’t need

We find here many applications that have a great deal in common with one another. First,
many applications draw our attention to the importance of two weighting functions (one
required for data space and the other for model space). Solutions depend strongly on these
weighting functions (eigenvalues do too!). Where do these functions come from, from
what rationale or estimation procedure? We’ll see many examples here, and find that these
functions are not merely weights but filters. Even deeper, they are generally a combination
of weights and filters. We do some tricky bookkeeping and bootstrapping when we filter
the multidimensional neighborhood of missing and/or suspicious data.

Prior knowledge exploited here is that unknowns are functions of time and space (so
the covariance matrix has known structure). This structure gives them predictability. Pre-
dictable functions in 1-D are tides, in 2-D are lines on images (linements), in 3-D are
sedimentary layers, and in 4-D are wavefronts. The tool we need to best handle this pre-
dictability is the multidimensional “prediction-error filter” (PEF), one theme of this book.

Books on geophysical inverse theory tend to address theoretical topics that are little used
in practice. Foremost is probability theory. In practice, probabilities are neither observed
nor derived from observations. For more than a handful of variables, it would not be prac-
tical to display joint probabilities, even if we had them. If you are data poor, you might
turn to probabilities. If you are data rich, you have far too many more rewarding things to
do. When you estimate a few values, you ask about their standard deviations. When you
have an image making machine, you turn the knobs and make new images (and invent new
knobs). Singular-value (eigenvalue) theory is also a valuable intellectual tool, but it is not
used here.

A clever friend asked me why my book had no eigenfunctions? A good question. He’s
the kind of friend who digs into deep problems and comes up with hair-raising integral
operators. After calculating potential data everywhere on the surface of the earth we need
the linear operator that selects from his ideal data the subset where we record real data.
This is nasty. On the earth surface we may often find a nice long survey line of uniformly
sampled geophysical data. Widening our eyes from the line to the surface plane we find
a mess of too-sparse instrument spacing interrupted by surface obstacles. Unfortunately
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there is little money to be made these days with single survey lines. My ugly data selection
operator multiplies his elegant integral operator. Those beautiful eigenfunctions are ruined.

Going to work

Are you aged 23? If so, this book is designed for you. Life has its discontinuities: when
you enter school at age 5, when you leave university, when you marry, when you retire.
The discontinuity at age 23, mid graduate school, is when the world loses interest in your
potential to learn. Instead the world wants to know what you are accomplishing right now!
This book is about how to make images. It is theory and programs that you can use right
now.

This book is not devoid of theory and abstraction. Indeed it makes an important new
contribution to the theory (and practice) of data analysis: multidimensional autoregression
via the helical coordinate system.

The biggest chore in the study of “the practice of the difference between theory and
practice” is that we must look at algorithms. Some of them are short and sweet, but other
important algorithms are complicated and ugly in any language. This book can be printed
without the computer programs and their surrounding paragraphs, or you can read it with-
out them. I suggest, however, you take a few moments to try to read each program. If
you can write in any computer language, you should be able to read these programs well
enough to grasp the concept of each, to understand what goes in and what should come
out. I have chosen the computer language (more on this later) that I believe is best suited
for our journey through the “elementary” examples in geophysical image estimation.

Besides the tutorial value of the programs, if you can read them, you will know exactly
how the many interesting illustrations in this book were computed so you will be well
equipped to move forward in your own direction.

Scaling up to big problems

Although most the examples in this book are presented as toys, where results are obtained
in a few minutes on a home computer, we have serious industrial-scale jobs always in the
backs of our minds. This forces us to avoid representing operators as matrices. Instead we
represent operators as a pair of subroutines, one to apply the operator and one to apply the
adjoint (transpose matrix). (This will be more clear when you reach the middle of chapter
2.

By taking a function-pair approach to operators instead of a matrix approach, this book
becomes a guide to practical work on realistic-sized data sets. By realistic, I mean as large
and larger than those here; i.e., data ranging over two or more dimensions, and the data
space and model space sizes being larger than about a 300×300 ≈ 100, 000 = 105 element
image. Even for these, the world’s biggest computer would be required to hold in random
access memory the 105×105 matrix linking data and image. Mathematica, Matlab, kriging,
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etc, are nice tools but2 it was no surprise when a curious student tried to apply one to an
example from this book and discovered that he needed to abandon 99.6% of the data to
make it work. Matrix methods are limited not only by the size of the matrices but also by
the fact that the cost to multiply or invert is proportional to the third power of the size.
For simple experimental work, this limits the matrix approach to data and images of about
4000 elements, a low-resolution 64 × 64 image.

Computer Languages

One feature of this book is that it introduces and uses “object programming”. Older lan-
guages like Fortran 77, Matlab, C, and Visual Basic, are not object-oriented languages. The
introduction of object-oriented languages like C++, Java, and Fortran 90 a couple decades
back greatly simplified many application programs. An earlier version of this book used
Fortran 77. I had the regrettable experience that issues of Geophysics were constantly be-
ing mixed in the same program as issues of Mathematics. This is easily avoided in object-
based languages. For ease of debugging and for ease of understanding, we want to keep the
mathematical technicalities away from the geophysical technicalities. This is called “infor-
mation hiding”. We geophysicists can work with numerical analysts without either of us
needing to know many details of the other’s work.

In the older languages it is easy for a geophysical application program to call a math-
ematical subroutine. That is new code calling old code. The applications we encounter in
this book require the opposite, old optimization code written by someone with a mathe-
matical hat calling linear operator code written by someone with a geophysical hat. The
older code must handle objects of considerable complexity only now being built by the
newer code. It must handle them as objects without knowing what is inside them. Linear
operators are conceptually just matrix multiply (and its transpose), but concretely they are
not simply matrices. While a matrix is simply a two-dimensional array, a sparse matrix
may be specified by many complicated arrangements.

The newer languages allow information hiding, but a price paid, from my view as a
textbook author, is that the codes are now more verbose, hence make the book uglier. Many
initial lines of code are taken up by definitions and declarations making my simple textbook
codes about twice as lengthy as in old F77 (or pseudocode). This is not a disadvantage for
the reader who can rapidly skim over what soon become familiar definitions.

Of the three object-based languages available, I chose Fortran because, as its name im-
plies, it looks most like mathematics. Fortran has excellent primary support for multidi-
mensional cartesian arrays and complex numbers, unlike Java and C++. Fortran, while
looked down upon by the computer science community, is the language of choice among
physicists, mechanical engineers, and numerical analysts. While our work is certainly com-
plex, in computer science their complexity is more diverse.

2 I do not mean to imply that these tools cannot be used in the function-pair style of this book, only that beginners tend to use a
matrix approach.
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The Loptran computer dialect

Along with theory, illustrations, and discussion, I display the programs that created the
illustrations. To reduce verbosity in these programs, my colleagues and I have invented a
little language called Loptran that is readily translated to Fortran 90. I believe readers with-
out Fortran experience will comfortably be able to read Loptran, but they should consult a
Fortran book if they plan to write it. Loptran is not a new language compiler but a simple
text processor that expands concise scientific language into the more verbose expressions
required by Fortran 90. The name Loptran denotes Linear OPerator TRANslator.

Fortran is the original language shared by scientific computer applications. The people
who invented C and UNIX also made Fortran more readable by their invention of Ratfor3.
Sergey Fomel, Bob Clapp, and I have taken the good ideas from original Ratfor and merged
them with concepts of linear operators to make Loptran, a language with much the syntax
of modern languages like C++ and Java. Loptran is a small and simple adaptation of well-
tested languages, and translates to F90. On the web4 you should be able to find the codes
used in this book in both Fortran 90 and Loptran.

Reproducibility

We have long held the goal of delivering reproducible research by which we mean we wish
you could find yourself in an environment where you could replicate the calculation we
did for each illustration in a document. I still try, but reality has intruded in many ways.
Is this the place to cite them all? Most likely not, but here are a few. We build upon many
software tools of others. All software has “the versioning problem”. Besides our own SEP
libraries, I can cite Fortran, C, shell, make, LaTeX, postscript, PDF, Xwindow as software
that over the long haul has changed in various ways.

Another problem is that geophysical data is expensive to collect, so when we receive it
we are ordinarily not free to pass it along to others. (But if some particular data set catches
your heart strings, don’t be afraid to ask.)

Internally, our idea of reproducible research is that each computed illustration in a doc-
ument has in its caption a key to a menu allowing us to burn and rebuild that illustration
(or movie) from its code and data sources.

Hopefully, as computers mature, these obstacles will be less formidable. Anyway, our
SEP libraries are also offered free on the SEP web site. Our software is developed in
LINUX, works also on Mac, but has not been adapted to the Microsoft environment..

3 http://sepww.stanford.edu/sep/bob/src/ratfor90.html
4 http://sepww.stanford.edu/sep/prof/gee/Lib/
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Basic operators and adjoints

A great many of the calculations we do in science and engineering are really matrix mul-
tiplication in disguise.. The first goal of this chapter is to unmask the disguise by showing
many examples. Second, we see how the adjoint operator (matrix transpose) back projects
information from data to the underlying model.

Geophysical modeling calculations generally use linear operators that predict data from
models. Our usual task is to find the inverse of these calculations; i.e., to find models (or
make images) from the data. Logically, the adjoint is the first step and a part of all subse-
quent steps in this inversion process. Surprisingly, in practice the adjoint sometimes does
a better job than the inverse! This is because the adjoint operator tolerates imperfections in
the data and does not demand that the data provide full information.

Using the methods of this chapter, you will find that once you grasp the relationship
between operators in general and their adjoints, you can obtain the adjoint just as soon as
you have learned how to code the modeling operator.

If you will permit me a poet’s license with words, I will offer you the following table of
operators and their adjoints:

matrix multiply conjugate-transpose matrix multiply
convolve crosscorrelate
truncate zero pad
replicate, scatter, spray sum or stack
spray into neighborhoods sum within bins
derivative (slope) negative derivative
causal integration anticausal integration
add functions do integrals
assignment statements added terms
plane-wave superposition slant stack / beam form
spread on a curve sum along a curve
stretch squeeze
scalar field gradient negative of vector field divergence
upward continue downward continue
diffraction modeling imaging by migration
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hyperbola modeling stacking for image or velocity
chop image into overlapping patches merge the patches
ray tracing tomography

The left column above is often called “modeling,” and the adjoint operators on the right
are often used in “data processing.”

When the adjoint operator is not an adequate approximation to the inverse, then you
apply the techniques of fitting and optimization explained in Chapter 2. These techniques
require iterative use of the modeling operator and its adjoint.

The adjoint operator is sometimes called the “back projection” operator because infor-
mation propagated in one direction (earth to data) is projected backward (data to earth
model). Using complex-valued operators, the transpose and complex conjugate go to-
gether; and in Fourier analysis, taking the complex conjugate of exp(iωt) reverses the
sense of time. With more poetic license, I say that adjoint operators undo the time and
phase shifts of modeling operators. The inverse operator does this too, but it also divides
out the color. For example, when linear interpolation is done, then high frequencies are
smoothed out, so inverse interpolation must restore them. You can imagine the possibilities
for noise amplification. That is why adjoints are safer than inverses. But nature determines
in each application what is the best operator to use, and whether to stop after the adjoint,
to go the whole way to the inverse, or to stop partway.

The operators and adjoints above transform vectors to other vectors. They also transform
data planes to model planes, volumes, etc. A mathematical operator transforms an “abstract
vector” which might be packed full of volumes of information like television signals (time
series) can pack together a movie, a sequence of frames. We can always think of the opera-
tor as being a matrix but the matrix can be truly huge (and nearly empty). When the vectors
transformed by the matrices are large like geophysical data set sizes then the matrix sizes
are “large squared,” far too big for computers. Thus although we can always think of an
operator as a matrix, in practice, we handle an operator differently. Each practical applica-
tion requires the practitioner to prepare two computer programs. One performs the matrix
multiply y = Bx and another multiplys by the transpose x̃ = B∗y (without ever having the
matrix itself in memory). It is always easy to transpose a matrix. It is less easy to take a
computer program that does y = Bx and convert it to another to do x̃ = B∗y. In this chapter
are many examples of increasing complexity. At the end of the chapter we will see a test
for any program pair to see whether the operators B and B∗ are mutually adjoint as they
should be. Doing the job correctly (coding adjoints without making approximations) will
reward us later when we tackle model and image estimation applications.

Mathematicians often denote the transpose of a matrix B by BT. In physics and engi-
neering we often encounter complex numbers. There the adjoint is the complex-conjugate
transposed matrix denoted B∗. What this book calls the adjoint is more properly called the
Hilbert adjoint.
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1.0.1 Programming linear operators

The operation yi =
∑

j bi jx j is the multiplication of a matrix B by a vector x. The adjoint op-
eration is x̃ j =

∑
i bi jyi. The operation adjoint to multiplication by a matrix is multiplication

by the transposed matrix (unless the matrix has complex elements, in which case we need
the complex-conjugated transpose). The following pseudocode does matrix multiplication
y = Bx and multiplication by the transpose x̃ = B∗y:

if adjoint
then erase x

if operator itself
then erase y

do iy = 1, ny {
do ix = 1, nx {

if adjoint
x(ix) = x(ix) + b(iy,ix) × y(iy)

if operator itself
y(iy) = y(iy) + b(iy,ix) × x(ix)

}}

Notice that the “bottom line” in the program is that x and y are simply interchanged. The
above example is a prototype of many to follow, so observe carefully the similarities and
differences between the adjoint and the operator itself.

Next we restate the matrix-multiply pseudo code in real code, in a language called Lop-
tran1, a language designed for exposition and research in model fitting and optimization
in physical sciences.

The module matmult for matrix multiply and its adjoint exhibits the style that we will
use repeatedly. At last count there were 53 such routines (operator with adjoint) in this
book alone.

matrix multiply.lop
module matmul t { # m a t r i x m u l t i p l y and i t s a d j o i n t
r e a l , d imens ion ( : , : ) , p o i n t e r : : bb
#% _ i n i t ( bb )
#% _lop ( x , y )
i n t e g e r ix , i y
do i x= 1 , s i z e ( x ) {
do i y= 1 , s i z e ( y ) {

i f ( a d j )
x ( i x ) = x ( i x ) + bb ( iy , i x ) ∗ y ( i y )

e l s e
y ( i y ) = y ( i y ) + bb ( iy , i x ) ∗ x ( i x )

}}
}

Notice that the module matmult does not explicitly erase its output before it begins, as
does the pseudo code. That is because Loptran will always erase for you the space required
for the operator’s output. Loptran also defines a logical variable adj for you to distinguish

1 The programming language, Loptran, is based on a dialect of Fortran called Ratfor. For more details, see Appendix A.
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your computation of the adjoint x = x + B∗y from the forward operation y = y + Bx.
In computerese, the two lines beginning #% are macro expansions that take compact bits
of information which expand into the verbose boilerplate that Fortran requires. Loptran is
Fortran with these macro expansions. You can always see how they expand by looking at
http://sep.stanford.edu/sep/prof/.

What is new in Fortran 90, and will be a big help to us, is that instead of a subroutine with
a single entry, we now have a module with two entries, one named _init for the physical
scientist who defines the physical problem by defining the matrix, and another named _lop
for the least-squares problem solver, the computer scientist who will not be interested in
how we specify B, but who will be iteratively computing Bx and B∗y to optimize the
model fitting. The lines beginning with #% are expanded by Loptran into more verbose
and distracting Fortran 90 code. The second line in the module matmult, however, is pure
Fortran syntax saying that bb is a pointer to a real-valued matrix.

To use matmult, two calls must be made, the first one

call matmult_init( bb)

is done by the physical scientist after he or she has prepared the matrix. Here memory is
allocated, often later released by call matmult_close(). Most later calls are done by
numerical analysts in solving code like in Chapter 2. These calls look like

stat = matmult_lop( adj, add, x, y)

where adj is the logical variable saying whether we desire the adjoint or the operator itself,
and where add is a logical variable saying whether we want to accumulate like y← y+Bx
or whether we want to erase first and thus do y← Bx. The return value stat is an integer
parameter, mostly useless (unless you want to use it for error codes).

We split operators into two independent processes, the first is used for geophysical set up
while the second is invoked by mathematical library code (introduced in the next chapter)
to find the model that best fits the data. Here is why we do so. It is important that the
math code contain nothing about the geophysical particulars. This enables us to use the
same math code on many different geophysical applications. This concept of “information
hiding” arrived late in human understanding of what is desirable in a computer language.
This feature alone is valuable enough to warrant upgrading from Fortran 77 to Fortran 90,
and likewise from C to C++. Subroutines and functions are the way that new programs use
old ones. Object modules are the way that old programs (math solvers) are able to use new
ones (geophysical operators).

1.1 FAMILIAR OPERATORS

The simplest and most fundamental linear operators arise when a matrix operator reduces
to a simple row or a column.
A row is a summation operation.
A column is an impulse response.
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If the inner loop of a matrix multiply ranges within a
row, the operator is called sum or pull.
column, the operator is called spray or push.
Generally, inputs and outputs will be high dimensional such as signals or images. Push
gives ugly outputs. Some output locations will be empty, each having an erratic number of
contributions to it. Consequently, most data processing (adjoint) is done by pull.

A basic aspect of adjointness is that the adjoint of a row matrix operator is a column
matrix operator. For example, the row operator [a, b]

y = [ a b ]
[

x1

x2

]
= ax1 + bx2 (1.1)

has an adjoint that is two assignments:[
x̂1

x̂2

]
=

[
a
b

]
y (1.2)

The adjoint of a sum of N terms is a collection of N assignments.

1.1.1 Adjoint derivative

In numerical analysis we represent the derivative of a time function by a finite difference.
We do this by subtracting each two neighboring time points and then dividing by the sample
interval ∆t. This amounts to convolution with the filter (1,−1)/∆t. Omitting the ∆t we
express this concept as:

y1

y2

y3

y4

y5

y6


=



−1 1 . . . .

. −1 1 . . .

. . −1 1 . .

. . . −1 1 .

. . . . −1 1

. . . . . 0





x1

x2

x3

x4

x5

x6


(1.3)

The is seen in any column in the middle of the matrix, namely (1,−1). In the transposed
matrix, the filter-impulse response is time-reversed to (−1, 1). So, mathematically, we can
say that the adjoint of the time derivative operation is the negative time derivative. This
corresponds also to the fact that the complex conjugate of −iω is iω. We can also speak
of the adjoint of the boundary conditions: we might say that the adjoint of “no boundary
condition” is a “specified value” boundary condition. The last row in equation (1.3) is
optional. It may seem unnatural to append a null row, but it can be a small convenience
(when plotting) to have the input and output be the same size.

Equation (1.3) is implemented by the code in module igrad1 which does the operator
itself (the forward operator) and its adjoint.
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first difference.lop
module i g r a d 1 { # g r a d i e n t i n one d imens ion
#% _lop ( xx , yy )
i n t e g e r i
do i= 1 , s i z e ( xx )−1 {

i f ( a d j ) {
xx ( i +1) = xx ( i +1) + yy ( i ) # r e s e m b l e s e q u a t i o n ( 1 . 2 )
xx ( i ) = xx ( i ) − yy ( i )
}

e l s e
yy ( i ) = yy ( i ) + xx ( i +1) − xx ( i ) # r e s e m b l e s e q u a t i o n ( 1 . 1 )

}
}

The adjoint code may seem strange. It might seem more natural to code the adjoint to be
the negative of the operator itself and then make the special adjustments for the boundaries.
The code given, however, is correct and requires no adjustments at the ends. To see why,
notice for each value of i, the operator itself handles one row of equation (1.3) while for
each i the adjoint handles one column. That’s why coding the adjoint in this way does
not require any special work on the ends. The present method of coding reminds us that
the adjoint of a sum of N terms is a collection of N assignments. Think of the meaning of
yi = yi + ai, jx j for any particular i and j. The adjoint simply accumulates that same value
of ai, j going the other direction x j = x j + ai, jyi.

The Ratfor90 dialect of Fortran allows us to write the inner code of the igrad1 module
more simply and symmetrically using the syntax of modern languages such as C, C++,
Java, Python, and Perl. Expressions like a=a+b can be written more tersely as a+=b. With
this, the heart of module igrad1 becomes

if( adj) { xx(i+1) += yy(i)

xx(i) -= yy(i)

}

else { yy(i) += xx(i+1)

yy(i) -= xx(i)

}

where we see that each component of the matrix is handled both by the operator and the
adjoint. With the forward operator a single value yy(i) is “pulled” from all the values in
x()-space. With the adjoint operator the single value yy(i) is “pushed” to all the values
in x()-space.
do iy=1,ny # north-south derivative on 1-axis

stat = igrad1_lop( adj, add, map(:,iy), ruf(:,iy))

do ix=1,nx # east-west derivative on 2-axis

stat = igrad1_lop( adj, add, map(ix,:), ruf(ix,:))
Figure 1.1 illustrates the use of module igrad1 for each north-south line of a topo-

graphic map. We observe that the gradient gives an impression of illumination from a low
sun angle.
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Figure 1.1 Topography near Stanford (top) southward slope (bottom).
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1.1.2 Transient convolution

The next operator we examine is convolution. It arises in many applications; and it could
be derived in many ways. A basic derivation is from the multiplication of two polynomials,
say X(Z) = x1 + x2Z + x3Z2 + x4Z3 + x5Z4 + x6Z5 times B(Z) = b1 + b2Z + b3Z2 + b4Z3.2

Identifying the k-th power of Z in the product Y(Z) = B(Z)X(Z) gives the k-th row of the
convolution transformation (1.4).

y =



y1

y2

y3

y4

y5

y6

y7

y8


=



b1 0 0 0 0 0
b2 b1 0 0 0 0
b3 b2 b1 0 0 0
0 b3 b2 b1 0 0
0 0 b3 b2 b1 0
0 0 0 b3 b2 b1

0 0 0 0 b3 b2

0 0 0 0 0 b3





x1

x2

x3

x4

x5

x6


= Bx (1.4)

Notice that columns of equation (1.4) all contain the same signal, but with different shifts.
This signal is called the filter’s impulse response.

Equation (1.4) could be rewritten as

y =



y1

y2

y3

y4

y5

y6

y7

y8


=



x1 0 0
x2 x1 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

x6 x5 x4

0 x6 x5

0 0 x6




b1

b2

b3

 = Xb (1.5)

In applications we can choose between y = Xb and y = Bx. In one case the output y is
dual to the filter b, and in the other case the output y is dual to the input x. Sometimes we
must solve for b and sometimes for x; so sometimes we use equation (1.5) and sometimes
(1.4). Such solutions begin from the adjoints. The adjoint of (1.4) is



x̂1

x̂2

x̂3

x̂4

x̂5

x̂6


=



b1 b2 b3 0 0 0 0 0
0 b1 b2 b3 0 0 0 0
0 0 b1 b2 b3 0 0 0
0 0 0 b1 b2 b3 0 0
0 0 0 0 b1 b2 b3 0
0 0 0 0 0 b1 b2 b3





y1

y2

y3

y4

y5

y6

y7

y8


(1.6)

2 This book is more involved with matrices than with Fourier analysis. If it were more Fourier analysis we would choose
notation to begin subscripts from zero like this: B(Z) = b0 + b1Z + b2Z2 + b3Z3.



1.1 FAMILIAR OPERATORS 9

The adjoint crosscorrelates with the filter instead of convolving with it (because the filter
is backwards). Notice that each row in equation (1.6) contains all the filter coefficients and
there are no rows where the filter somehow uses zero values off the ends of the data as
we saw earlier. In some applications it is important not to assume zero values beyond the
interval where inputs are given.

The adjoint of (1.5) crosscorrelates a fixed portion of filter input across a variable portion
of filter output.


b̂1

b̂2

b̂3

 =


x1 x2 x3 x4 x5 x6 0 0
0 x1 x2 x3 x4 x5 x6 0
0 0 x1 x2 x3 x4 x5 x6





y1

y2

y3

y4

y5

y6

y7

y8


(1.7)

Module tcai1 is used for y = Bx and module tcaf1 is used for y = Xb.

transient convolution.lop
module t c a i 1 { # T r a n s i e n t C o n v o l u t i o n A d j o i n t I n p u t 1−D. yy (m1+n1 )
r e a l , d imens ion ( : ) , p o i n t e r : : bb
#% _ i n i t ( bb )
#% _lop ( xx , yy )
i n t e g e r b , x , y
i f ( s i z e ( yy ) < s i z e ( xx ) + s i z e ( bb ) − 1 ) c a l l e r e x i t ( ’ t c a i ’ )
do b= 1 , s i z e ( bb ) {
do x= 1 , s i z e ( xx ) { y = x + b − 1

i f ( a d j ) xx ( x ) += yy ( y ) ∗ bb ( b )
e l s e yy ( y ) += xx ( x ) ∗ bb ( b )
}}

}

transient convolution.lop
module t c a f 1 { # T r a n s i e n t Convo lu t i on , A d j o i n t i s t h e F i l t e r , 1−D
r e a l , d imens ion ( : ) , p o i n t e r : : xx
#% _ i n i t ( xx )
#% _lop ( bb , yy )
i n t e g e r x , b , y
i f ( s i z e ( yy ) < s i z e ( xx ) + s i z e ( bb ) − 1 ) c a l l e r e x i t ( ’ t c a f ’ )
do b= 1 , s i z e ( bb ) {
do x= 1 , s i z e ( xx ) { y = x + b − 1

i f ( a d j ) bb ( b ) += yy ( y ) ∗ xx ( x )
e l s e yy ( y ) += bb ( b ) ∗ xx ( x )
} }

}

The polynomials X(Z), B(Z), and Y(Z) are called Z transforms. An important fact in real
life (but not important here) is that the Z transforms are Fourier transforms in disguise.
Each polynomial is a sum of terms and the sum amounts to a Fourier sum when we take
Z = eiω∆t. The very expression Y(Z) = B(Z)X(Z) says that a product in the frequency
domain (Z has a numerical value) is a convolution in the time domain (that’s how we
multipy polynomials, convolve their coefficients).
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1.1.3 Internal convolution

Convolution is the computational equivalent of ordinary linear differential operators (with
constant coefficients). Applications are vast, and end effects are important. Another choice
of data handling at ends is that zero data not be assumed beyond the interval where the data
is given. This is important in data where the crosscorrelation changes with time. Then it is
sometimes handled as constant in short time windows. Care must be taken that zero signal
values not be presumed off the ends of those short time windows; otherwise, the many ends
of the many short segments can overwhelm the results.

In the sets (1.4) and (1.5), the top two equations explicitly assume that the input data
vanishes before the interval on which it is given, and likewise at the bottom. Abandoning
the top two and bottom two equations in (1.5) we get:

y3

y4

y5

y6

 =


x3 x2 x1

x4 x3 x2

x5 x4 x3

x6 x5 x4




b1

b2

b3

 (1.8)

The adjoint is


b̂1

b̂2

b̂3

 =


x3 x4 x5 x6

x2 x3 x4 x5

x1 x2 x3 x4




y3

y4

y5

y6

 (1.9)

The difference between (1.9) and (1.7) is that here the adjoint crosscorrelates a fixed portion
of output across a variable portion of input, whereas with (1.7) the adjoint crosscorrelates
a fixed portion of input across a variable portion of output.

In practice we typically allocate equal space for input and output. Because the output is
shorter than the input, it could slide around in its allocated space, so its location is specified
by an additional parameter called its lag.

convolve internal.lop
module i c a f 1 { # I n t e r n a l Convo lu t i on , A d j o i n t i s F i l t e r . 1−D
i n t e g e r : : l a g
r e a l , d imens ion ( : ) , p o i n t e r : : xx
#% _ i n i t ( xx , l a g )
#% _lop ( bb , yy )
i n t e g e r x , b , y
do b= 1 , s i z e ( bb ) {

do y= 1+ s i z e ( bb )− l ag , s i z e ( yy )− l a g+1 { x= y − b + l a g
i f ( a d j ) bb ( b ) += yy ( y ) ∗ xx ( x )
e l s e yy ( y ) += bb ( b ) ∗ xx ( x )
}

}
}

The value of lag always used in this book is lag=1. For lag=1 the module icaf1 imple-
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ments not equation (1.8) but (1.10):

y1

y2

y3

y4

y5

y6


=



0 0 0
0 0 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

x6 x5 x4




b1

b2

b3

 (1.10)

It may seem a little odd to put the required zeros at the beginning of the output, but filters
are generally designed so that their strongest coefficient is the first, namely bb(1) so the
alignment of input and output in equation (1.10) is the most common one.

The end effects of the convolution modules are summarized in Figure 1.2.

Figure 1.2 Example of convolution
end-effects. From top to bottom: in-
put; filter; output of tcai1(); output of
icaf1() also with (lag=1).

1.1.4 Zero padding is the transpose of truncation

Surrounding a dataset by zeros (zero padding) is adjoint to throwing away the extended
data (truncation). Let us see why this is so. Set a signal in a vector x, and then to make a
longer vector y, add some zeros at the end of x. This zero padding can be regarded as the
matrix multiplication

y =

[
I
0

]
x (1.11)

The matrix is simply an identity matrix I above a zero matrix 0. To find the transpose to
zero-padding, we now transpose the matrix and do another matrix multiply:

x̃ =
[

I 0
]

y (1.12)

So the transpose operation to zero padding data is simply truncating the data back to its
original length. Module zpad1 below pads zeros on both ends of its input. Modules for
two- and three-dimensional padding are in the library named zpad2() and zpad3().

zero pad 1-D.lop
module zpad1 { # Zero pad . Sur round d a t a by z e r o s . 1−D
#% _lop ( da t a , padd )
i n t e g e r p , d
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do d= 1 , s i z e ( d a t a ) { p = d + ( s i z e ( padd )− s i z e ( d a t a ) ) / 2
i f ( a d j )

d a t a ( d ) = d a t a ( d ) + padd ( p )
e l s e

padd ( p ) = padd ( p ) + d a t a ( d )
}

}

1.1.5 Adjoints of products are reverse-ordered products of adjoints

Here we examine an example of the general idea that adjoints of products are reverse-
ordered products of adjoints. For this example we use the Fourier transformation. No de-
tails of Fourier transformation are given here and we merely use it as an example of a
square matrix F. We denote the complex-conjugate transpose (or adjoint) matrix with a
prime, i.e., F∗. The adjoint arises naturally whenever we consider energy. The statement
that Fourier transforms conserve energy is y∗y = x∗x where y = Fx. Substituting gives
F∗ F = I, which shows that the inverse matrix to Fourier transform happens to be the
complex conjugate of the transpose of F.

With Fourier transforms, zero padding and truncation are especially prevalent. Most
modules transform a dataset of length of 2n, whereas dataset lengths are often of length
m×100. The practical approach is therefore to pad given data with zeros. Padding followed
by Fourier transformation F can be expressed in matrix algebra as

Program = F
[

I
0

]
(1.13)

According to matrix algebra, the transpose of a product, say AB = C, is the product C∗ =
B∗A∗ in reverse order. So the adjoint routine is given by

Program∗ =
[

I 0
]

F∗ (1.14)

Thus the adjoint routine truncates the data after the inverse Fourier transform. This con-
crete example illustrates that common sense often represents the mathematical abstraction
that adjoints of products are reverse-ordered products of adjoints. It is also nice to see a
formal mathematical notation for a practical necessity. Making an approximation need not
lead to collapse of all precise analysis.

1.1.6 Nearest-neighbor coordinates

In describing physical processes, we often either specify models as values given on a uni-
form mesh or we record data on a uniform mesh. Typically we have a function f of time t
or depth z and we represent it by f(iz) corresponding to f (zi) for i = 1, 2, 3, . . . , nz where
zi = z0 + (i − 1)∆z. We sometimes need to handle depth as an integer counting variable
i and we sometimes need to handle it as a floating-point variable z. Conversion from the
counting variable to the floating-point variable is exact and is often seen in a computer
idiom such as either of
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do iz= 1, nz { z = z0 + (iz-1) * dz

do i3= 1, n3 { x3 = o3 + (i3-1) * d3

The reverse conversion from the floating-point variable to the counting variable is inexact.
The easiest thing is to place it at the nearest neighbor. This is done by solving for iz, then
adding one half, and then rounding down to the nearest integer. The familiar computer
idioms are:

iz = .5 + 1 + ( z - z0) / dz

iz = 1.5 + ( z - z0) / dz

i3 = 1.5 + (x3 - o3) / d3

A small warning is in order: People generally use positive counting variables. If you also
include negative ones, then to get the nearest integer, you should do your rounding with
the Fortran function NINT().

1.1.7 Data-push binning

A most basic data modeling operation is to copy a number from an (x, y)-location on a
map to a 1-D survey data track d(s), where s is a coordinate running along a survey track.
This copying proceeds for all s. The track could be along a straight, curved, or arbitrary
line. Let the coordinate s take on integral values. Then along with the elements d(s) are the
coordinates (x(s), y(s)) where on the map the data value d(s) would be recorded.

Code for the operator is shown in module bin2.

push data into bin.lop
module b in2 {
# Data−push b i n n i n g i n 2−D.
i n t e g e r : : m1 , m2
r e a l : : o1 , d1 , o2 , d2
r e a l , d imens ion ( : , : ) , p o i n t e r : : xy
#% _ i n i t ( m1 , m2 , o1 , d1 , o2 , d2 , xy )
#% _lop ( mm (m1 , m2 ) , dd ( : ) )
i n t e g e r i1 , i2 , i d
do i d =1 , s i z e ( dd ) {

i 1 = 1 . 5 + ( xy ( id ,1 ) − o1 ) / d1
i 2 = 1 . 5 + ( xy ( id ,2 ) − o2 ) / d2
i f ( 1<= i 1 && i1<=m1 &&

1<= i 2 && i2<=m2 )
i f ( a d j )

mm( i1 , i 2 ) = mm( i1 , i 2 ) + dd ( i d )
e l s e

dd ( i d ) = dd ( i d ) + mm( i1 , i 2 )
}

}

To invert this data modeling operation, to go from d(s) to (x(s), y(s)) requires more than
the adjoint operator. Since each bin contains a different number of data values. After the
adjoint operation is performed, the inverse operator needs to divide the bin sum by the
number of data values that landed in the bin. It is this inversion operator that is generally
called binning (although we will use that name here for the modeling operator). To find the
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number of data points in a bin, we can simply apply the adjoint of bin2 to pseudo data of
all ones. To capture this idea in an equation, let B denote the linear operator in which the
bin value is sprayed to the data values. The inverse operation, in which the data values in
the bin are summed and divided by the number in the bin, is represented by

m = diag(B∗1)−1B∗d (1.15)

Empty bins, of course, leave us a problem since we dare not divide by the zero sum they
contain. That we’ll address in chapter 3. In Figure 1.3, the empty bins contain zero values.

Figure 1.3 Binned depths of the Sea of Galilee.

1.1.8 Linear interpolation

The linear interpolation operator is much like the binning operator but a little fancier.
When we perform the forward operation, we take each data coordinate and see which two
model bin centers bracket it. Then we pick up the two bracketing model values and weight
each of them in proportion to their nearness to the data coordinate, and add them to get
the data value (ordinate). The adjoint operation is adding a data value back into the model
vector; using the same two weights, the adjoint distributes the data ordinate value between
the two nearest bins in the model vector. For example, suppose we have a data point near
each end of the model and a third data point exactly in the middle. Then for a model space
6 points long, as shown in Figure 1.4, we have the operator in (1.16).
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Figure 1.4 Uniformly sampled model
space and irregularly sampled data
space corresponding to (1.16).

d  1 d  2

m 5m 4m 3m 2m 1m 0

d  0


d0

d1

d2

 ≈


.7 .3 . . . .

. . 1 . . .

. . . . .5 .5




m0

m1

m2

m3

m4

m5


(1.16)

The two weights in each row sum to unity. If a binning operator were used for the same
data and model, the binning operator would contain a “1.” in each row. In one dimension
(as here), data coordinates are often sorted into sequence, so that the matrix is crudely
a diagonal matrix like equation (1.16). If the data coordinates covered the model space
uniformly, the adjoint would roughly be the inverse. Otherwise, when data values pile up
in some places and gaps remain elsewhere, the adjoint would be far from the inverse.

Module lint1 does linear interpolation and its adjoint. In chapters 3 and 7 we build
inverse operators.

linear interp.lop
# N e a r e s t −n e i g h b o r i n t e r p o l a t i o n would do t h i s : d a t a = model ( 1 . 5 + ( t − t 0 ) / d t )
# Thi s i s l i k e w i s e b u t w i th _ l i n e a r _ i n t e r p o l a t i o n .
module l i n t 1 {
r e a l : : o1 , d1
r e a l , d imens ion ( : ) , p o i n t e r : : c o o r d i n a t e
#% _ i n i t ( o1 , d1 , c o o r d i n a t e )
#% _lop ( mm, dd )
i n t e g e r i , im , i d
r e a l f , fx , gx
do i d= 1 , s i z e ( dd ) {

f = ( c o o r d i n a t e ( i d )−o1 ) / d1 ; i= f ; im= 1+ i
i f ( 1<=im && im< s i z e (mm) ) { fx=f− i ; gx= 1.− fx

i f ( a d j ) {
mm( im ) += gx ∗ dd ( i d )
mm( im+1) += fx ∗ dd ( i d )
}

e l s e
dd ( i d ) += gx ∗ mm( im ) + fx ∗ mm( im+1)

}
}

}

1.1.9 Spray and sum : scatter and gather

Perhaps the most common operation is the summing of many values to get one value. Its
adjoint operation takes a single input value and throws it out to a space of many values. The
summation operator is a row vector of ones. Its adjoint is a column vector of ones. In one



16 Basic operators and adjoints

dimension this operator is almost too easy for us to bother showing a routine. But it is more
interesting in three dimensions, where we could be summing or spraying on any of three
subscripts, or even summing on some and spraying on others. In module spraysum, both
input and output are taken to be three-dimensional arrays. Externally, however, either could
be a scalar, vector, plane, or cube. For example, the internal array xx(n1,1,n3) could be
externally the matrix map(n1,n3). When module spraysum is given the input dimensions
and output dimensions stated below, the operations stated alongside are implied.

(n1,n2,n3) (1,1,1) Sum a cube into a value.
(1,1,1) (n1,n2,n3) Spray a value into a cube.
(n1,1,1) (n1,n2,1) Spray a column into a matrix.
(1,n2,1) (n1,n2,1) Spray a row into a matrix.
(n1,n2,1) (n1,n2,n3) Spray a plane into a cube.
(n1,n2,1) (n1,1,1) Sum rows of a matrix into a column.
(n1,n2,1) (1,n2,1) Sum columns of a matrix into a row.
(n1,n2,n3) (n1,n2,n3) Copy and add the whole cube.

If an axis is not of unit length on either input or output, then both lengths must be the same;
otherwise, there is an error. Normally, after (possibly) erasing the output, we simply loop
over all points on each axis, adding the input to the output. This implements either a copy
or an add, depending on the add parameter. It is either a spray, a sum, or a copy, according
to the specified axis lengths.

sum and spray.lop
module spraysum { # Spray or sum ove r 1 , 2 , and / or 3− a x i s .
i n t e g e r : : n1 , n2 , n3 , m1 , m2 , m3
#% _ i n i t ( n1 , n2 , n3 , m1 , m2 , m3)
#% _lop ( xx ( n1 , n2 , n3 ) , yy (m1 , m2 , m3 ) )
i n t e g e r i1 , i2 , i3 , x1 , x2 , x3 , y1 , y2 , y3

i f ( n1 != 1 && m1 != 1 && n1 != m1) c a l l e r e x i t ( ’ spraysum : n1 , m1 ’ )
i f ( n2 != 1 && m2 != 1 && n2 != m2) c a l l e r e x i t ( ’ spraysum : n2 , m2 ’ )
i f ( n3 != 1 && m3 != 1 && n3 != m3) c a l l e r e x i t ( ’ spraysum : n3 , m3 ’ )

do i 3= 1 , max0 ( n3 , m3) { x3= min0 ( i3 , n3 ) ; y3= min0 ( i3 , m3)
do i 2= 1 , max0 ( n2 , m2) { x2= min0 ( i2 , n2 ) ; y2= min0 ( i2 , m2)
do i 1= 1 , max0 ( n1 , m1) { x1= min0 ( i1 , n1 ) ; y1= min0 ( i1 , m1)

i f ( a d j ) xx ( x1 , x2 , x3 ) += yy ( y1 , y2 , y3 )
e l s e yy ( y1 , y2 , y3 ) += xx ( x1 , x2 , x3 )
}}}

}

1.1.10 Causal and leaky integration

Causal integration is defined as

y(t) =

∫ t

−∞

x(τ) dτ (1.17)

Leaky integration is defined as

y(t) =

∫ ∞

0
x(t − τ) e−ατ dτ (1.18)
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As α → 0, leaky integration becomes causal integration. The word “leaky” comes from
electrical circuit theory where the voltage on a capacitor would be the integral of the current
if the capacitor did not leak electrons.

Sampling the time axis gives a matrix equation that we should call causal summation,
but we often call it causal integration. Equation (1.19) represents causal integration for
ρ = 1 and leaky integration for 0 < ρ < 1.

y =



y0

y1

y2

y3

y4

y5

y6


=



1 0 0 0 0 0 0
ρ 1 0 0 0 0 0
ρ2 ρ 1 0 0 0 0
ρ3 ρ2 ρ 1 0 0 0
ρ4 ρ3 ρ2 ρ 1 0 0
ρ5 ρ4 ρ3 ρ2 ρ 1 0
ρ6 ρ5 ρ4 ρ3 ρ2 ρ 1





x0

x1

x2

x3

x4

x5

x6


= Cx (1.19)

(The discrete world is related to the continuous by ρ = e−α∆τ and in some applications,
the diagonal is 1/2 instead of 1.) Causal integration is the simplest prototype of a recursive
operator. The coding is trickier than that for the operators we considered earlier. Notice
when you compute y5 that it is the sum of 6 terms, but that this sum is more quickly
computed as y5 = ρy4 + x5. Thus equation (1.19) is more efficiently thought of as the
recursion

yt = ρ yt−1 + xt t increasing (1.20)

(which may also be regarded as a numerical representation of the differential equation
dy/dt + y(1 − ρ)/∆t = x(t).)

When it comes time to think about the adjoint, however, it is easier to think of equa-
tion (1.19) than of (1.20). Let the matrix of equation (1.19) be called C. Transposing to get
C∗ and applying it to y gives us something back in the space of x, namely x̃ = C∗y. From it
we see that the adjoint calculation, if done recursively, needs to be done backwards, as in

x̃t−1 = ρx̃t + yt−1 t decreasing (1.21)

Thus the adjoint of causal integration is anticausal integration.
A module to do these jobs is leakint. The code for anticausal integration is not obvious

from the code for integration and the adjoint coding tricks we learned earlier. To understand
the adjoint, you need to inspect the detailed form of the expression x̃ = C∗y and take care
to get the ends correct. Figure 1.5 illustrates the program for ρ = 1.

leaky integral.lop
module l e a k i n t { # l e a k y i n t e g r a t i o n
r e a l : : rho
#% _ i n i t ( rho )
#% _lop ( xx , yy )
i n t e g e r i , n
r e a l t t
n = s i z e ( xx ) ; t t = 0 .
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i f ( a d j )
do i= n , 1 , −1 { t t = rho ∗ t t + yy ( i )

xx ( i ) += t t
}

e l s e
do i= 1 , n { t t = rho ∗ t t + xx ( i )

yy ( i ) += t t
}

}

Figure 1.5 in1 is an input pulse. C in1
is its causal integral. C’ in1 is the an-
ticausal integral of the pulse. in2 is a
separated doublet. Its causal integration
is a box and its anticausal integration
is a negative box. CC in2 is the double
causal integral of in2. How can an equi-
lateral triangle be built?

The adjoint has a meaning which is nonphysical. The leaky integration damps both go-
ing forward in time and it damps going backward in time whereas the inverse of leaky
integration would grow going backward in time.

Later we will consider equations to march wavefields up towards the earth surface, a
layer at a time, an operator for each layer. Then the adjoint will start from the earth surface
and march down, a layer at a time, into the earth.

1.1.11 Backsolving, polynomial division and deconvolution

Ordinary differential equations often lead us to the backsolving operator. For example, the
damped harmonic oscillator leads to a special case of equation (1.22) where (a3, a4, · · ·) =
0. There is a huge literature on finite-difference solutions of ordinary differential equations
that lead to equations of this type. Rather than derive such an equation on the basis of many
possible physical arrangements, we can begin from the filter transformation in (1.4) but put
the top square of the matrix on the other side of the equation so our transformation can be
called one of inversion or backsubstitution. To link up with applications in later chapters, I
specialize to 1’s on the main diagonal and insert some bands of zeros.

Ay =



1 0 0 0 0 0 0
a1 1 0 0 0 0 0
a2 a1 1 0 0 0 0
0 a2 a1 1 0 0 0
0 0 a2 a1 1 0 0
a5 0 0 a2 a1 1 0
0 a5 0 0 a2 a1 1





y0

y1

y2

y3

y4

y5

y6


=



x0

x1

x2

x3

x4

x5

x6


= x (1.22)
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Algebraically, this operator goes under the various names, “backsolving”, “polynomial
division”, and “deconvolution”. The leaky integration transformation (1.19) is a simple
example of backsolving when a1 = −ρ and a2 = a5 = 0. To confirm this, you need to verify
that the matrices in (1.22) and (1.19) are mutually inverse.

A typical row in equation (1.22) says

xt = yt +
∑
τ>0

aτ yt−τ (1.23)

Change the signs of all terms in equation (1.23) and move some terms to the opposite side

yt = xt −
∑
τ>0

aτ yt−τ (1.24)

Equation (1.24) is a recursion to find yt from the values of y at earlier times.
In the same way that equation (1.4) can be interpreted as Y(Z) = B(Z)X(Z), equation

(1.22) can be interpreted as A(Z)Y(Z) = X(Z) which amounts to Y(Z) = X(Z)/A(Z). Thus,
convolution is amounts to polynomial multiplication while the backsubstitution we are
doing here is called deconvolution, and it amounts to polynomial division.

A causal operator is one that uses its present and past inputs to make its current out-
put. Anticausal operators use the future but not the past. Causal operators are generally
associated with lower triangular matrices and positive powers of Z, whereas anticausal
operators are associated with upper triangular matrices and negative powers of Z. A trans-
formation like equation (1.22) but with the transposed matrix would require us to run the
recursive solution the opposite direction in time, as we did with leaky integration.

A module to backsolve equation 1.22 is polydiv1.

deconvolve.lop
module p o l y d i v 1 { # P o l y n o m i a l d i v i s i o n ( r e c u r s i v e f i l t e r i n g )
r e a l , d imens ion ( : ) , p o i n t e r : : aa
#% _ i n i t ( aa )
#% _lop ( xx , yy )
i n t e g e r i a , ix , i y
r e a l t t
i f ( a d j )

do i x= s i z e ( xx ) , 1 , −1 {
t t = yy ( i x )
do i a = 1 , min ( s i z e ( aa ) , s i z e ( xx ) − i x ) {

i y = i x + i a
t t −= aa ( i a ) ∗ xx ( i y )
}

xx ( i x ) = xx ( i x ) + t t
}

e l s e
do i y= 1 , s i z e ( xx ) {

t t = xx ( i y )
do i a = 1 , min ( s i z e ( aa ) , iy −1) {

i x = i y − i a
t t −= aa ( i a ) ∗ yy ( i x )
}

yy ( i y ) = yy ( i y ) + t t
}

}

We may wonder why the adjoint of Ay = x actually is A∗x̂ = y. With the well known
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fact that the inverse of a transpose is the transpose of the inverse we have

y = A−1x (1.25)

x̂ = (A−1)∗y (1.26)

x̂ = (A∗)−1y (1.27)

A∗x̂ = y (1.28)

1.1.12 The basic low-cut filter

Many geophysical measurements contain very low-frequency noise called “drift.” For ex-
ample, it might take some months to survey the depth of a lake. Meanwhile, rainfall or
evaporation could change the lake level so that new survey lines become inconsistent with
old ones. Likewise, gravimeters are sensitive to atmospheric pressure, which changes with
the weather. A magnetic survey of an archeological site would need to contend with the fact
that the earth’s main magnetic field is changing randomly through time while the survey is
being done. Such noises are sometimes called “secular noise.”

The simplest way to eliminate low frequency noise is to take a time derivative. A dis-
advantage is that the derivative changes the waveform from a pulse to a doublet (finite
difference). Here we examine the most basic low-cut filter. It preserves the waveform at
high frequencies; it has an adjustable parameter for choosing the bandwidth of the low cut;
and it is causal (uses the past but not the future).

We make a causal lowcut filter (highpass filter) by two stages which can be done in
either order.

1. Apply a time derivative, actually a finite difference, convolving the data with (1,−1).
2. Integrate, actually to do a leaky integration, to deconvolve with (1,−ρ) where numeri-

cally, ρ is slightly less than unity.

The convolution with (1,−1) ensures that the zero frequency is removed. The leaky inte-
gration almost undoes the differentiation but cannot restore the zero frequency. Adjusting
the numerical value of ρ has interesting effects in the time domain and in the frequency do-
main. Convolving the finite difference (1,−1) with the leaky integration (1, ρ, ρ2, ρ3, ρ4, · · ·)
gives the result

(1, ρ, ρ2, ρ3, ρ4, · · ·)

− (0, 1, ρ, ρ2, ρ3, · · ·).

Rearranging, it becomes

(1, 0, 0, 0, 0, · · ·) +

(ρ − 1) (0, 1, ρ, ρ2, ρ3, · · ·).

Since ρ is a tiny bit less than one, (1 − ρ) is a small number. Thus our filter is an impulse
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followed by the negative of a weak decaying exponential ρt. If you prefer a time-symmetric
(phaseless) filter, you could follow this one by its time reverse.

Roughly speaking, the cutoff frequency of the filter corresponds to matching one wave-
length to the exponential decay time. More formally, the Fourier domain representation of
this filter is H(Z) = (1 − Z)/(1 − ρZ) where Z is the unit-delay operator is Z = eiω∆t and
where ω is the frequency. The spectral response of the filter is |H(ω)|. Were we to plot this
function we would see it is nearly 1 everywhere except in a small region near ω = 0 where
it becomes tiny. It is called a “low-cut” filter. Figure 1.6 compares a low-cut filter to a finite
difference.

Figure 1.6 The depth of the Sea of Galilee after roughening. On the left, the smoothing is done by
low-cut filtering on the horizontal axis. On the right it is a finite difference. We know this because
of a few scattered impulses (navigation failure) outside the lake. Both results solve the problem of
Figure 1.3 which is too smooth to see interesting features.

1.1.13 Smoothing with box and triangle

Simple “smoothing” is a common application of filtering. A smoothing filter is one with all
positive coefficients. On the time axis, smoothing is often done with a single-pole damped
exponential function. On space axes, however, people generally prefer a symmetrical func-
tion. We will begin with rectangle and triangle functions. When the function width is
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chosen to be long, then the computation time can be large, but recursion can shorten it
immensely.

The inverse of any polynomial reverberates forever, although it might drop off fast
enough for any practical need. On the other hand, a rational filter can suddenly drop to
zero and stay there. Let us look at a popular rational filter, the rectangle or “box car”:

1 − Z5

1 − Z
= 1 + Z + Z2 + Z3 + Z4 (1.29)

The filter (1.29) gives a moving average under a rectangular window. This is a basic
smoothing filter. A clever way to apply it is to move the rectangle by adding a new value
at one end while dropping an old value from the other end. This approach is formalized by
the polynomial division algorithm, which can be simplified because so many coefficients
are either one or zero. To find the recursion associated with Y(Z) = X(Z)(1 − Z5)/(1 − Z),
we identify the coefficient of Zt in (1 − Z)Y(Z) = X(Z)(1 − Z5). The result is

yt = yt−1 + xt − xt−5. (1.30)

This approach boils down to the program boxconv() which is so fast it is almost free!

box like smoothing.r90
module boxsmooth {

c o n t a i n s
s u b r o u t i n e boxconv ( nbox , nx , xx , yy ) {

i n t e g e r , i n t e n t ( i n ) : : nx , nbox
i n t e g e r : : i , ny
r e a l , d imens ion ( : ) , i n t e n t ( i n ) : : xx
r e a l , d imens ion ( : ) , i n t e n t ( o u t ) : : yy
r e a l , d imens ion ( : ) , a l l o c a t a b l e : : bb
a l l o c a t e ( bb ( nx+nbox ) )
i f ( nbox < 1 | | nbox > nx ) c a l l e r e x i t ( ’ boxconv ’ ) # " | | " means .OR.
ny = nx+nbox−1
bb ( 1 ) = xx ( 1 )
do i= 2 , nx { bb ( i ) = bb ( i −1) + xx ( i ) } # B( Z ) = X( Z ) / ( 1 −Z )
do i= nx+1 , ny { bb ( i ) = bb ( i −1) }
do i= 1 , nbox { yy ( i ) = bb ( i ) }
do i= nbox+1 , ny { yy ( i ) = bb ( i ) − bb ( i −nbox ) } # Y( Z ) = B( Z)∗ (1 −Z∗∗ nbox )
do i= 1 , ny { yy ( i ) = yy ( i ) / nbox }
d e a l l o c a t e ( bb )

}
}

Its last line scales the output by dividing by the rectangle length. With this scaling, the zero-
frequency component of the input is unchanged, while other frequencies are suppressed.

Triangle smoothing is rectangle smoothing done twice. For a mathematical description
of the triangle filter, we simply square equation (1.29). Convolving a rectangle function
with itself many times yields a result that mathematically tends towards a Gaussian func-
tion. Despite the sharp corner on the top of the triangle function, it has a shape that is
remarkably similar to a Gaussian. Convolve a triangle with itself and you will see a very
nice approximation to a Gaussian (the central limit theorem).

With filtering, end effects can be a nuisance. Filtering increases the length of the data,
but people generally want to keep input and output the same length (for various practical
reasons). This is particularly true when filtering a space axis. Suppose the five-point signal
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(1, 1, 1, 1, 1) is smoothed using the boxconv() program with the three-point smoothing
filter (1, 1, 1)/3. The output is 5+ 3− 1 points long, namely, (1, 2, 3, 3, 3, 2, 1)/3. We could
simply abandon the points off the ends, but I like to fold them back in, getting instead
(1 + 2, 3, 3, 3, 1 + 2). An advantage of the folding is that a constant-valued signal is un-
changed by the smoothing. This is desirable since a smoothing filter is a low-pass filter
which naturally should pass the lowest frequency ω = 0 without distortion. The result is
like a wave reflected by a zero-slope end condition. Impulses are smoothed into triangles
except near the boundaries. What happens near the boundaries is shown in Figure 1.7. Note

Figure 1.7 Edge effects when smooth-
ing an impulse with a triangle function.
Inputs are spikes at various distances
from the edge.

that at the boundary, there is necessarily only half a triangle, but it is twice as tall.
Why might this be useful? Consider a survey of water depth in an area of the deep

ocean. All the depths are strongly positive with interesting but small variations on them.
Ordinarily we can enhance high frequency fluctuations by one minus a low pass filter, say
H = 1− L. If this is to work, however, it is important that the L truly cancel the 1 near zero
frequency.

Figure 1.7 was derived from the routine triangle().

1D triangle smoothing.r90
module t r i a n g l e s m o o t h { # Convolve wi th t r i a n g l e

use boxsmooth
c o n t a i n s
s u b r o u t i n e t r i a n g l e ( nbox , nd , xx , yy ) {

i n t e g e r , i n t e n t ( i n ) : : nbox , nd
i n t e g e r : : i , np , nq
r e a l , d imens ion ( : ) , i n t e n t ( i n ) : : xx
r e a l , d imens ion ( : ) , i n t e n t ( o u t ) : : yy
r e a l , d imens ion ( : ) , a l l o c a t a b l e : : pp , qq
a l l o c a t e ( pp ( nd+nbox −1) , qq ( nd+nbox+nbox −2) )
c a l l boxconv ( nbox , nd , xx , pp ) ; np = nbox+nd−1
c a l l boxconv ( nbox , np , pp , qq ) ; nq = nbox+np−1
do i =1 , nd { yy ( i ) = qq ( i+nbox −1) }
do i =1 , nbox−1 { yy ( i ) =yy ( i ) + qq ( nbox− i ) } # f o l d back
do i =1 , nbox−1 { yy ( nd− i +1)=yy ( nd− i +1) + qq ( nd+( nbox −1)+ i ) } # f o l d back
d e a l l o c a t e ( pp , qq )

}}
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1.1.14 Nearest-neighbor normal moveout (NMO)

Normal-moveout correction (NMO) is a geometrical correction of reflection seismic data
that stretches the time axis so that data recorded at nonzero separation x0 of shot and
receiver, after stretching, appears to be at x0 = 0. NMO correction is roughly like time-to-
depth conversion with the equation v2t2 = z2 + x2

0. After the data at x0 is stretched from t to
z, it should look like stretched data from any other x (assuming these are plane horizontal
reflectors, etc.). In practice, z is not used; rather, traveltime depth τ is used, where τ = z/v;
so t2 = τ2 + x2

0/v
2. (Because of the limited alphabet of programming languages, I often use

the keystroke z to denote τ.)
Typically, many receivers record each shot. Each seismogram can be transformed by

NMO and the results all added. This is called “stacking” or “NMO stacking.” The adjoint
to this operation is to begin from a model which ideally is the zero-offset trace and spray
this model to all offsets. From a matrix viewpoint, stacking is like a row vector of normal
moveout operators and modeling is like a column. An example is shown in Figure 1.8.

Figure 1.8 Hypothetical model, syn-
thetic data, and model image.

We’ll be making operators from other operators. Given operators A and B, another op-
erator is the is the product AB. Still another is the row matrix [A B]. We’ll consider those
soon. Even more tricky than a matrix containing operators is an operator containing oper-
ators. This situation gave me a programming bug that took me quite while to digest, and
even longer to explain to others. The essential feature to keep in mind is that the external
world will pass your operator module an adj,add pair. Likewise, internal to your module
will be your own adj,add pair that you are feeding to the operator you are calling. Don’t
confuse the different pairs! Our habit that physical modeling is done without adjoint likely
means both pairs have the same adj, but there is no reason to predict the two pairs will
have the same add.

A module that does reverse moveout is hypotenusei. Given a zero-offset trace, it makes
another at non-zero offset. The adjoint does the usual normal moveout correction.

inverse moveout.lop
module h y p o t e n u s e i { # I n v e r s e normal moveout
i n t e g e r : : n t
i n t e g e r , d imens ion ( n t ) , a l l o c a t a b l e : : i z
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#% _ i n i t ( n t , t0 , d t , xs )
i n t e g e r i t
r e a l t0 , d t , xs , t , z s q u a r e d
do i t = 1 , n t { t = t 0 + d t ∗ ( i t −1)

z s q u a r e d = t ∗ t − xs ∗ xs
i f ( z s q u a r e d >= 0 . )

i z ( i t ) = 1 . 5 + ( s q r t ( z s q u a r e d ) − t 0 ) / d t
e l s e

i z ( i t ) = 0
}

#% _lop ( zz , t t )
i n t e g e r i t
do i t = 1 , n t {

i f ( i z ( i t ) > 0 ) {
i f ( a d j ) zz ( i z ( i t ) ) += t t ( i t )
e l s e t t ( i t ) += zz ( i z ( i t ) )

}
}

}

(My 1992 textbook (PVI) illustrates many additional features of normal moveout.) A com-
panion routine imospray loops over offsets and makes a trace for each. The adjoint of
imospray is the industrial process of moveout and stack.

inverse NMO spray.lop
module imospray { # i n v e r s e moveout and s p r a y i n t o a g a t h e r .
use h y p o t e n u s e i
r e a l : : x0 , dx , t0 , d t
i n t e g e r : : nx , n t
#% _ i n i t ( slow , x0 , dx , t0 , d t , n t , nx )

r e a l s low
x0 = x0∗ s low
dx = dx∗ s low

#% _lop ( s t a c k ( n t ) , g a t h e r ( nt , nx ) )
i n t e g e r ix , s t a t
do i x= 1 , nx {

c a l l h y p o t e n u s e i _ i n i t ( n t , t0 , d t , x0 + dx ∗ ( ix −1) )
s t a t = h y p o t e n u s e i _ l o p ( ad j , . t r u e . , s t a c k , g a t h e r ( : , i x ) )
}

c a l l h y p o t e n u s e i _ c l o s e ( )
}

1.1.15 Coding chains and arrays

With a collection of operators, we can build more elaborate operators. An amazing thing
about matrices is that their elements may themselves be matrices. A row is a matrix con-
taining two matrices. This is done by subroutine row0 also in module smallchain3. An
operator product A = BC is represented in the subroutine chain2( op1, op2, ...).
As you read these codes, please remember the output is the last argument only when the
output is d. When the output is m, the output is the second from last.

operator chain and array.r90
module s m a l l c h a i n 3 {

l o g i c a l , p a r a m e t e r , p r i v a t e : : AJ = . t r u e . , FW = . f a l s e .
l o g i c a l , p a r a m e t e r , p r i v a t e : : AD = . t r u e . , ZP = . f a l s e .
i n t e r f a c e c h a i n 0 {

module p r o c e d u r e column0
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module p r o c e d u r e row0
module p r o c e d u r e c h a i n 2 0
module p r o c e d u r e c h a i n 3 0

}
c o n t a i n s

s u b r o u t i n e column0 ( op1 , op2 , ad j , add , m, d1 , d2 ) { # COLUMN d1 = Am, d2 = Bm
i n t e r f a c e {

i n t e g e r f u n c t i o n op1 ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n op2 ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }

}
l o g i c a l , i n t e n t ( i n ) : : ad j , add
r e a l , d imens ion ( : ) : : m, d1 , d2
i n t e g e r : : s t

i f ( a d j ) { s t = op1 ( AJ , add , m, d1 ) # m = m0 + A’ d1
s t = op2 ( AJ , AD, m, d2 ) # m = m + B ’ d2

}
e l s e { s t = op1 (FW, add , m, d1 ) # d1 = d1 + A m

s t = op2 (FW, add , m, d2 ) # d2 = d2 + B m
}

}

s u b r o u t i n e row0 ( op1 , op2 , ad j , add , m1 , m2 , d ) { # ROW d = Am1+Bm2
i n t e r f a c e {

i n t e g e r f u n c t i o n op1 ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n op2 ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }

}
l o g i c a l , i n t e n t ( i n ) : : ad j , add
r e a l , d imens ion ( : ) : : m1 , m2 , d
i n t e g e r : : s t

i f ( a d j ) { s t = op1 ( AJ , add , m1 , d ) # m1 = A’ d
s t = op2 ( AJ , add , m2 , d ) # m2 = B ’ d

}
e l s e { s t = op2 (FW, add , m2 , d ) # d = Bm2

s t = op1 (FW, AD, m1 , d ) # d = Am1+Bm2
}

}

s u b r o u t i n e c h a i n 2 0 ( op1 , op2 , ad j , add , m, d , t 1 ) { # CHAIN 2 d = ABm
i n t e r f a c e {

i n t e g e r f u n c t i o n op1 ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n op2 ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }

}
l o g i c a l , i n t e n t ( i n ) : : ad j , add
r e a l , d imens ion ( : ) : : m, d , t 1
i n t e g e r : : s t
i f ( a d j ) { s t = op1 ( AJ , ZP , t1 , d ) # t = A’ d

s t = op2 ( AJ , add , m, t 1 ) # m = B ’ t = B ’ A’ d
}
e l s e { s t = op2 (FW, ZP , m, t 1 ) # t = B m

s t = op1 (FW, add , t1 , d ) # d = A t = A B m
}

}

s u b r o u t i n e c h a i n 3 0 ( op1 , op2 , op3 , ad j , add , m, d , t1 , t 2 ) { # CHAIN 3 d = ABCm
i n t e r f a c e {

i n t e g e r f u n c t i o n op1 ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n op2 ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n op3 ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }

}
l o g i c a l , i n t e n t ( i n ) : : ad j , add
r e a l , d imens ion ( : ) : : m, d , t1 , t 2
i n t e g e r : : s t
i f ( a d j ) { s t = op1 ( AJ , ZP , t2 , d ) # t 1 = A’ d

s t = op2 ( AJ , ZP , t1 , t 2 ) # t 2 = B ’ t 1 = B ’ A’ d
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s t = op3 ( AJ , add , m , t 1 ) # m = C ’ t 2 = C ’ B ’ A’ d
}
e l s e { s t = op3 (FW, ZP , m , t 1 ) # t 1 = C m

s t = op2 (FW, ZP , t1 , t 2 ) # t 2 = B t 1 = B C m
s t = op1 (FW, add , t2 , d ) # d = A t 2 = A B C m

}
}

}

1.2 ADJOINT DEFINED: DOT-PRODUCT TEST

Having seen many examples of spaces, operators, and adjoints, we should now see more
formal definitions because abstraction helps us push these concepts to their limits.

1.2.1 Definition of a vector space

An operator transforms a space to another space. Examples of spaces are model space
m and data space d. We think of these spaces as vectors whose components are packed
with numbers, either real or complex numbers. The important practical concept is that
not only does this packing include one-dimensional spaces like signals, two-dimensional
spaces like images, 3-D movie cubes, and zero-dimensional spaces like a data mean, etc,
but spaces can be sets of all the above. One space that is a set of three cubes is the earth’s
magnetic field, which has three components; and each component is a function of a three-
dimensional space. (The 3-D physical space we live in is not the abstract vector space of
models and data so abundant in this book. Here the word “space” without an adjective
means the vector space.)

A more heterogeneous example of a vector space is data tracks. A depth-sounding sur-
vey of a lake can make a vector space that is a collection of tracks, a vector of vectors (each
vector having a different number of components, because lakes are not square). This vector
space of depths along tracks in a lake contains the depth values only. The (x, y)-coordinate
information locating each measured depth value is (normally) something outside the vec-
tor space. A data space could also be a collection of echo soundings, waveforms recorded
along tracks.

We briefly recall information about vector spaces found in elementary books: Let α be
any scalar. Then if d1 is a vector and d2 is conformable with it, then other vectors are αd1

and d1 + d2. The size measure of a vector is a positive value called a norm. The norm is
usually defined to be the dot product (also called the L2 norm), say d · d. For complex
data it is d̄ · d where d̄ is the complex conjugate of d. A notation that does transpose
and complex conjugate at the same time is d∗ d. In theoretical work the “size of a vector”
means the vector’s norm. In computational work the “size of a vector” means the number
of components in the vector.

Norms generally include a weighting function. In physics, the norm generally measures
a conserved quantity like energy or momentum, so, for example, a weighting function for
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magnetic flux is permittivity. In data analysis, the proper choice of the weighting function
is a practical statistical issue, discussed repeatedly throughout this book. The algebraic
view of a weighting function is that it is a diagonal matrix with positive values w(i) ≥ 0
spread along the diagonal, and it is denoted W = diag[w(i)]. With this weighting function
the L2 norm of a data space is denoted d∗Wd. Standard notation for norms uses a double
absolute value, where ||d|| = d∗Wd. A central concept with norms is the triangle inequality,
||d1 + d2|| ≤ ||d1|| + ||d2|| whose proof you might recall (or reproduce with the use of dot
products).

1.2.2 Dot-product test for validity of an adjoint

There is a huge gap between the conception of an idea and putting it into practice. During
development, things fail far more often than not. Often, when something fails, many tests
are needed to track down the cause of failure. Maybe the cause cannot even be found. More
insidiously, failure may be below the threshold of detection and poor performance suffered
for years. The dot-product test enables us to ascertain whether the program for the adjoint
of an operator is precisely consistent with the operator itself. It can be, and it should be.

Conceptually, the idea of matrix transposition is simply a′i j = a ji. In practice, however,
we often encounter matrices far too large to fit in the memory of any computer. Sometimes
it is also not obvious how to formulate the process at hand as a matrix multiplication. (Ex-
amples are differential equations and fast Fourier transforms.) What we find in practice is
that an operator and its adjoint are two routines. The first amounts to the matrix multiplica-
tion Fm. The adjoint routine computes F∗d, where F∗ is the conjugate-transpose matrix.
In later chapters we will be solving huge sets of simultaneous equations, in which both
routines are required. If the pair of routines are inconsistent, we may be doomed from the
start. The dot-product test is a simple test for verifying that the two routines are adjoint to
each other.

I’ll tell you first what the dot-product test is, and then explain how it works. Take a model
space vector m filled with random numbers, and likewise a data space vector d filled with
random numbers. Use your forward modeling code to compute

m⇐ random (1.31)

d⇐ random (1.32)

d̂ = Fm (1.33)

m̂ = F∗d (1.34)

You should find these two inner products equal:

m̂ ·m = d̂ · d (1.35)

If they are, it means what you coded for F∗ is indeed the adjoint of F. There is a glib way
of saying why this must be so:

d∗(Fm) = (d∗F)m (1.36)
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d∗(Fm) = (F∗d)∗m (1.37)

This glib way is easily made concrete with explicit summation. We may express
∑

i
∑

j diFi jm j

in two different ways. ∑
i

di(
∑

j

Fi jmm) =
∑

j

(
∑

i

diFi j)m j (1.38)

=
∑

j

(
∑

i

Fi jdi)m j (1.39)

d∗ · (Fm) = (F∗d) ·m (1.40)

d∗ · d̂ = m̂ ·m (1.41)

Should F contain complex numbers, the dot-product test is a comparison for both real parts
and for imaginary parts.

The program for applying the dot product test is dot_test. The Fortran way of passing
a linear operator as an argument is to specify the function interface. Fortunately, we have
already defined the interface for a generic linear operator. To use the dot_test program,
you need to initialize an operator with specific arguments (the _init subroutine) and then
pass the operator itself (the _lop function) to the test program. You also need to specify
the sizes of the model and data vectors so that temporary arrays can be constructed. The
program runs the dot product test twice, second time with add = .true. to test if the
operator can be used properly for accumulating results, for example. d← d + Fm.

I ran the dot product test on many operators and was surprised and delighted to find that
for small operators it is generally satisfied to an accuracy near the computing precision.
For large operators, precision can become and issue. Every time I encountered a relative
discrepancy of 10−5 or more on a small operator (small data and model spaces) I was later
able to uncover a conceptual or programming error. Naturally, when I run dot-product tests,
I scale the implied matrix to a small size both to speed things along, and to be sure that
boundaries are not overwhelmed by the much larger interior.

Do not be alarmed if the operator you have defined has truncation errors. Such errors
in the definition of the original operator should be matched by like errors in the adjoint
operator. If your code passes the dot-product test, then you really have coded the adjoint
operator. In that case, to obtain inverse operators, you can take advantage of the standard
methods of mathematics.

We can speak of a continuous function f (t) or a discrete function ft. For continuous
functions we use integration, and for discrete ones we use summation. In formal mathe-
matics, the dot-product test defines the adjoint operator, except that the summation in the
dot product may need to be changed to an integral. The input or the output or both can be
given either on a continuum or in a discrete domain. So the dot-product test m̂ ·m = d̂ · d
could have an integration on one side of the equal sign and a summation on the other.
Linear-operator theory is rich with concepts not developed here.
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1.2.3 Automatic adjoints

Computers are not only able to perform computations; they can do mathematics. Well
known software is Mathematica and Maple. Adjoints can also be done by symbol manipu-
lation. For example Ralf Giering offers a program for converting linear operator programs
into their adjoints. Actually, it does more than that. He says:3

Given a Fortran routine (or collection of routines) for a function, TAMC produces Fortran routines
for the computation of the derivatives of this function. The derivatives are computed in the reverse
mode (adjoint model) or in the forward mode (tangent-linear model). In both modes Jacobian-Matrix
products can be computed.

1.2.4 The word “adjoint”

In mathematics the word “adjoint” has two meanings. One of them, the so-called Hilbert
adjoint, is the one generally found in physics and engineering and it is the one used in
this book. In linear algebra is a different matrix, called the adjugate matrix. It is a ma-
trix whose elements are signed cofactors (minor determinants). For invertible matrices,
this matrix is the determinant times the inverse matrix. It can be computed without ever
using division, so potentially the adjugate can be useful in applications where an inverse
matrix does not exist. Unfortunately, the adjugate matrix is sometimes called the adjoint
matrix, particularly in the older literature. Because of the confusion of multiple meanings
of the word adjoint, in the first printing of PVI, I avoided the use of the word and substi-
tuted the definition, “conjugate transpose”. Unfortunately this was often abbreviated to
“conjugate,” which caused even more confusion. Thus I decided to use the word adjoint
and have it always mean the Hilbert adjoint found in physics and engineering.

1.2.5 Inverse operator

A common practical task is to fit a vector of observed data dobs to some modeled data dmodel

by the adjustment of components in a vector of model parameters m.

dobs ≈ dmodel = Fm (1.42)

A huge volume of literature establishes theory for two estimates of the model, m̂1 and m̂2,
where

m̂1 = (F∗F)−1F∗d (1.43)

m̂2 = F∗(FF∗)−1d (1.44)

Some reasons for the literature being huge are the many questions about the existence,
quality, and cost of the inverse operators. Before summarizing that, let us quickly see why

3 http://www.autodiff.com/tamc/
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these two solutions are reasonable. Inserting equation (1.42) into equation (1.43), and in-
serting equation (1.44) into equation (1.42), we get the reasonable statements:

m̂1 = (F∗F)−1(F∗F)m = m (1.45)

d̂model = (FF∗)(FF∗)−1d = d (1.46)

Equation (1.45) says that the estimate m̂1 gives the correct model m if you start from the
modeled data. Equation (1.46) says that the model estimate m̂2 gives the modeled data if
we derive m̂2 from the modeled data. Both of these statements are delightful. Now let us
return to the problem of the inverse matrices.

Normally a rectangular matrix does not have an inverse. Surprising things often happen,
but commonly, when F is a tall matrix (more data values than model values) then the matrix
for finding m̂1 is invertible while that for finding m̂2 is not, and when the matrix is wide
instead of tall (the number of data values is less than the number of model values) it is the
other way around. In many applications neither F∗F nor FF∗ is invertible. This difficulty is
solved by “damping” as we will see in later chapters. If it happens that FF∗ or F∗F equals
I (unitary operator), then the adjoint operator F∗ is the inverse F−1 by either equation (1.43)
or (1.44).

Current computational power limits matrix inversion jobs to about 104 variables. This
book specializes in big problems, those with more than about 104 variables. The iterative
methods we learn here for giant problems are also excellent for smaller problems, so we
rarely here speak of inverse matrices or worry much if neither FF∗ nor F∗F is an identity.





2
Model fitting by least squares

The first level of computer use in science and engineering is modeling. Beginning from
physical principles and design ideas, the computer mimics nature. After this, the worker
looks at the result and thinks a while, then alters the modeling program and tries again.
The next, deeper level of computer use is that the computer itself examines the results of
modeling and reruns the modeling job. This deeper level is variously called “fitting” or
“estimation” or “inversion.” We inspect the conjugate-direction method of fitting and
write a subroutine for it that will be used in most of the examples in this book.

2.1 UNIVARIATE LEAST SQUARES

A single parameter fitting problem arises in Fourier analysis, where we seek a “best an-
swer” at each frequency, then combine all the frequencies to get a best signal. Thus emerges
a wide family of interesting and useful applications. However, Fourier analysis first re-
quires us to introduce complex numbers into statistical estimation.

Multiplication in the Fourier domain is convolution in the time domain. Fourier-domain
division is time-domain deconvolution. This division is challenging when F has observa-
tional error. Failure erupts if zero division occurs. More insidious are the poor results we
obtain when zero division is avoided by a near miss.

2.1.1 Dividing by zero smoothly

Think of any real numbers x, y, and f and any program containing x = y/ f . How can we
change the program so that it never divides by zero? A popular answer is to change x = y/ f
to x = y f /( f 2+ ε2), where ε is any tiny value. When | f | >> |ε |, then x is approximately y/ f
as expected. But when the divisor f vanishes, the result is safely zero instead of infinity.
The transition is smooth, but some criterion is needed to choose the value of ε. This method
may not be the only way or the best way to cope with zero division, but it is a good way,
and it permeates the subject of signal analysis.

To apply this method in the Fourier domain, suppose that X, Y , and F are complex
numbers. What do we do then with X = Y/F? We multiply the top and bottom by the
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complex conjugate F, and again add ε2 to the denominator. Thus,

X(ω) =
F(ω) Y(ω)

F(ω)F(ω) + ε2
(2.1)

Now the denominator must always be a positive number greater than zero, so division is
always safe. Equation (2.1) ranges continuously from inverse filtering, with X = Y/F, to
filtering with X = FY , which is called “matched filtering.” Notice that for any complex
number F, the phase of 1/F equals the phase of F, so the filters have the same phase.

2.1.2 Damped solution

Another way to say x = y/ f is to say f x − y is small, or ( f x − y)2 is small. This doesn’t
solve the problem of f going to zero, so we need the idea that x2 does not get too big. To
find x we minimize the quadratic function in x.

Q(x) = ( f x − y)2 + ε2x2 (2.2)

The second term is called a “damping factor” because it prevents x from going to ±∞
when f → 0. Set dQ/dx = 0, which gives

0 = f ( f x − y) + ε2x (2.3)

This yields our earlier common-sense answer x = f y/( f 2 + ε2). It also leads is to wider
areas of application where the elements are complex vectors and matrices.

With Fourier transforms, the signal X is a complex number at each frequency ω. So we
generalize equation (2.2) to

Q(X̄, X) = (FX − Y)(FX − Y) + ε2X̄X = (X̄F̄ − Ȳ)(FX − Y) + ε2X̄X (2.4)

To minimize Q we could use a real-values approach, where we express X = u+ iv in terms
of two real values u and v and then set ∂Q/∂u = 0 and ∂Q/∂v = 0. The approach we will
take, however, is to use complex values, where we set ∂Q/∂X = 0 and ∂Q/∂X̄ = 0. Let us
examine ∂Q/∂X̄:

∂Q(X̄, X)
∂X̄

= F̄(FX − Y) + ε2X = 0 (2.5)

The derivative ∂Q/∂X is the complex conjugate of ∂Q/∂X̄. So if either is zero, the other is
too. Thus we do not need to specify both ∂Q/∂X = 0 and ∂Q/∂X̄ = 0. I usually set ∂Q/∂X̄
equal to zero. Solving equation (2.5) for X gives equation (2.1).

Equation (2.1) solves Y = XF for X, giving the solution for what is called “the decon-
volution problem with a known wavelet F.” Analogously we can use Y = XF when the
filter F is unknown, but the input X and output Y are given. Simply interchange X and F
in the derivation and result.
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2.1.3 Formal path to the low-cut filter

This book defines many geophysical estimation applications. Many of them amount to
statement of two goals. The first goal is a data fitting goal, the goal that the model should
imply some observed data. The second goal is that the model be not too big or too wiggly.
We will state these goals as two residuals, each of which is ideally zero. A very simple data
fitting goal would be that the model m equals the data d, thus the difference should vanish,
say 0 ≈ m − d. A more interesting goal is that the model should match the data especially
at high frequencies but not necessarily at low frequencies.

0 ≈ −iω(m − d) (2.6)

A danger of this goal is that the model could have a zero-frequency component of infinite
magnitude as well as large amplitudes for low frequencies. To suppress this, we need the
second goal, a model residual which is to be minimized. We need a small number ε. The
model goal is

0 ≈ ε m (2.7)

To see the consequence of these two goals, we add the squares of the residuals

Q(m) = ω2(m − d)2 + ε2m2 (2.8)

and then we minimize Q(m) by setting its derivative to zero

0 =
dQ
dm

= 2ω2(m − d) + 2ε2m (2.9)

or

m =
ω2

ω2 + ε2
d (2.10)

Let us rename ε to give it physical units of frequency ω0 = ε. Our expression says says m
will match d except for low frequencies |m| < |ω0| where it will tend to zero. This defines
a low-cut filter with “cut-off frequency” ω0.

2.1.4 The plane-wave destructor

We address the question of shifting signals into best alignment. The most natural approach
might seem to be via cross correlations. That is indeed a good approach when signals are
shifted by large amounts. Here we assume signals are shifted by small amounts, often
less than a single pixel. We’ll take an approach closely related to differential equations.
Consider this definition of a residual.

0 ≈ residual(t, x) =

(
∂

∂x
+ p
∂

∂t

)
u(t, x) (2.11)

By taking derivatives we see the residual vanishes when the two-dimensional observation
u(t, x) matches the equation of moving waves u(t − px). The parameter p has units inverse
to velocity, the velocity of propagation.
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In practice, u(t, x) might not be a perfect wave but an observed field of many waves that
we might wish to fit to the idea of a single wave of a single p. We seek the parameter p.
First we need a method of discretization that allows the mesh for ∂du/∂dt to overlay exactly
∂u/∂x. To this end I chose to represent the t-derivative by averaging a finite difference at x
with one at x + ∆x.

∂u
∂t

≈
1
2

(
u(t + ∆t, x) − u(t, x)

∆t

)
+

1
2

(
u(t + ∆t, x + ∆x) − u(t, x + ∆x)

∆t

)
(2.12)

Likewise there is an analogous expression for the x-derivative with t and x interchanged.
The function u(t, x) lies on a grid, and the differencing operator δx+ pδt lies atop it and con-
volves across it. The operator is a 2×2 convolution filter. We may represent equation (2.11)
as a matrix operation,

0 ≈ r = Au (2.13)

where the two-dimensional convolution with the difference operator is denoted A.
The module wavekill() applies the operator aδx+bδt. Suitable choices of a and b give

us the operators we need, namely δx, δt, δx + piδt.

wavekill().r90
module waveki l l_mod {

c o n t a i n s
s u b r o u t i n e w a v e k i l l ( aa , bb , n t , nx , uu , vv ) {

r e a l : : aa , bb ( : , : ) , uu ( : , : ) , vv ( : , : )
i n t e g e r : : i t , ix , n t , nx
r e a l : : s11 ( nt , nx ) , s12 ( nt , nx ) , s21 ( nt , nx ) , s22 ( nt , nx )
s11 = −aa−bb ; s12 = aa−bb
s21 = −aa+bb ; s22 = aa+bb
vv=0.
do i x =1 , nx−1{

do i t =1 , nt −1{
vv ( i t , i x )=uu ( i t , i x )∗ s11 ( i t , i x )+&

uu ( i t , i x +1)∗ s12 ( i t , i x )+&
uu ( i t +1 , i x )∗ s21 ( i t , i x )+&
uu ( i t +1 , i x +1)∗ s22 ( i t , i x )

}
}
vv ( nt , : )= vv ( nt −1 , : )
vv ( : , nx )=vv ( : , nx−1)

}
}

Now let us find the numerical value of p that fits a plane wave u(t − px) to observations
u(t, x). Let x be an abstract vector whose components are values of ∂u/∂x taken everywhere
on a 2-D mesh in (t, x). Likewise, let t contain ∂u/∂t. Since we want x+pt ≈ 0, we minimize
the quadratic function of p,

Q(p) = (x + pt) · (x + pt) (2.14)

by setting to zero the derivative. We get

p = −
x · t
t · t

(2.15)
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Since data will not always fit the model very well, it may be helpful to have some way to
measure how good the fit is. I suggest

C2 = 1 −
(x + pt) · (x + pt)

x · x
(2.16)

which, on inserting p = −(x · t)/(t · t), leads to C , where

C =
x · t

√
(x · x)(t · t)

(2.17)

is known as the “normalized correlation.” The program for this calculation is straightfor-
ward. The name puck2d() denotes picking on a continuum.

puck2d().r90
module puck2d_mod {

use t r i a n g l e _ s m o o t h
use waveki l l_mod
c o n t a i n s
s u b r o u t i n e puck2d ( da t , coh , pp , r e s , boxsz , n t , nx ) {

i n t e g e r : : i t , ix , n t , nx
i n t e g e r , i n t e n t ( i n ) : : boxsz
r e a l , i n t e n t ( i n ) : : d a t ( : , : )
r e a l , i n t e n t ( o u t ) : : coh ( : , : ) , pp ( : , : ) , r e s ( : , : )
r e a l : : d t ( n t , nx ) , dx ( nt , nx ) , d t d t ( n t , nx ) , d tdx ( nt , nx ) , dxdx ( nt , nx )
pp =0 . ; c a l l w a v e k i l l ( 1 . , pp , n t , nx , da t , dx ) # s p a c e d e r i v a t i v e
pp =1 . ; c a l l w a v e k i l l ( 0 . , pp , n t , nx , da t , d t ) # t ime d e r i v a t i v e
d tdx = d t ∗dx # ( x . t )
dxdx = dx∗dx # ( x . x )
d t d t = d t ∗ d t # ( t . t )
do i x =1 , nx { # smooth a l o n g t ime a x i s

c a l l t r i a n g l e ( boxsz , n t , d t d t ( : , i x ) , d t d t ( : , i x ) )
c a l l t r i a n g l e ( boxsz , n t , dxdx ( : , i x ) , dxdx ( : , i x ) )
c a l l t r i a n g l e ( boxsz , n t , d tdx ( : , i x ) , d tdx ( : , i x ) )

}
coh = s q r t ( ( d tdx ∗ d tdx ) / ( d t d t ∗dxdx ) )
pp = −d tdx / d t d t
c a l l w a v e k i l l ( 1 . , pp , n t , nx , da t , r e s )

}
}

To suppress noise, the quadratic functions x · x, t · t, and x · t were smoothed over time with
a triangle filter.

Subroutine puck2d shows the code that generated Figure 2.1 through 2.3. An example
based on synthetic data is shown in Figures 2.1-2.3. The synthetic data in Figure 2.1 mimics
a reflection seismic field profile, including one trace that is slightly delayed as if recorded
on a patch of unconsolidated soil.

Figure 2.2 shows the residual. The residual is small in the central region of the data; it is
large where the signal is not sampled densely enough and it is large at the transient onset of
the signal. The residual is rough because of the noise in the signal, because it is made from
derivatives, and because the synthetic data was made by nearest-neighbor interpolation.
Notice that the residual is not particularly large for the delayed trace.

Figure 2.3 shows the dips. The most significant feature of this figure is the sharp local-
ization of the dips surrounding the delayed trace. Other methods based on “beam stacks”
or Fourier concepts might lead us to conclude that the aperture must be large to resolve a
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Figure 2.1 Input synthetic seismic data
includes a low level of noise.

Figure 2.2 Residuals, i.e., an evaluation
of Ux + pUt.

wide range of angles. Here we have a narrow aperture (two traces), but the dip can change
rapidly and widely.

Once the stepout p = dt/dx is known between each of the signals, it is a simple matter to
integrate to get the total time shift. A real-life example is shown in Figure 2.4. In this case

Figure 2.3 Output values of p are
shown by the slope of short line seg-
ments.
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Figure 2.4 A seismic line before and af-
ter flattening.

the flattening was a function of x only. More interesting (and more complicated) cases
arise when the stepout p = dt/dx is a function of both x and t. The code shown here should
work well in such cases.

A disadvantage, well known to people who routinely work with finite-difference solu-
tions to partial differential equations, is that for short wavelengths a finite difference oper-
ator is not the same as a differential operator; therefore the numerical value of p is biased.
This problem can be overcome in the following way. First estimate the slope p = dt/dx
between each trace. Then shift the traces to flatten them. Now there may be a residual p
because of the bias in the initial estimate of p. This process can be iterated until the data is
flattened. Everywhere in a plane we have solved a least squares problem for a single value
p.

2.2 MULTIVARIATE LEAST SQUARES

2.2.1 Inside an abstract vector

In engineering uses, a vector has three scalar components that correspond to the three
dimensions of the space in which we live. In least-squares data analysis, a vector is a one-
dimensional array that can contain many different things. Such an array is an “abstract
vector.” For example, in earthquake studies, the vector might contain the time an earth-
quake began, as well as its latitude, longitude, and depth. Alternatively, the abstract vector
might contain as many components as there are seismometers, and each component might
be the arrival time of an earthquake wave. Used in signal analysis, the vector might contain
the values of a signal at successive instants in time or, alternatively, a collection of signals.
These signals might be “multiplexed” (interlaced) or “demultiplexed” (all of each signal
preceding the next). When used in image analysis, the one-dimensional array might con-
tain an image, which could itself be thought of as an array of signals. Vectors, including
abstract vectors, are usually denoted by boldface letters such as p and s. Like physical
vectors, abstract vectors are orthogonal when their dot product vanishes: p · s = 0. Or-
thogonal vectors are well known in physical space; we will also encounter them in abstract
vector space.
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We consider first a hypothetical application with one data vector d and two fitting vectors
f1 and f2. Each fitting vector is also known as a “regressor.” Our first task is to approximate
the data vector d by a scaled combination of the two regressor vectors. The scale factors
m1 and m2 should be chosen so that the model matches the data; i.e.,

d ≈ f1m1 + f2m2 (2.18)

Notice that we could take the partial derivative of the data in (2.18) with respect to an
unknown, say m1, and the result is the regressor f1. The partial derivative of all modeled
data di with respect to any particular model parameter m j gives a regressor.

A regressor is a column in the matrix of partial-derivatives, ∂di/∂m j.

The fitting goal (2.18) is often expressed in the more compact mathematical matrix no-
tation d ≈ Fm, but in our derivation here we will keep track of each component explicitly
and use mathematical matrix notation to summarize the final result. Fitting the observed
data d = dobs to its two theoretical parts f1m1 and f2m2 can be expressed as minimizing the
length of the residual vector r, where

0 ≈ r = dtheor − dobs (2.19)

0 ≈ r = f1m1 + f2m2 − d (2.20)

We use a dot product to construct a sum of squares (also called a “quadratic form”) of
the components of the residual vector:

Q(m1,m2) = r · r (2.21)

Q(m1,m2) = (f1m1 + f2m2 − d) · (f1m1 + f2m2 − d) (2.22)

To find the gradient of the quadratic form Q(m1,m2), you might be tempted to expand out
the dot product into all nine terms and then differentiate. It is less cluttered, however, to
remember the product rule, that

d
dx

r · r =
dr
dx
· r + r ·

dr
dx

(2.23)

Thus, the gradient of Q(m1,m2) is defined by its two components:

∂Q
∂m1

= f1 · (f1m1 + f2m2 − d) + (f1m1 + f2m2 − d) · f1 (2.24)

∂Q
∂m2

= f2 · (f1m1 + f2m2 − d) + (f1m1 + f2m2 − d) · f2 (2.25)

Setting these derivatives to zero and using (f1 · f2) = (f2 · f1) etc., we get

(f1 · d) = (f1 · f1)m1 + (f1 · f2)m2 (2.26)

(f2 · d) = (f2 · f1)m1 + (f2 · f2)m2 (2.27)
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We can use these two equations to solve for the two unknowns m1 and m2. Writing this
expression in matrix notation, we have[

(f1 · d)
(f2 · d)

]
=

[
(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

] [
m1

m2

]
(2.28)

It is customary to use matrix notation without dot products. To do this, we need some
additional definitions. To clarify these definitions, we inspect vectors f1, f2, and d of three
components. Thus

F = [f1 f2] =


f11 f12

f21 f22

f31 f32

 (2.29)

Likewise, the transposed matrix F∗ is defined by

F∗ =

[
f11 f21 f31

f12 f22 f32

]
(2.30)

Using this matrix F∗ there is a simple expression for the gradient calculated in equa-
tion (2.24). It is used in nearly every example in this book.

g =

 ∂Q
∂m1
∂Q
∂m2

 =

[
f1 · r
f2 · r

]
=

[
f11 f21 f31

f12 f22 f32

] 
r1

r2

r3

 = F∗ r (2.31)

In words this expression says, the gradient is found by putting the residual into the ad-
joint operator g = F∗ r. Notice the gradient g has the same number of components as the
unknown solution m, so we can think of the gradient as a ∆m, something we could add
to m getting m + ∆m. Later we’ll see how much of ∆m we’ll want to add to m. We will
have reached the best solution when we find the gradient g = 0 vanishes which happens,
as equation (2.31) says, when the residual is orthogonal to all the fitting functions (all the
rows in the matrix F∗, the columns in F, are perpendicular to r).

The matrix in equation (2.28) contains dot products. Matrix multiplication is an abstract
way of representing the dot products:[

(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

]
=

[
f11 f21 f31

f12 f22 f32

] 
f11 f12

f21 f22

f31 f32

 (2.32)

Thus, equation (2.28) without dot products is[
f11 f21 f31

f12 f22 f32

] 
d1

d2

d3

 =

[
f11 f21 f31

f12 f22 f32

] 
f11 f12

f21 f22

f31 f32


[

m1

m2

]
(2.33)

which has the matrix abbreviation

F∗ d = (F∗ F)m (2.34)
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Equation (2.34) is the classic result of least-squares fitting of data to a collection of regres-
sors. Obviously, the same matrix form applies when there are more than two regressors and
each vector has more than three components. Equation (2.34) leads to an analytic solution
for m using an inverse matrix. To solve formally for the unknown m, we premultiply by
the inverse matrix (F∗ F)−1:

m = (F∗ F)−1 F∗ d (2.35)

The central result of least-squares theory is m = (F∗ F)−1 F∗ d. We see it everywhere.

Let us examine all the second derivatives of Q(m1,m2) defined by equation (2.22). Any
multiplying d will not survive the second derivative, so the terms we are left with are

Q(m1,m2) = (f1 · f1)m2
1 + 2(f1 · f2)m1m2 + (f2 · f2)m2

2 (2.36)

After taking the second derivative, we can organize all these terms in a matrix

∂2Q
∂mi∂m j

=

[
(f1 · f1) (f1 · f2)
(f2 · f1) (f2 · f2)

]
(2.37)

Comparing this to equation (2.32) we conclude that F∗ F is a matrix of second derivatives.
This matrix is also known as the Hessian. This matrix often plays an important role in
small problems.

Larger problems tend to have insufficient computer memory for the Hessian matrix be-
cause it is the size of model space squared. Where model space is a multidimensional earth
image, that’s a large number of values even before squaring. Therefore, this book rarely
works with the Hessian, working instead with gradients.

Rearrange parentheses representing (2.33).

F∗ d = F∗ (Fm) (2.38)

Equation (2.34) led to the “analytic” solution (2.35). In a later section on conjugate di-
rections, we will see that equation (2.38) expresses better than (2.35) the philosophy of
iterative methods.

Notice how equation (2.38) invites us to cancel the matrix F∗ from each side. We cannot
do that of course, because F∗ is not a number, nor is it a square matrix with an inverse.
If you really want to cancel the matrix F∗, you may, but the equation is then only an
approximation that restates our original goal (2.18):

d ≈ Fm (2.39)

A speedy problem solver might ignore the mathematics covering the previous page,
study his or her application until he or she is able to write the statement of goals (2.39) =
(2.18), premultiply by F∗, replace ≈ by =, getting (2.34), and take (2.34) to a simultaneous
equation-solving program to get m.

What I call “fitting goals” are called “regressions” by statisticians. In common language
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the word regression means to “trend toward a more primitive perfect state” which vaguely
resembles reducing the size of (energy in) the residual r = Fm − d. Formally this is often
written as:

min
m
‖Fm − d‖ (2.40)

The notation above with two pairs of vertical lines looks like double absolute value, but we
can understand it as a reminder to square and sum all the components. This formal notation
is more explicit about what is constant and what is variable during the fitting.

2.2.2 Normal equations

An important concept is that when energy is minimum, the residual is orthogonal to the
fitting functions. The fitting functions are the column vectors f1, f2, and f3. Let us verify
only that the dot product r · f2 vanishes; to do this, we’ll show that those two vectors are
orthogonal. Energy minimum is found by

0 =
∂

∂m2
r · r = 2 r ·

∂r
∂m2

= 2 r · f2 (2.41)

(To compute the derivative refer to equation (2.20).) Equation (2.41) shows that the residual
is orthogonal to a fitting function. The fitting functions are the column vectors in the fitting
matrix.

The basic least-squares equations are often called the “normal” equations. The word
“normal” means perpendicular. We can rewrite equation (2.38) to emphasize the perpen-
dicularity. Bring both terms to the right, and recall the definition of the residual r from
equation (2.20):

0 = F∗ (Fm − d) (2.42)

0 = F∗ r (2.43)

Equation (2.43) says that the residual vector r is perpendicular to each row in the F∗

matrix. These rows are the fitting functions. Therefore, the residual, after it has been
minimized, is perpendicular to all the fitting functions.

2.2.3 Differentiation by a complex vector

Complex numbers frequently arise in physical applications, particularly those with Fourier
series. Let us extend the multivariable least-squares theory to the use of complex-valued
unknowns m. First recall how complex numbers were handled with single-variable least
squares; i.e., as in the discussion leading up to equation (2.5). Use an asterisk, such as
m∗, to denote the complex conjugate of the transposed vector m. Now write the positive
quadratic form as

Q(m∗,m) = (Fm − d)∗ (Fm − d) = (m∗ F∗ − d∗)(Fm − d) (2.44)



44 Model fitting by least squares

Recall from equation (2.4) where we minimized a quadratic form Q(X̄, X) by setting to
zero both ∂Q/∂X̄ and ∂Q/∂X. We noted that only one of ∂Q/∂X̄ and ∂Q/∂X is necessarily
zero because they are conjugates of each other. Now take the derivative of Q with respect
to the (possibly complex, row) vector m∗. Notice that ∂Q/∂m∗ is the complex conjugate
transpose of ∂Q/∂m. Thus, setting one to zero sets the other to zero also. Setting ∂Q/∂m∗ =
0 gives the normal equations:

0 =
∂Q
∂m∗

= F∗ (Fm − d) (2.45)

The result is merely the complex form of our earlier result (2.42). Therefore, differentiat-
ing by a complex vector is an abstract concept, but it gives the same set of equations as
differentiating by each scalar component, and it saves much clutter.

2.2.4 From the frequency domain to the time domain

Where data fitting uses the notation m→ d, linear algebra and signal analysis often use the
notation x → y. Equation (2.4) is a frequency-domain quadratic form that we minimized
by varying a single parameter, a Fourier coefficient. Now we will look at the same problem
in the time domain. We will see that the time domain offers flexibility with boundary con-
ditions, constraints, and weighting functions. The notation will be that a filter ft has input
xt and output yt. In Fourier space this is Y = XF. There are two applications to look at,
unknown filter F and unknown input X.

Unknown filter

When inputs and outputs are given, the problem of finding an unknown filter appears to be
overdetermined, so we write y ≈ Xf where the matrix X is a matrix of downshifted columns
like (1.5). Thus the quadratic form to be minimized is a restatement of equation (2.44) with
filter definitions:

Q(f∗, f) = (Xf − y)∗ (Xf − y) (2.46)

The solution f is found just as we found (2.45), and it is the set of simultaneous equations
0 = X∗ (Xf − y).

Unknown input: deconvolution with a known filter

For solving the unknown-input problem, we put the known filter ft in a matrix of down-
shifted columns F. Our statement of wishes is now to find xt so that y ≈ Fx. We can expect
to have trouble finding unknown inputs xt when we are dealing with certain kinds of filters,
such as bandpass filters. If the output is zero in a frequency band, we will never be able
to find the input in that band and will need to prevent xt from diverging there. We do this
by the statement that we wish 0 ≈ ε x, where ε is a parameter that is small and whose
exact size will be chosen by experimentation. Putting both wishes into a single, partitioned



2.3 KRYLOV SUBSPACE ITERATIVE METHODS 45

matrix equation gives[
0
0

]
≈

[
r1

r2

]
=

[
F
ε I

]
x −

[
y
0

]
(2.47)

To minimize the residuals r1 and r2, we can minimize the scalar r∗ r = r∗1 r1 + r∗2 r2. This
is

Q(x∗, x) = (Fx − y)∗ (Fx − y) + ε2x∗ x
= (x∗ F∗ − y∗)(Fx − y) + ε2x∗ x (2.48)

We solved this minimization in the frequency domain (beginning from equation (2.4)).
Formally the solution is found just as with equation (2.45), but this solution looks un-

appealing in practice because there are so many unknowns and because the problem can
be solved much more quickly in the Fourier domain. To motivate ourselves to solve this
problem in the time domain, we need either to find an approximate solution method that
is much faster, or to discover that constraints or time-variable weighting functions are re-
quired in some applications. This is an issue we must be continuously alert to, whether the
cost of a method is justified by its need.

2.3 KRYLOV SUBSPACE ITERATIVE METHODS

The solution time for simultaneous linear equations grows cubically with the number of
unknowns. There are three regimes for solution; which one is applicable depends on the
number of unknowns m. For m three or less, we use analytical methods. We also sometimes
use analytical methods on matrices of size 4 × 4 if the matrix contains many zeros. My
1988 desktop workstation solved a 100 × 100 system in a minute. Ten years later it would
do a 600 × 600 system in about a minute. A nearby more powerful computer would do
1000 × 1000 in a minute. Since the computing effort increases with the third power of the
size, and since 43 = 64 ≈ 60, an hour’s work solves a four times larger matrix, namely
4000 × 4000 on the more powerful machine. For significantly larger values of m, exact
numerical methods must be abandoned and iterative methods must be used.

The compute time for a rectangular matrix is slightly more pessimistic. It is the product
of the number of data points n times the number of model points squared m2. This happens
to be the cost of computing the matrix F∗ F from F. Since the number of data points gener-
ally exceeds the number of model points n > m by a substantial factor (to allow averaging
of noises), it leaves us with significantly fewer than 4000 points in model space.

A square image packed into a 4096 point vector is a 64 × 64 array. The computer power
for linear algebra to give us solutions that fit in a k × k image is thus proportional to k6,
which means that even though computer power grows rapidly, imaging resolution using
“exact numerical methods” hardly grows at all from our 64 × 64 current practical limit.

The retina in our eyes captures an image of size about 1000× 1000 which is a lot bigger
than 64×64. Life offers us many occasions where final images exceed the 4000 points of a
64×64 array. To make linear algebra (and inverse theory) relevant to such applications, we
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investigate special techniques. A numerical technique known as the “conjugate-direction
method” works well for all values of m and is our subject here. As with most simultaneous
equation solvers, an exact answer (assuming exact arithmetic) is attained in a finite number
of steps. And if n and m are too large to allow enough iterations, the iterative methods can
be interrupted at any stage, the partial result often proving useful. Whether or not a partial
result actually is useful is the subject of much research; naturally, the results vary from one
application to the next.

2.3.1 Sign convention

On the last day of the survey, a storm blew up, the sea got rough, and the receivers drifted
further downwind. The data recorded that day had a larger than usual difference from that
predicted by the final model. We could call (d − Fm) the experimental error. (Here d is
data, m is model parameters, and F is their linear relation).

The alternate view is that our theory was too simple. It lacked model parameters for the
waves and the drifting cables. Because of this model oversimplification we had a modeling
error of the opposite polarity (Fm − d).

A strong experimentalist prefers to think of the error as experimental error, something for
him or her to work out. Likewise a strong analyst likes to think of the error as a theoretical
problem. (Weaker investigators might be inclined to take the opposite view.)

Regardless of the above, and opposite to common practice, I define the sign convention
for the error (or residual) as (Fm − d). Here is why. Minus signs are a source of confusion
and errors. Putting the minus sign on the field data limits it to one location while putting it
in model space would spread it into as many parts as model space has parts.

Beginners often feel disappointment when the data does not fit the model very well.
They see it as a defect in the data instead of an opportunity to discover what our data
contains that our theory does not.

2.3.2 Method of random directions and steepest descent

Let us minimize the sum of the squares of the components of the residual vector given by

residual = transform model space − data space (2.49)
r


=


F




x


−


d


(2.50)
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A contour plot is based on an altitude function of space. The altitude is the dot product
r·r. By finding the lowest altitude, we are driving the residual vector r as close as we can to
zero. If the residual vector r reaches zero, then we have solved the simultaneous equations
d = Fx. In a two-dimensional world the vector x has two components, (x1, x2). A contour
is a curve of constant r · r in (x1, x2)-space. These contours have a statistical interpretation
as contours of uncertainty in (x1, x2), with measurement errors in d.

Let us see how a random search-direction can be used to reduce the residual 0 ≈ r =
Fx−d. Let ∆x be an abstract vector with the same number of components as the solution x,
and let ∆x contain arbitrary or random numbers. We add an unknown quantity α of vector
∆x to the vector x, and thereby create xnew:

xnew = x + α∆x (2.51)

This gives a new residual:

rnew = F xnew − d (2.52)

rnew = F(x + α∆x) − d (2.53)

rnew = r + α∆r = (Fx − d) + αF∆x (2.54)

which defines ∆r = F∆x.
Next we adjust α to minimize the dot product: rnew · rnew

(r + α∆r) · (r + α∆r) = r · r + 2α(r · ∆r) + α2∆r · ∆r (2.55)

Set to zero its derivative with respect to α

0 = 2r · ∆r + 2α∆r · ∆r (2.56)

which says that the new residual rnew = r + α∆r is perpendicular to the “fitting function”
∆r. Solving gives the required value of α.

α = −
(r · ∆r)

(∆r · ∆r)
(2.57)

A “computation template” for the method of random directions is

r ←− Fx − d
iterate {

∆x ←− random numbers
∆r ←− F ∆x
α ←− −(r · ∆r)/(∆r · ∆r)
x ←− x + α∆x
r ←− r + α∆r
}

A nice thing about the method of random directions is that you do not need to know the
adjoint operator F∗.
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In practice, random directions are rarely used. It is more common to use the gradient
direction than a random direction. Notice that a vector of the size of ∆x is

g = F∗ r (2.58)

Recall this vector can be found by taking the gradient of the size of the residuals:

∂

∂x∗
r · r =

∂

∂x∗
(x∗ F∗ − d∗) (F x − d) = F∗ r (2.59)

Choosing ∆x to be the gradient vector ∆x = g = F∗ r is called “the method of steepest
descent.”

Starting from a model x = m (which may be zero), below is a template of pseudocode
for minimizing the residual 0 ≈ r = Fx − d by the steepest-descent method:

r ←− Fx − d
iterate {

∆x ←− F∗ r
∆r ←− F ∆x
α ←− −(r · ∆r)/(∆r · ∆r)
x ←− x + α∆x
r ←− r + α∆r
}

Good science and engineering is finding something unexpected. For this you look both
in data space and in model space. In data space you look at the residual r. In model space,
you look at the residual projected there F∗ r. What does it mean? It is simply ∆m, the
changes you need to make to your model. It will mean more in later chapters where the
operator F is a column vector of operators that are fighting with one another to grab the
data.

2.3.3 Why steepest descent is so slow

Before we can understand why the conjugate-direction method is so fast, we need to see
why the steepest-descent method is so slow. The process of selecting α is called “line
search”, but for a linear problem like the one we have chosen here, we hardly recognize
choosing α as searching a line. A more graphic understanding of the whole process is
possible from considering a two-dimensional space where the vector of unknowns x has
just two components, x1 and x2. Then the size of the residual vector r · r can be displayed
with a contour plot in the plane of (x1, x2). Figure 2.5 shows a contour plot of the penalty
function of (x1, x2) = (m1,m2). The gradient is perpendicular to the contours. Contours and
gradients are curved lines. When we use the steepest-descent method we start at a point
and compute the gradient direction at that point. Then we begin a straight-line descent
in that direction. The gradient direction curves away from our direction of travel, but we
continue on our straight line until we have stopped descending and are about to ascend.
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There we stop, compute another gradient vector, turn in that direction, and descend along
a new straight line. The process repeats until we get to the bottom, or until we get tired.

Figure 2.5 Route of steepest descent
(black) and route of conjugate direction
(light grey or red).
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What could be wrong with such a direct strategy? The difficulty is at the stopping lo-
cations. These occur where the descent direction becomes parallel to the contour lines.
(There the path becomes level.) So after each stop, we turn 90◦, from parallel to perpendic-
ular to the local contour line for the next descent. What if the final goal is at a 45◦ angle to
our path? A 45◦ turn cannot be made. Instead of moving like a rain drop down the center-
line of a rain gutter, we move along a fine-toothed zigzag path, crossing and recrossing the
centerline. The gentler the slope of the rain gutter, the finer the teeth on the zigzag path.

2.3.4 Null space and iterative methods

In applications where we fit d ≈ Fx, there might exist a vector (or a family of vectors)
defined by the condition 0 = Fxnull. This family is called a null space. For example, if the
operator F is a time derivative, then the null space is the constant function; if the operator
is a second derivative, then the null space has two components, a constant function and a
linear function, or combinations of them. The null space is a family of model components
that have no effect on the data.

When we use the steepest-descent method, we iteratively find solutions by this updating:

xi+1 = xi + α∆x (2.60)

xi+1 = xi + αF∗ r (2.61)

xi+1 = xi + αF∗ (Fx − d) (2.62)

After we have iterated to convergence, the gradient ∆x = F∗ r vanishes. Adding any xnull

to x does not change the residual r = Fx− d. Since r is unchanged ∆x = F∗ r remains zero
and xi+1 = xi. Thus we conclude that any null space in the initial guess x0 will remain there
unaffected by the gradient-descent process. So, in the presense of null space, the answer
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we get from an iterative method depends on the starting guess. Oops! The analytic solution
does not do any better. It needs to deal with a singular matrix. Existence of a null space
destroys the uniqueness of any resulting model.

Linear algebra theory enables us to dig up the entire null space should we so desire. On
the other hand, the computer demands might be vast. Even the memory for holding the
many x vectors could be prohibitive. A much simpler and more practical goal is to find out
if the null space has any members, and if so, to view some of them. To try to see a member
of the null space, we take two starting guesses and we run our iterative solver for each of
them. If the two solutions, x1 and x2, are the same, there is no null space. If the solutions
differ, the difference is a member of the null space. Let us see why: Suppose after iterating
to minimum residual we find

r1 = Fx1 − d (2.63)

r2 = Fx2 − d (2.64)

We know that the residual squared is a convex quadratic function of the unknown x. Math-
ematically that means the minimum value is unique, so r1 = r2. Subtracting we find
0 = r1 − r2 = F(x1 − x2) proving that x1 − x2 is a model in the null space. Adding x1 − x2

to any to any model x will not change the modeled data.

A practical way to learn about the existence of null spaces and their general appear-
ance is simply to try gradient-descent methods beginning from various different start-
ing guesses.

“Did I fail to run my iterative solver long enough?” is a question you might have. If two
residuals from two starting solutions are not equal, r1 , r2, then you should be running
your solver through more iterations.

If two different starting solutions produce two different residuals, then you didn’t run
your solver through enough iterations.

2.3.5 The magical property of the conjugate direction method

In the conjugate-direction method, not a line, but rather a plane, is searched. A plane is
made from an arbitrary linear combination of two vectors. One vector will be chosen to be
the gradient vector, say g. The other vector will be chosen to be the previous descent step
vector, say s = x j − x j−1. Instead of α g we need a linear combination, say αg + βs. For
minimizing quadratic functions the plane search requires only the solution of a two-by-two
set of linear equations for α and β.

The conjugate-direction (CD) method described in this book has a magical property
shared by the more famous conjugate-gradient method. This magical property is not proven
in this book, but it may be found in many sources. Although these methods are iterative
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methods, they converge on the exact answer (assuming perfect numerical precision) in a
fixed number of steps. That number is the number of components in model space x.

Where we benefit from iterative methods is if they happen to require less than the theo-
retically require nunber of iterations. Whether that is so, depends on the problem at hand.
Reflection seismology has many problems so massive they are said to be solved simply by
one application of the adjoint operator. The idea that such solutions might be improved by
a small number of iterations is very appealing.

2.3.6 Conjugate-direction theory for programmers

Fourier-transformed variables are often capitalized. This convention will be helpful here, so
in this subsection only, we capitalize vectors transformed by the F matrix. As everywhere,
a matrix such as F is printed in boldface type but in this subsection, vectors are not printed
in boldface print. Thus we define the solution, the solution step (from one iteration to the
next), and the gradient by

X = F x modeled data = F model (2.65)

S j = F s j model solution step (2.66)

G j = F g j ∆r = F∆m (2.67)

A linear combination in solution space, say s + g, corresponds to S + G in the conjugate
space, the data space, because S +G = Fs + Fg = F(s + g). According to equation (2.50),
the residual is the modeled data minus the observed data.

R = Fx − D = X − D (2.68)

The solution x is obtained by a succession of steps s j, say

x = s1 + s2 + s3 + · · · (2.69)

The last stage of each iteration is to update the solution and the residual:

solution update : x ← x + s (2.70)

residual update : R ← R + S (2.71)

The gradient vector g is a vector with the same number of components as the solution
vector x. A vector with this number of components is

g = F∗ R = gradient (2.72)

G = F g = conjugate gradient = ∆r (2.73)

The gradient g in the transformed space is G, also known as the conjugate gradient.
What will our solution update ∆x = s be? It will be some unknown amount α of the

gradient g plus another unknown amount β of the previous step s. Likewise in residual
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space.

∆x = αg + βs model space (2.74)

∆r = αG + βS data space (2.75)

The minimization (2.55) is now generalized to scan not only in a line with α, but simul-
taneously another line with β. The combination of the two lines is a plane. We now set out
to find the location in this plane that minimizes the quadratic Q.

Q(α, β) = (R + αG + βS ) · (R + αG + βS ) (2.76)

The minimum is found at ∂Q/∂α = 0 and ∂Q/∂β = 0, namely,

0 = G · (R + αG + βS ) (2.77)

0 = S · (R + αG + βS ) (2.78)

−

[
(G · R)
(S · R)

]
=

[
(G ·G) (S ·G)
(G · S ) (S · S )

] [
α

β

]
(2.79)

This is a set of two equations for α and β. Recall the inverse of a 2 × 2 matrix, equation
(2.100).[

α

β

]
=

−1
(G ·G)(S · S ) − (G · S )2

[
(S · S ) −(S ·G)
−(G · S ) (G ·G)

] [
(G · R)
(S · R)

]
(2.80)

The many applications in this book all need to find α and β with (2.80) and then up-
date the solution with (2.70) and update the residual with (2.71). Thus we package these
activities in a subroutine named cgstep(). To use that subroutine we will have a com-
putation template with repetitive work done by subroutine cgstep(). This template (or
pseudocode) for minimizing the residual 0 ≈ r = Fx−d by the conjugate-direction method
is

r ←− Fx − d
iterate {

∆x ←− F∗ r
∆r ←− F ∆x
(x, r) ←− cgstep(x, r,∆x,∆r)
}

where the subroutine cgstep() remembers the previous iteration and works out the step
size and adds in the proper proportion of the ∆x of the previous step.

2.3.7 Routine for one step of conjugate-direction descent

Because Fortran does not recognize the difference between upper- and lower-case letters,
the conjugate vectors G and S in the program are denoted by gg and ss. The inner part of
the conjugate-direction task is in function cgstep().
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one step of CD.r90
module cgs tep_mod {

r e a l , d imens ion ( : ) , a l l o c a t a b l e , p r i v a t e : : s , s s
c o n t a i n s

i n t e g e r f u n c t i o n c g s t e p ( f i r s t , x , g , r r , gg ) {
r e a l , d imens ion ( : ) : : x , g , r r , gg
l o g i c a l : : f i r s t
double p r e c i s i o n : : sds , gdg , gds , determ , gdr , sd r , a l f a , b e t a
i f ( . n o t . a l l o c a t e d ( s ) ) { f i r s t = . t r u e .

a l l o c a t e ( s ( s i z e ( x ) ) )
a l l o c a t e ( s s ( s i z e ( r r ) ) )
}

i f ( f i r s t ) { s = 0 . ; s s = 0 . ; b e t a = 0 . d0 # s t e e p e s t d e s c e n t
i f ( d o t _ p r o d u c t ( gg , gg ) == 0 )

c a l l e r e x i t ( ’ c g s t e p : g r ad v a n i s h e s i d e n t i c a l l y ’ )
a l f a = − sum ( dprod ( gg , r r ) ) / sum ( dprod ( gg , gg ) )
}

e l s e { gdg = sum ( dprod ( gg , gg ) ) # s e a r c h p l a n e by s o l v i n g 2−by−2
s d s = sum ( dprod ( ss , s s ) ) # G . (R − G∗ a l f a − S∗ b e t a ) = 0
gds = sum ( dprod ( gg , s s ) ) # S . (R − G∗ a l f a − S∗ b e t a ) = 0
i f ( gdg==0. . o r . s d s ==0. ) { c g s t e p = 1 ; re turn }
de te rm = gdg ∗ s d s ∗ max ( 1 . d0 − ( gds / gdg ) ∗ ( gds / s d s ) , 1 . d−12)
gdr = − sum ( dprod ( gg , r r ) )
s d r = − sum ( dprod ( ss , r r ) )
a l f a = ( s d s ∗ gdr − gds ∗ s d r ) / de te rm
b e t a = (− gds ∗ gdr + gdg ∗ s d r ) / de te rm
}

s = a l f a ∗ g + b e t a ∗ s # u p d a t e s o l u t i o n s t e p
s s = a l f a ∗ gg + b e t a ∗ s s # u p d a t e r e s i d u a l s t e p
x = x + s # u p d a t e s o l u t i o n
r r = r r + s s # u p d a t e r e s i d u a l
f i r s t = . f a l s e . ; c g s t e p = 0

}
s u b r o u t i n e c g s t e p _ c l o s e ( ) {

i f ( a l l o c a t e d ( s ) ) d e a l l o c a t e ( s , s s )
}

}

Observe the cgstep() function has a logical parameter called first. This parameter
does not need to be input. In the normal course of things, first will be true on the first
iteration and false on subsequent iterations. This refers to the fact that on the first iteration,
there is no previous step, so the conjugate direction method is reduced to the steepest de-
scent method. At any iteration, however, you have the option to set first=.true. which
amounts to restarting the calculation from the current location, something we rarely find
reason to do.

2.3.8 A basic solver program

There are many different methods for iterative least-square estimation some of which will
be discussed later in this book. The conjugate-gradient (CG) family (including the first
order conjugate-direction method described above) share the property that theoretically
they achieve the solution in n iterations, where n is the number of unknowns. The various
CG methods differ in their numerical errors, memory required, adaptability to non-linear
optimization, and their requirements on accuracy of the adjoint. What we do in this section
is to show you the generic interface.

None of us is an expert in both geophysics and in optimization theory (OT), yet we need
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to handle both. We would like to have each group write its own code with a relatively easy
interface. The problem is that the OT codes must invoke the physical operators yet the
OT codes should not need to deal with all the data and parameters needed by the physical
operators.

In other words, if a practitioner decides to swap one solver for another, the only thing
needed is the name of the new solver.

The operator entrance is for the geophysicist, who formulates the estimation application.
The solver entrance is for the specialist in numerical algebra, who designs a new optimiza-
tion method.

The Fortran-90 programming language allows us to achieve this design goal by means
of generic function interfaces.

A generic solver subroutine solver() is shown in module smallsolver. It is sim-
plified substantially from the library version, which has a much longer list of optional
arguments

generic solver.r90
module s m a l l s o l v e r {

l o g i c a l , p a r a m e t e r , p r i v a t e : : AJ = . t r u e . , FW = . f a l s e .
l o g i c a l , p a r a m e t e r , p r i v a t e : : AD = . t r u e . , ZP = . f a l s e .
l o g i c a l , p r i v a t e : : f i r s t

c o n t a i n s
s u b r o u t i n e s o l v e r ( oper , so lv , x , da t , n i t e r , x0 , r e s ) {

o p t i o n a l : : x0 , r e s
i n t e r f a c e {

i n t e g e r f u n c t i o n ope r ( ad j , add , x , d a t ) {
l o g i c a l , i n t e n t ( i n ) : : ad j , add
r e a l , d imens ion ( : ) : : x , d a t
}

i n t e g e r f u n c t i o n s o l v ( f i r s t , x , dx , r , d r ) {
l o g i c a l : : f i r s t
r e a l , d imens ion ( : ) : : x , dx , r , d r
}

}
r e a l , d imens ion ( : ) , i n t e n t ( i n ) : : da t , x0 # da t a , i n i t i a l
r e a l , d imens ion ( : ) , i n t e n t ( o u t ) : : x , r e s # s o l u t i o n , r e s i d u a l
i n t e g e r , i n t e n t ( i n ) : : n i t e r # i t e r a t i o n s
r e a l , d imens ion ( s i z e ( x ) ) : : dx # g r a d i e n t
r e a l , d imens ion ( s i z e ( d a t ) ) : : r , d r # r e s i d u a l , c o n j g rad
i n t e g e r : : i , s t a t
r = − d a t
i f ( p r e s e n t ( x0 ) ) {

s t a t = ope r ( FW, AD, x0 , r ) # r <− F x0 − d a t
x = x0 # s t a r t w i th x0
}

e l s e {
x = 0 . # s t a r t w i th z e r o
}

f i r s t = . f a l s e .
do i = 1 , n i t e r {

s t a t = ope r ( AJ , ZP , dx , r ) # dx <− F ’ r
s t a t = ope r ( FW, ZP , dx , d r ) # d r <− F dx
s t a t = s o l v ( f i r s t , x , dx , r , d r ) # s t e p i n x and r
}

i f ( p r e s e n t ( r e s ) ) r e s = r
}

}

(The first parameter is not needed by the solvers we discuss first.)
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The two most important arguments in solver() are the operator function oper, which
is defined by the interface from Chapter 1, and the solver function solv, which implements
one step of an iterative estimation. For example, a practitioner who choses to use our new
cgstep() for iterative solving the operator matmultwould write the call
call solver ( matmult_lop, cgstep, ...

The other required parameters to solver() are dat (the data we want to fit), x (the
model we want to estimate), and niter (the maximum number of iterations). There is also
a couple of optional arguments. For example, x0 is the starting guess for the model. If this
parameter is omitted, the model is initialized to zero. To output the final residual vector,
we include a parameter called res, which is optional as well. We will watch how the list
of optional parameters to the generic solver routine grows as we attack more and more
complex applications in later chapters.

2.3.9 Fitting success and solver success

Every time we run a data modeling program we have access to two publishable numbers
1 − |r|/|d| and 1 − |F∗ r|/|F∗ d|. The first says how well the model fits the data. The second
says how well we did the job of finding out.

Define the residual r = Fm − d and the “size” of any vector, such as the data vector,
as |d| =

√
d · d. The number 1 − |r|/|d|, will be called the “success at fitting data.” (Any

data-space weighting function should have been incorporated in both F and d.)
While the data fitting success is of interest to everyone, the second number 1−|F∗ r|/|F∗ d|

is of interest in QA (quality analysis). In giant problems, especially those arising in seis-
mology, running iterations to completion is impractical. A question always of interest is
whether enough iterations have been run. This number gives us guidance to where more
effort could be worthwhile.

0 ≤ Success ≤ 1
Fitting success: 1 − |r|/|d|
Numerical success: 1 − |F∗ r|/|F∗ d|

2.3.10 Roundoff

Surprisingly, as a matter of practice, the simple conjugate-direction method defined in this
book is more reliable than the conjugate-gradient method defined in the formal professional
literature. I know this sounds unlikely, but I’ll tell you why.

In large applications numerical roundoff can be a problem. Calculations need to be done
in higher precision. The conjugate gradient method depends on you to supply an opera-
tor whose adjoint is correctly computed. Any roundoff in computing the operator should
somehow be matched by the roundoff in the adjoint. This is unrealistic. Thus optimization
may diverge while theoretically converging. The conjugate direction method doesn’t mind
the roundoff. It simply takes longer to converge.
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Let us see an example of a situation where roundoff becomes a problem. Suppose we
add 100 million ones. You expect the sum to be 100 million. I got a sum of 16.7 million.
Why is this? After the sum gets to 16.7 million adding a one to it adds nothing. The extra
1.0 disappears in single precision roundoff.

real function one(sum); one=1.; return; end

integer i; real sum

do i=1, 100000000

sum = sum + one(sum)

write (0,*) sum; stop; end

1.6777216E+07

The code above must be a little more complicated than I had hoped because modern
compilers are so clever. When told to add all the values in a vector they know it is wise
to add the numbers in groups, and then add the groups. Thus I had to hide the fact I was
adding ones by getting them from a subroutine that seems to depend upon the sum (but
really doesn’t).

2.3.11 Test case: solving some simultaneous equations

Now we assemble a module cgmeth for solving simultaneous equations. Starting with
the conjugate-direction module cgstep_mod we insert the module matmult as the linear
operator.

demonstrate CD.r90
module cgmeth {

use matmul t
use cgs tep_mod
use s o l v e r _ t i n y _ m o d

c o n t a i n s
# s e t u p o f c o n j u g a t e g r a d i e n t d e s c e n t , min imize SUM r r ( i )∗∗2
# nx
# r r ( i ) = sum f f f ( i , j ) ∗ x ( j ) − yy ( i )
# j=1
s u b r o u t i n e c g t e s t ( x , yy , r r , f f f , n i t e r ) {

r e a l , d imens ion ( : ) , i n t e n t ( o u t ) : : x , r r
r e a l , d imens ion ( : ) , i n t e n t ( i n ) : : yy
r e a l , d imens ion ( : , : ) , p o i n t e r : : f f f
i n t e g e r , i n t e n t ( i n ) : : n i t e r
c a l l m a t m u l t _ i n i t ( f f f )
c a l l s o l v e r _ t i n y ( m=x , d=yy , &

Fop=matmul t_ lop , s t e p p e r=c g s t e p , &
n i t e r=n i t e r , r e s d= r r )

c a l l c g s t e p _ c l o s e ( )
}

}

Below shows the solution to 5×4 set of simultaneous equations. Observe that the “exact”
solution is obtained in the last step. Because the data and answers are integers, it is quick
to check the result manually.
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d transpose
3.00 3.00 5.00 7.00 9.00

F transpose
1.00 1.00 1.00 1.00 1.00
1.00 2.00 3.00 4.00 5.00
1.00 0.00 1.00 0.00 1.00
0.00 0.00 0.00 1.00 1.00

for iter = 0, 4
x 0.43457383 1.56124675 0.27362058 0.25752524
res -0.73055887 0.55706739 0.39193487 -0.06291389 -0.22804642
x 0.51313990 1.38677299 0.87905121 0.56870615
res -0.22103602 0.28668585 0.55251014 -0.37106210 -0.10523783
x 0.39144871 1.24044561 1.08974111 1.46199656
res -0.27836466 -0.12766013 0.20252672 -0.18477242 0.14541438
x 1.00001287 1.00004792 1.00000811 2.00000739
res 0.00006878 0.00010860 0.00016473 0.00021179 0.00026788
x 1.00000024 0.99999994 0.99999994 2.00000024
res -0.00000001 -0.00000001 0.00000001 0.00000002 -0.00000001

2.3.12 Why Fortran 90 is much better than Fortran 77

I’d like to digress from our geophysics-mathematics themes to explain why Fortran 90 has
been a great step forward over Fortran 77. Many of the illustrations in this book were orig-
inally computed in F77. Then module smallsolver() was simply a subroutine. It was
not one module for the whole book, as it is now, but it was many conceptually identical
subroutines, dozens of them, one subroutine for each application. The reason for the pro-
liferation was that F77 lacks the ability of F90 to represent operators as having two ways
to enter, one for science and another for math. On the other hand, F77 did not require the
half a page of definitions that we see here in F90. But the definitions are not difficult to
understand, and they are a clutter that we must see once and never again. Another benefit
is that the book in F77 had no easy way to switch from the cgstep solver to other solvers.

2.4 INVERSE NMO STACK

To illustrate an example of solving a huge set of simultaneous equations without ever
writing down the matrix of coefficients we consider how back projection can be upgraded
towards inversion in the application called moveout and stack.

The seismograms at the bottom of Figure 2.6 show the first four iterations of conjugate-
direction inversion. You see the original rectangle-shaped waveform returning as the iter-
ations proceed. Notice also on the stack that the early and late events have unequal am-
plitudes, but after enough iterations they are equal, as they began. Mathematically, we can
denote the top trace as the model m, the synthetic data signals as d = Mm, and the stack
as M∗ d. The conjugate-gradient algorithm optimizes the fitting goal d ≈ Mx by variation
of x, and the figure shows x converging to m. Because there are 256 unknowns in m, it
is gratifying to see good convergence occurring after the first four iterations. The fitting is
done by module invstack, which is just like cgmeth except that the matrix-multiplication
operator matmult has been replaced by imospray. Studying the program, you can deduce
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Figure 2.6 Top is a model trace m. Next
are the synthetic data traces, d = Mm.
Then, labeled niter=0 is the stack, a
result of processing by adjoint model-
ing. Increasing values of niter show m
as a function of iteration count in the
fitting goal d ≈ Mm. (Carlos Cunha-
Filho)

that, except for a scale factor, the output at niter=0 is identical to the stack M∗d. All the
signals in Figure 2.6 are intrinsically the same scale.

inversion stacking.r90

module i n v s t a c k {
use imospray
use cgstep_mod
use s o l v e r _ t i n y _ m o d

c o n t a i n s
# NMO s t a c k by i n v e r s e o f f o r w a r d model ing
s u b r o u t i n e s t a c k ( nt , model , nx , g a t h e r , t0 , x0 , d t , dx , slow , n i t e r ) {
i n t e g e r nt , nx , n i t e r
r e a l model ( : ) , g a t h e r ( : ) , t0 , x0 , dt , dx , s low
c a l l i m o s p r a y _ i n i t ( slow , x0 , dx , t0 , d t , n t , nx )
c a l l s o l v e r _ t i n y ( model , g a t h e r , imosp ray_ lop , c g s t e p , n i t e r )
c a l l c g s t e p _ c l o s e ( ) ; c a l l i m o s p r a y _ c l o s e ( ) # g a r b a g e c o l l e c t i o n
}

}

This simple inversion is inexpensive. Has anything been gained over conventional stack?
First, though we used nearest-neighbor interpolation, we managed to preserve the spectrum
of the input, apparently all the way to the Nyquist frequency. Second, we preserved the
true amplitude scale without ever bothering to think about (1) dividing by the number of
contributing traces, (2) the amplitude effect of NMO stretch, or (3) event truncation.

With depth-dependent velocity, wave fields become much more complex at wide offset.
NMO soon fails, but wave-equation forward modeling offers interesting opportunities for
inversion.
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2.5 FLATTENING 3-D SEISMIC DATA

Here is an expression that on first sight seems to say nothing

∇τ =


∂τ
∂x

∂τ
∂y

 (2.81)

Equation (2.81) looks like a tautology, a restatement of basic mathematical notation. This
is so, however, only if τ(x, y) is known and the derivatives come from it. When τ(x, y) is
not known but the partial derivatives are observed, then we have two measurements at each
(x, y) location for the one unknown τ at that location. In Figure 2.4 we have seen how to
flatten 2-D seismic data. The 3-D process (x, y, τ) is much more interesting because of the
possibility encountering a vector field that cannot be derived from a scalar field.

The easy case is when you can move around the (x, y) plane adding up τ by steps of
dτ/dx and dτ/dy and find upon returning to your starting location that the total time change
τ is zero. When dτ/dx and dτ/dy were derived from noisy data, that will not be so. Old
time seismologists would say, “The survey lines don’t tie.” Mathematically it is like an
electric field vector that may be derived from a potential field unless the loop encloses a
changing magnetic field.

We would like a solution for τ that gives the best fit of all the data (the stepouts dτ/dx
and dτ/dy) in a volume. Given a volume of data d(t, x, y) we seek the best τ(x, y) such that
w(t, x, y) = d(t − τ(x, y), x, y) is flattened. Let’s get it.

We write a regression, a residual r that we will work to get small to find a best fitting
τ(x, y) or maybe τ(x, y, t). Let d be the measurements in the vector in equation (2.81), the
measurements throughout the (t, x, y)-volume. Expressed as a regression equation (2.81)
becomes

0 ≈ r = ∇τ − d (2.82)

Figure 2.7 shows slices through a cube of seismic data. A paper book is inadequate to
display all the images required to compare before and after (one image of output is blended
over multiple images of input), so we move on to a radar application of much the same idea,
but in 2-D instead of 3-D.

2.6 VESUVIUS PHASE UNWRAPPING

Figure 2.8 shows radar images of Mt. Vesuvius1 in Italy. These images are made from
backscatter signals s1(t) and s2(t), recorded along two satellite orbits 800 km high and 54
m apart. The signals are very high frequency (the radar wavelength being 2.7 cm). They
were Fourier transformed and one multiplied by the complex conjugate of the other, getting
the product Z = S 1(ω)S̄ 2(ω). The product’s amplitude and phase are shown in Figure 2.8.
Examining the data, you can notice that where the signals are strongest (darkest on the
left), the phase (on the right) is the most spatially consistent.

1 A web search engine quickly finds you other views.
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Figure 2.7 [Jesse Lomask] Chevron data cube from the Gulf of Mexico. A salt dome (lower left
corner in the top plane) has pushed upwards, dragging bedding planes (seen in the bottom two or-
thogonal planes) along with it.

To reduce the time needed for analysis and printing, I reduced the data size two different
ways, by decimation and by local averaging, as shown in Figure 2.9. The decimation was
to about 1 part in 9 on each axis, and the local averaging was done in 9×9 windows giving
the same spatial resolution in each case. The local averaging was done independently in
the plane of the real part and the plane of the imaginary part. Putting them back together
again showed that the phase angle of the averaged data behaves much more consistently.

From Figures 2.8 and 2.9 we see that contours of constant phase appear to be contours
of constant altitude; this conclusion leads us to suppose that a study of radar theory would
lead us to a relation like Z(x, y) = eih(x,y) where h(x, y) is altitude. We non-radar-specialists
often think of phase in eiφ = eiωt0(x,y) as being caused by some time delay, and being defined
for some constant frequency ω. Knowledge of this ω (as well as some angle parameters)
would define the physical units of h(x, y).

Because the flat land away from the mountain is all at the same phase (as is the altitude),
the distance as revealed by the phase does not represent the distance from the ground to the
satellite viewer. We are accustomed to measuring altitude along a vertical line to a datum,
but here the distance seems to be measured from the ground along a 23◦ angle from the
vertical to a datum at the satellite height.

Phase is a troublesome measurement because we generally see it modulo 2π. Marching
up the mountain we see the phase getting lighter and lighter until it suddenly jumps to black
which then continues to lighten as we continue up the mountain to the next jump. Let us
undertake to compute the phase including all of its jumps of 2π. Begin with a complex
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Figure 2.8 Radar image of Mt. Vesuvius. Left is the amplitude |Z(x, y)|. Non-reflecting ocean in
upper left corner. Right is the phase arctan(Re Z(x, y), Im Z(x, y) ). (European Space Agency via
Umberto Spagnolini)

Figure 2.9 Phase based on decimated data (left) and smoothed data (right).

number Z representing the complex-valued image at any location in the (x, y)-plane.

reiφ = Z (2.83)

ln |r| + iφ = ln Z (2.84)

φ(x, y) = Im ln Z(x, y) + 2πN(x, y) (2.85)

A computer will find the imaginary part of the logarithm with the arctan function of two
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arguments, atan2(y,x), which will put the phase in the range −π < φ ≤ π although any
multiple of 2π could be added. We seem to escape the 2πN phase ambiguity by differenti-
ating:

∂φ

∂x
= Im

1
Z
∂Z
∂x

=
Im Z̄ ∂Z

∂x

Z̄Z
(2.86)

For every point on the y-axis, equation (2.86) is a differential equation on the x-axis, and
we could integrate them all to find φ(x, y). That sounds easy. On the other hand, the same
equations are valid when x and y are interchanged, so we get twice as many equations as
unknowns. For ideal data, either of these sets of equations should be equivalent to the other,
but for real data we expect to be fitting the fitting goal

∇φ ≈
Im Z̄∇Z

Z̄Z
(2.87)

where ∇ = ( ∂
∂x ,

∂
∂y ). This is essentially the same application we solved flattening seismic

data with the regression ∇τ ≈ d. Taking measurements to be phase differences between
neighboring mesh points, it is more correct to interpret equation (2.87) as a difference
equation than a differential equation. Since we measure phase differences only over tiny
distances (one pixel) we hope not to worry about phases greater than 2π. But if such jumps
do occur, they will contribute to overall error.

Let us consider a typical location in the (x, y) plane where the complex numbers Zi, j are
given. Define a shorthand a, b, c, and d as follows:

[
a b
c d

]
=

[
Zi, j Zi, j+1

Zi+1, j Zi+1, j+1

]
(2.88)

With this shorthand, the difference equation representation of the fitting goal (2.87) is:

φi+1, j − φi, j ≈ ∆φac

φi, j+1 − φi, j ≈ ∆φab
(2.89)

Now let us find the phase jumps between the various locations. Complex numbers a and
b may be expressed in polar form, say a = raeiφa and b = rbeiφb . The complex number
āb = rarbei(φb−φa) has the desired phase ∆φab. To obtain it we take the imaginary part of the
complex logarithm ln |rarb| + i∆φab.

φb − φa = ∆φab = Im ln āb
φd − φc = ∆φcd = Im ln c̄d
φc − φa = ∆φac = Im ln āc
φd − φb = ∆φbd = Im ln b̄d

(2.90)

which gives the information needed to fill in the right-hand side of (2.89), as done by
subroutine makedata() from module unwrap.

The operator needed is igrad2, gradient with its adjoint, the divergence.
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gradient 2-D..lop
module i g r a d 2 { # 2−D g r a d i e n t w i th a d j o i n t , r= g rad ( p )
i n t e g e r : : n1 , n2
#%_ i n i t ( n1 , n2 )
#%_lop ( p ( n1 , n2 ) , r ( n1 , n2 , 2 ) )
i n t e g e r i , j
do i= 1 , n1−1 {
do j= 1 , n2−1 {

i f ( a d j ) {
p ( i +1 , j ) += r ( i , j , 1 )
p ( i , j ) −= r ( i , j , 1 )
p ( i , j +1) += r ( i , j , 2 )
p ( i , j ) −= r ( i , j , 2 )
}

e l s e { r ( i , j , 1 ) += ( p ( i +1 , j ) − p ( i , j ) )
r ( i , j , 2 ) += ( p ( i , j +1) − p ( i , j ) )
}

}}
}

2.6.1 Estimating the inverse gradient

To optimize the fitting goal (2.89), module unwrap() uses the conjugate-direction method
like the modules cgmeth() and invstack()

Inverse 2-D gradient.r90
module unwrap {

use cgstep_mod
use i g r a d 2
use solver_smp_mod

c o n t a i n s
s u b r o u t i n e makedata ( z , n1 , n2 , r t ) {
i n t e g e r i , j , n1 , n2
r e a l r t ( n1 , n2 , 2 )
complex z ( n1 , n2 ) , a , b , c
r t = 0 .
do i= 1 , n1−1 {
do j= 1 , n2−1 {

a = z ( i , j )
c = z ( i +1 , j ) ; r t ( i , j , 1 ) = aimag ( c l o g ( c ∗ c o n j g ( a ) ) )
b = z ( i , j +1 ) ; r t ( i , j , 2 ) = aimag ( c l o g ( b ∗ c o n j g ( a ) ) )
}}

}
# Phase unwraper . S t a r t i n g from phase hh , improve i t .
s u b r o u t i n e unwraper ( zz , hh , n i t e r ) {
i n t e g e r n1 , n2 , n i t e r
complex zz ( : , : )
r e a l hh ( : )
r e a l , a l l o c a t a b l e : : r t ( : )
n1 = s i z e ( zz , 1 )
n2 = s i z e ( zz , 2 )
a l l o c a t e ( r t ( n1∗n2 ∗ 2 ) )
c a l l makedata ( zz , n1 , n2 , r t )
c a l l i g r a d 2 _ i n i t ( n1 , n2 )
c a l l s o l v e r _ s m p ( hh , r t , i g r a d 2 _ l o p , c g s t e p , n i t e r , m0=hh )
c a l l c g s t e p _ c l o s e ( )
d e a l l o c a t e ( r t )
}

}

An open question is whether the required number of iterations is reasonable or whether
we would need to uncover a preconditioner or more rapid solution method. I adjusted the
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frame size (by the amount of smoothing in Figure 2.9) so that I would get the solution in
about ten seconds with 400 iterations. Results are shown in Figure 2.10.

Figure 2.10 Estimated altitude.

2.6.2 Analytical solutions

We have found a numerical solution to fitting applications such as this

0 ≈ ∇τ − d (2.91)

An analytical solution will be much faster. From any regression we get the least squares
solution when we multiply by the transpose of the operator. Thus

0 = ∇∗ ∇τ − ∇∗ d (2.92)

We need to understand what is the transpose of the gradient operator. Recall the finite
difference representation of a derivative in chapter 1. Ignoring end effects, the transpose
of a derivative is the negative of a derivative. Since the transpose of a column vector is a
row vector, the adjoint of a gradient ∇, namely, ∇∗ is more commonly known as the vector
divergence (∇·). Likewise ∇∗ ∇ is a positive definite matrix, the negative of the Laplacian
∇2. Thus, in more conventional mathematical notation, the solution τ is that of Poisson’s
equation.

∇2τ = − ∇ · d (2.93)

In the Fourier domain we can have an analytic solution. There −∇2 = k2
x + k2

y where (kx, ky)
are the Fourier frequencies on the (x, y) axes. Instead of thinking of equation (2.93) as a
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convolution in physical space, think of it as a product in Fourier space. Thus, the analytic
solution is

τ(x, y) = FT−1 FT ∇ · d
k2

x + k2
y

(2.94)

where FT denotes two-dimensional Fourier transform over x and y . Here is a trick from
numerical analysis that gives better results: Instead of representing the denominator k2

x +k2
y

in the most obvious way, let us represent it in a manner consistent with the finite-difference
way we expressed the numerator ∇·d. Recall that −iω∆t ≈ iω̂∆t = 1−Z = 1−exp(−iω∆t)
which is a Fourier domain way of saying that difference equations tend to differential
equations at low frequencies. Likewise a symmetric second time derivative has a finite-
difference representation proportional to (−2+ Z + 1/Z) and in a two-dimensional space, a
finite-difference representation of the Laplacian operator is proportional to (−4+X+1/X+
Y + 1/Y) where X = exp(ikx∆x) and Y = exp(iky∆y). Fourier solutions have their own
peculiarities (periodic boundary conditions) which are not always appropriate in practice,
but having these solutions available is often a nice place to start from when solving an
application that cannot be solved in Fourier space.

For example, suppose we feel some data values are bad and we would like to throw out
the regression equations involving the bad data points. At Vesuvius we might consider the
strength of the radar return (which we have previously ignored) and use it as a weighting
function W. Now our regression (2.91) becomes

0 ≈ W (∇φ − d) = (W∇)φ − Wd (2.95)

This is a problem we know how to solve, a regression with an operator W∇ and data
Wd. The weighted problem is not solvable in the Fourier domain because the operator
(W∇)∗ W∇ has no simple expression in the Fourier domain. Thus we would use the ana-
lytic solution to the unweighted problem as a starting guess for the iterative solution to the
real problem.

With the Vesuvius data we could construct a weight W from the signal strength. We also
have available the curl, which should vanish. Vanishing is an indicator of questionable data
which could be weighted down relative to other data.

2.7 THE WORLD OF CONJUGATE GRADIENTS

Nonlinearity arises in two ways: First, modeled data might be a nonlinear function of the
model parameters. Second, observed data could contain imperfections that force us to use
nonlinear methods of statistical estimation.

2.7.1 Physical nonlinearity

When standard methods of physics relate modeled data dtheor to model parameters m, they
often use a nonlinear relation, say dtheor = f(m). The power-series approach then leads to
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representing modeled data as

dtheor = f(m0 + ∆m) ≈ f(m0) + F∆m (2.96)

where F is the matrix of partial derivatives of data values by model parameters, say ∂di/∂m j,
evaluated at m0. The modeled data dtheor minus the observed data dobs is the residual we
minimize.

0 ≈ dtheor − dobs = F∆m + [f(m0) − dobs] (2.97)

rnew = F∆m + rold (2.98)

It is worth noticing that the residual updating (2.98) in a nonlinear application is the same as
that in a linear application (2.54). If you make a large step ∆m, however, the new residual
will be different from that expected by (2.98). Thus you should always re-evaluate the
residual vector at the new location, and if you are reasonably cautious, you should be sure
the residual norm has actually decreased before you accept a large step.

The pathway of inversion with physical nonlinearity is well developed in the academic
literature and Bill Symes at Rice University has a particularly active group.

There are occasions to change the weighting function during model fitting. Then one
simply restarts the calculation from the current model. In the code you would flag a restart
with the expression first=.false.

2.7.2 Coding nonlinear fitting problems

We can solve nonlinear least-squares problems in about the same way as we do iteratively
reweighted ones. A simple adaptation of a linear method gives us a nonlinear solver if the
residual is recomputed at each iteration. Omitting the weighting function (for simplicity)
the template is:

iterate {
r ←− f(m) − d
Define F = ∂d/∂m.
∆m ←− F∗ r
∆r ←− F ∆m
(m, r) ←− step(m, r,∆m,∆r)
}

A formal theory for the optimization exists, but we are not using it here. The assumption
we make is that the step size will be small, so that familiar line-search and plane-search
approximations will succeed in reducing the residual. Unfortunately this assumption is not
reliable. What we should do is test that the residual really does decrease, and if it does
not we should revert to steepest descent with a smaller step size. Perhaps we should test
an incremental variation on the status quo: where inside solver, we check to see if the
residual diminished in the previous step, and if it did not, restart the iteration (choose the
current step to be steepest descent instead of CD).
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Experience shows that nonlinear applications have many pitfalls. Start with a linear prob-
lem, add a minor physical improvement or abnormal noise, and the problem becomes non-
linear and probably has another solution far from anything reasonable. When solving such
a nonlinear problem, we cannot arbitrarily begin from zero as we do with linear problems.
We must choose a reasonable starting guess. Chapter 3 on the topic of regularization offers
an additional way to reduce the dangers of nonlinearity.

2.7.3 Inverse of a 2 × 2 matrix

A−1 A = I (2.99)
1

ad − bc

[
d −b
−c a

] [
a b
c d

]
=

[
1 0
0 1

]
(2.100)

EXERCISES:

1 It is possible to reject two dips with the operator

(∂x + p1∂t)(∂x + p2∂t) (2.101)

This is equivalent to(
∂2

∂x2 + a
∂2

∂x∂t
+ b
∂2

∂t2

)
u(t, x) = v(t, x) ≈ 0 (2.102)

where u is the input signal and v is the output signal. Show how to solve for a and b
by minimizing the energy in v.

2 Given a and b from the previous exercise, what are p1 and p2?
3 Reduce d = Fm to the special case of one data point and two model points like this

d =
[

2 1
] [ m1

m2

]
(2.103)

What is the null space?
4 In 1695, 150 years before Lord Kelvin’s absolute temperature scale, 120 years be-

fore Sadi Carnot’s PhD thesis, 40 years before Anders Celsius, and 20 years before
Gabriel Fahrenheit, the French physicist Guillaume Amontons, deaf since birth, took
a mercury manometer (pressure gauge) and sealed it inside a glass pipe (a constant
volume of air). He heated it to the boiling point of water at 100◦C. As he lowered the
temperature to freezing at 0◦C, he observed the pressure dropped by 25% . He could
not drop the temperature any further but he supposed that if he could drop it further
by a factor of three, the pressure would drop to zero (the lowest possible pressure)
and the temperature would have been the lowest possible temperature. Had he lived
after Anders Celsius he might have calculated this temperature to be -300◦C (Celsius).
Absolute zero is now known to be -273◦C.

It is your job to be Amontons’ lab assistant. Your ith measurement of temperature Ti
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you make with Issac Newton’s thermometer and you measure pressure Pi and volume
Vi in the metric system. Amontons needs you to fit his data with the regression 0 ≈
α(Ti − T0) − PiVi and calculate the temperature shift T0 that Newton should have
made when he defined his temperature scale. Do not solve this problem! Instead, cast
it in the form of equation (2.23), identifying the data d and the two column vectors
f1 and f2 that are the fitting functions. Relate the model parameters x1 and x2 to the
physical parameters α and T0 . Suppose you make ALL your measurements at room
temperature, can you find T0 ? Why or why not?

5 One way to remove a mean value m from signal s(t) = s is with the fitting goal
0 ≈ s − m. What operator matrix is involved?

6 What linear operator subroutine from Chapter 1 can be used for finding the mean?
7 How many CD iterations should be required to get the exact mean value?
8 Write a mathematical expression for finding the mean by the CG method.



3
Regularization is model styling

Regularization is a method used in mathematics and statistics to deal with insufficient
information. The reader must supply additional information in the form of an operator.
Where is this operator to come from, and what does it mean? It amounts to us practitioners
specifying a “style” of model. Where the model is a signal or an image it amounts to
specifying one weighting function in physical space and another in Fourier space.

3.1 EMPTY BINS AND INVERSE INTERPOLATION

A method for restoring missing data is to ensure that the restored data, after specified
filtering, has minimum energy. Specifying the filter chooses the interpolation philosophy.
Generally the filter is a roughening filter. When a roughening filter goes off the end of
smooth data, it typically produces a big end transient. Minimizing energy implies a choice
for unknown data values at the end, to minimize the transient. We will examine five cases
and then make some generalizations.

A method for restoring missing data is to ensure that the restored data, after specified
filtering, has minimum energy.

Let u denote an unknown (missing) value. The dataset on which the examples are based
is (· · · , u, u, 1, u, 2, 1, 2, u, u, · · ·). Theoretically we could adjust the missing u values (each
different) to minimize the energy in the unfiltered data. Those adjusted values would ob-
viously turn out to be all zeros. The unfiltered data is data that has been filtered by an
impulse function. To find the missing values that minimize energy out of other filters, we
can use subroutine mis1(). Figure 3.1 shows interpolation of the dataset with (1,−1) as a
roughening filter. The interpolated data matches the given data where they overlap.

Figures 3.1–3.4 illustrate that the rougher the filter, the smoother the interpolated data,
and vice versa. Let us switch our attention from the residual spectrum to the residual itself.
The residual for Figure 3.1 is the slope of the signal (because the filter (1,−1) is a first
derivative), and the slope is constant (uniformly distributed) along the straight lines where
the least-squares procedure is choosing signal values. So these examples confirm the idea
that the least-squares method abhors large values (because they are squared). Thus, least
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Figure 3.1 Top is given data. Middle
is given data with interpolated values.
Missing values seem to be interpolated
by straight lines. Bottom shows the fil-
ter (1,−1), whose output has minimum
energy.

Figure 3.2 Top is the same input data
as in Figure 3.1. Middle is interpolated.
Bottom shows the filter (−1, 2,−1). The
missing data seems to be interpolated by
parabolas.

squares tends to distribute residuals uniformly in both time and frequency to the extent
allowed by the constraints.

This idea helps us answer the question, what is the best filter to use? It suggests choosing
the filter to have an amplitude spectrum that is inverse to the spectrum we want for the in-
terpolated data. A systematic approach is given in chapter 7, but I offer a simple subjective
analysis here: Looking at the data, we see that all points are positive. It seems, therefore,
that the data is rich in low frequencies; thus the filter should contain something like (1,−1),
which vanishes at zero frequency. Likewise, the data seems to contain Nyquist frequency,
so the filter should contain (1, 1). The result of using the filter (1,−1) ∗ (1, 1) = (1, 0,−1)
is shown in Figure 3.5. This is my best subjective interpolation based on the idea that the
missing data should look like the given data. The interpolation and extrapolations are so
good that you can hardly guess which data values are given and which are interpolated.

Figure 3.3 Top is the same input. Mid-
dle is interpolated. Bottom shows the
filter (1,−3, 3,−1). The missing data is
very smooth. It shoots upward high off
the right end of the observations, appar-
ently to match the data slope there.
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Figure 3.4 Bottom shows the filter
(1, 1). The interpolation is rough. Like
the given data itself, the interpolation
has much energy at the Nyquist fre-
quency. But unlike the given data, it has
little zero-frequency energy.

Figure 3.5 Top is the same as in Fig-
ures 3.1 to 3.4. Middle is interpolated.
Bottom shows the filter (1, 0,−1), which
comes from the coefficients of (1,−1) ∗
(1, 1). Both the given data and the inter-
polated data have significant energy at
both zero and Nyquist frequencies.

3.1.1 Missing-data program

Now let us see how Figures 3.1-3.5 could have been calculated and how they were calcu-
lated. They could have been calculated with matrices where the matrices were pulled apart
according to subscripts of known and missing data. Instead I computed them with oper-
ators, and applied only operators and their adjoints. First we inspect the matrix approach
because it is more conventional.

Matrix approach to missing data

Customarily, we have referred to data by the symbol d. Now that we are dividing the data
space into two parts, known and unknown (or missing), we will refer to this complete space
as the model (or map) space m.

There are 15 data points in Figures 3.1-3.5. Of the 15, 4 are known and 11 are missing.
Denote the known by k and the missing by u. Then the sequence of missing and known is
(u, u, u, u, k, u, k, k, k, u, u, u, u, u, u). Because I cannot print 15 × 15 matrices, please allow
me to describe instead a data space of 6 values (m1,m2,m3,m4,m5,m6) with known values
only m2 and m3, that is arranged like (u, k, k, u, u, u).

Our approach is to minimize the energy in the residual, which is the filtered map (model)
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space. We state the fitting goals 0 ≈ Fm as

0
0
0
0
0
0
0
0


≈ r =



a1 0 0 0 0 0
a2 a1 0 0 0 0
a3 a2 a1 0 0 0
0 a3 a2 a1 0 0
0 0 a3 a2 a1 0
0 0 0 a3 a2 a1

0 0 0 0 a3 a2

0 0 0 0 0 a3





m1

m2

m3

m4

m5

m6


(3.1)

We rearrange the above fitting goals, bringing the columns multiplying known data val-
ues (m2 and m3) to the left, getting y = −Fkmk ≈ Fumu.

y1

y2

y3

y4

y5

y6

y7

y8


= −



0 0
a1 0
a2 a1

a3 a2

0 a3

0 0
0 0
0 0



[
m2

m3

]
≈



a1 0 0 0
a2 0 0 0
a3 0 0 0
0 a1 0 0
0 a2 a1 0
0 a3 a2 a1

0 0 a3 a2

0 0 0 a3




m1

m4

m5

m6

 (3.2)

This is the familiar form of an overdetermined system of equations y ≈ Fumu which we
could solve for mu as illustrated earlier by conjugate directions, or by a wide variety of
well-known methods.

The trouble with this matrix approach is that it is awkward to program the partitioning
of the operator into the known and missing parts, particularly if the application of the
operator uses arcane techniques, such as those used by the fast–Fourier-transform operator
or various numerical approximations to differential or partial differential operators that
depend on regular data sampling. Even for the modest convolution operator, we already
have a library of convolution programs that handle a variety of end effects, and it would
be much nicer to use the library as it is rather than recode it for all possible geometrical
arrangements of missing data values.

Note: Here I take the main goal to be the clarity of the code, not the efficiency or accuracy
of the solution. So, if your application consumes too many resources, and if you have many
more known points than missing ones, maybe you should fit y ≈ Fumu and ignore the
suggestions below.

Operator approach to missing data

For the operator approach to the fitting goal −Fkmk ≈ Fumu we rewrite it as −Fkmk ≈ FJm
where
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−Fkmk ≈



a1 0 0 0 0 0
a2 a1 0 0 0 0
a3 a2 a1 0 0 0
0 a3 a2 a1 0 0
0 0 a3 a2 a1 0
0 0 0 a3 a2 a1

0 0 0 0 a3 a2

0 0 0 0 0 a3





1 . . . . .

. 0 . . . .

. . 0 . . .

. . . 1 . .

. . . . 1 .

. . . . . 1





m1

m2

m3

m4

m5

m6


= FJm

(3.3)
Notice the introduction of the new diagonal matrix J, called a masking matrix or a constraint-
mask matrix because it multiplies constrained variables by zero leaving freely adjustable
variables untouched. Experience shows that a better name than “mask matrix” is “selector
matrix” because what comes out of it, that which is selected, is a less-confusing name for
it than which is rejected. With a selector matrix the whole data space seems freely ad-
justable, both the missing data values and known values. We see that the CD method does
not change the known (constrained) values. In general, we derive the fitting goal (3.3) by

0 ≈ Fm (3.4)

0 ≈ F(J + (I − J))m (3.5)

0 ≈ FJm + F(I − J)m (3.6)

0 ≈ FJm + Fmknown (3.7)

0 ≈ r = FJm + r0 (3.8)

As usual, we find a direction to go ∆m by the gradient of the residual energy.

∆m =
∂

∂m∗
r∗r =

(
∂

∂m∗
r∗

)
r =

(
∂

∂m∗
(m∗J∗F∗ + r∗0)

)
r = J∗F∗r (3.9)

We begin the calculation with the known data values where missing data values are
replaced by zeros, namely (I − J)m. Filter this data, getting F(I − J)m, and load it into the
residual r0. With this initialization completed, we begin an iteration loop. First we compute
∆m from equation (3.9).

∆m ←− J∗F∗r (3.10)

F∗ applies a crosscorrelation of the filter to the residual and then J∗ sets to zero any changes
proposed to known data values. Next, compute the change in residual ∆r from the proposed
change in the data ∆m.

∆r ←− FJ∆m (3.11)

This applies the filtering again. Then use the method of steepest descent (or conjugate
direction) to choose the appropriate scaling (or inclusion of previous step) of ∆m and ∆r,
and update m and r accordingly and iterate.
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I could have passed a new operator FJ into the old solver, but found it worthwhile to
write a new, more powerful solver having built-in constraints. To introduce the masking
operator J into the solver-smp subroutine I introduce an optional operator Jop, which is
initialized with a logical array of the model size. Two lines in the solver-tiny module

stat = Fop( AJ, ZP, dm, rd) # dm = F’ Rd
stat = Fop( FW, ZP, dm, dr) # dR = F dm

become three lines in the standard library module solver_smp. (We use a temporary array
tm of the size of model space.) ∆m is dm and ∆r is dr.
stat = Fop( AJ, ZP, dm, rd) # dm = F’ Rd
if ( present( Jop)) { tm=dm; stat= Jop( FW, ZP, tm, dm) # dm = J dm
stat = Fop( FW, ZP, dm, dr) # dR = F dm

The full code includes all the definitions we had earlier in solver-tinymodule. Merg-
ing it with the above bits of code we have the simple solver solver-smp.

simple solver.r90
module solver_smp_mod { # 0 = W ( F J m − d )

use chain0_mod + s o l v e r _ r e p o r t _ m o d
l o g i c a l , p a r a m e t e r , p r i v a t e : : AJ = . t r u e . , FW = . f a l s e .
l o g i c a l , p a r a m e t e r , p r i v a t e : : AD = . t r u e . , ZP = . f a l s e .

c o n t a i n s
s u b r o u t i n e s o l v e r _ s m p ( m, d , Fop , s t e p p e r , n i t e r &
, Wop, Jop , m0 , e r r , r e sd , mmov , rmov , ve rb ) {

o p t i o n a l : : Wop, Jop , m0 , e r r , r e sd , mmov , rmov , ve rb
i n t e r f a c e { #−−−−−−−−−−−−−−−−−−−−−−−−−− b e g i n d e f i n i t i o n s −−−−−−−−−−−

i n t e g e r f u n c t i o n Fop ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n Wop( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n Jop ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n s t e p p e r ( f i r s t ,m, dm , r , d r ) {

r e a l , d imens ion ( : ) : : m, dm , r , d r
l o g i c a l : : f i r s t }

}
r e a l , d imens ion ( : ) , i n t e n t ( i n ) : : d , m0
i n t e g e r , i n t e n t ( i n ) : : n i t e r
l o g i c a l , i n t e n t ( i n ) : : ve rb
r e a l , d imens ion ( : ) , i n t e n t ( o u t ) : : m, e r r , r e s d
r e a l , d imens ion ( : , : ) , i n t e n t ( o u t ) : : rmov , mmov
r e a l , d imens ion ( s i z e (m) ) : : dm
r e a l , d imens ion ( s i z e ( d ) ) , t a r g e t : : r , d r
r e a l , d imens ion ( s i z e ( d )+ s i z e (m) ) , t a r g e t : : t t
r e a l , d imens ion ( : ) , p o i n t e r : : rd , drd , t d
r e a l , d imens ion ( : ) , p o i n t e r : : rm , drm , tm
i n t e g e r : : i t e r , s t a t
l o g i c a l : : f i r s t
rd => r ( 1 : s i z e ( d ) ) ;
d rd => dr ( 1 : s i z e ( d ) ) ;
t d => t t ( 1 : s i z e ( d ) ) ; tm => t t (1+ s i z e ( d ) : )
i f ( p r e s e n t ( Wop ) ) s t a t=Wop(FW, ZP,−d , rd ) # b e g i n i n i t i a l i z a t i o n −−−−−−−−

e l s e rd = −d #Rd = −W d
i f ( p r e s e n t ( m0 ) ) { m=m0 #m = m0

i f ( p r e s e n t ( Wop ) ) c a l l c h a i n 0 (Wop, Fop ,FW,AD,m, rd , t d )
e l s e s t a t = Fop (FW,AD,m, rd ) #Rd+= WF m0

} e l s e m=0
f i r s t = . t r u e . ; #−−−−−−−−−−−−−−−−−−−−−−−−−− b e g i n i t e r a t i o n s −−−−−−−−
do i t e r = 1 , n i t e r {

i f ( p r e s e n t (Wop ) ) c a l l c h a i n 0 (Wop, Fop , AJ , ZP , dm , rd , t d )
e l s e s t a t = Fop ( AJ , ZP , dm , rd ) #dm = (WF) ’Rd
i f ( p r e s e n t ( Jop ) ) { tm=dm ; s t a t = Jop (FW, ZP , tm , dm ) } #dm = J dm
i f ( p r e s e n t (Wop ) ) c a l l c h a i n 0 (Wop, Fop ,FW, ZP , dm , drd , t d )
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e l s e s t a t = Fop (FW, ZP , dm , drd ) #dRd = (WF) dm
s t a t = s t e p p e r ( f i r s t , m, dm , r , d r ) #m+=dm ; R+=dR
i f ( s t a t ==1) e x i t # g o t s t u c k d e s c e n d i n g
i f ( p r e s e n t ( mmov ) ) mmov ( : , i t e r ) = m( : s i z e (mmov , 1 ) ) # r e p o r t −−−−−
i f ( p r e s e n t ( rmov ) ) rmov ( : , i t e r ) = rd ( : s i z e ( rmov , 1 ) )
i f ( p r e s e n t ( e r r ) ) e r r ( i t e r ) = d o t _ p r o d u c t ( rd , rd )
i f ( p r e s e n t ( ve rb ) ) { i f ( ve rb ) c a l l s o l v e r _ r e p o r t ( i t e r ,m, dm , rd ) }
f i r s t = . f a l s e .

}
i f ( p r e s e n t ( r e s d ) ) r e s d = rd

}
}

There are two methods of invoking the solver. Comment cards in the code indicate the
slightly more verbose method of solution which matches the theory presented in the book.

The subroutine to find missing data is mis1(). It assumes that zero values in the input
data correspond to missing data locations. It uses our convolution operator tcai1(). You
can also check the Index for other operators and modules.

1-D missing data.r90
module mis_mod {

use t c a i 1+mask1+cgstep_mod+solver_smp_mod
# use mt ca i 1
c o n t a i n s
# f i l l i n m i s s i n g d a t a on 1− a x i s by m i n i m i z i n g power o u t o f a g i v e n f i l t e r .

s u b r o u t i n e mis1 ( n i t e r , mm, aa ) {
i n t e g e r , i n t e n t ( i n ) : : n i t e r # number o f i t e r a t i o n s
r e a l , d imens ion ( : ) , p o i n t e r : : aa # r o u g h e n i n g f i l t e r
r e a l , d imens ion ( : ) , i n t e n t ( i n o u t ) : : mm # i n − d a t a wi th z e r o e s

# o u t − i n t e r p o l a t e d
r e a l , d imens ion ( : ) , a l l o c a t a b l e : : z e r o # f i l t e r o u t p u t
l o g i c a l , d imens ion ( : ) , p o i n t e r : : msk
i n t e g e r : : s t a t

# r e a l , d imens ion ( : ) , a l l o c a t a b l e : : dd
a l l o c a t e ( z e r o ( s i z e (mm)+ s i z e ( aa ) ) ) ; z e r o = 0 .
a l l o c a t e ( msk ( s i z e (mm) ) )

# a l l o c a t e ( dd ( s i z e (mm)+ s i z e ( aa ) ) )
# s o l v e F m = 0 w / J
msk=(mm==0 . ) ; c a l l m a s k 1 _ i n i t ( msk )
c a l l t c a i 1 _ i n i t ( aa )
c a l l s o l v e r _ s m p ( mm, zero , t c a i 1 _ l o p , c g s t e p , n i t e r , m0=mm, Jop=mask1_lop )
# s o l v e ( F J ) m = d

# c a l l m t c a i 1 _ i n i t ( aa , msk ) # F ( I−J )
# s t a t = m t c a i 1 _ l o p ( . f a l s e . , . f a l s e . ,mm, dd ) # F ( I−J ) m
# dd = − dd # d = − F ( I−J ) m
# msk=(mm==0 . ) ; c a l l m a s k 1 _ i n i t ( msk ) # J
# c a l l s o l v e r _ s m p ( mm, dd , mtca i1_ lop , c g s t e p , n i t e r , m0=mm)

c a l l c g s t e p _ c l o s e ( )
d e a l l o c a t e ( z e r o )
}

}

I sought reference material on conjugate gradients with constraints and didn’t find any-
thing, leaving me to fear that this chapter was in error and that I had lost the magic property
of convergence in a finite number of iterations. I tested the code and it did converge in a
finite number of iterations. The explanation is that these constraints are almost trivial. We
pretended we had extra variables, and computed a ∆m = g for each of them. Using J we
then set the gradient ∆m = g to zero, hence making no changes to anything, like as if we
had never calculated the extra ∆m’s.
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3.2 WELLS NOT MATCHING THE SEISMIC MAP

Accurate knowledge comes from a wells, but wells are expensive and far apart. Less ac-
curate knowledge comes from surface seismology, but this knowledge is available densely
in space and can indicate significant trends between the wells. For example, a prospec-
tive area may contain 15 wells but 600 or more seismic stations. To choose future well
locations, it is helpful to match the known well data with the seismic data. Although the
seismic data is delightfully dense in space, it often mismatches the wells because there are
systematic differences in the nature of the measurements. These discrepancies are some-
times attributed to velocity anisotropy. To work with such measurements, we do not need
to track down the physical model, we need only to merge the information somehow so
we can appropriately map the trends between wells and make a proposal for the next drill
site. Here we consider only a scalar value at each location. Take w to be a vector of 15
components, each component being the seismic travel time to some fixed depth in a well.
Likewise let s be a 600-component vector each with the seismic travel time to that fixed
depth as estimated wholly from surface seismology. Such empirical corrections are often
called “fudge factors”. An example is the Chevron oil field in Figure 3.6. The binning of

Figure 3.6 Binning by data push. Left is seismic data. Right is well locations. Values in bins are
divided by numbers in bins. (Toldi)

the seismic data in Figure 3.6 is not really satisfactory when we have available the tech-
niques of missing data estimation to fill the empty bins. Using the ideas of subroutine
mis1() we can extend the seismic data into the empty part of the plane. We use the same
principle that we minimize the energy in the filtered map where the map must match the
data where it is known. I chose the filter A = ∇∗ ∇ = −∇2 to be the Laplacian operator
(actually, its negative) to obtain the result in Figure 3.7.

There are basically two ways to handle boundary conditions. First as we did in Figure
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Figure 3.7 Seismic binned (left) and extended (right) by minimizing energy in ∇2s.

3.1, by using a transient filter operator which assumes zero outside to region of interest.
Second is to use an internal filter operator. It’s a bit trickier. Solutions could be growing at
the boundaries. That’s almost never desirable. In that case it is better to assign boundary
values. That is what I did here in Figure 3.7. I didn’t do it because it is better, but to
minimize the area surrounding the data of interest.

The first job is to fill the gaps in the seismic data. We just finished doing a job like this
in one dimension. I’ll give you more computational details later. Let us call the extended
seismic data s.

Think of a map of a model space m of infinitely many hypothetical wells that must
match the real wells, where we have real wells. We must find a map that matches the wells
exactly and somehow matches the seismic information elsewhere. Let us define the vector
w as shown in Figure 3.6 so w is observed values at wells and zeros elsewhere.

Where the seismic data contains sharp bumps or streaks, we want our final earth model to
have those features. The wells cannot provide the rough features because the wells are too
far apart to provide high spatial frequencies. The well information generally conflicts with
the seismic data at low spatial frequencies because of systematic discrepancies between
the two types of measurements. Thus we must accept that m and s may differ at low spatial
frequencies (where gradient and Laplacian are small).

Our final map m would be very unconvincing if it simply jumped from a well value at
one point to a seismic value at a neighboring point. The map would contain discontinu-
ities around each well. Our philosophy of finding an earth model m is that our earth map
should contain no obvious “footprint” of the data acquisition (well locations). We adopt
the philosophy that the difference between the final map (extended wells) and the seismic
information x = m − s should be smooth. Thus, we seek the minimum residual r which
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is the roughened difference between the seismic data s and the map m of hypothetical
omnipresent wells. With roughening operator A we fit

0 ≈ r = A(m − s) = Ax (3.12)

along with the constraint that the map should match the wells at the wells. We could write
this as 0 = (I − J)(m − w). We honor this constraint by initializing the map m = w to
the wells (where we have wells, and zero elsewhere). After we find the gradient direction
to suggest some changes to m, we simply will not allow those changes at well locations.
We do this with a mask. We apply a “missing data selector” to the gradient. It zeros out
possible changes at well locations. Like with the goal (3.7), we have

0 ≈ r = AJx + Axknown (3.13)

After minimizing r by adjusting x, we have our solution m = x + s.
Now we prepare some roughening operators A. We have already coded a 2-D gradient

operator igrad2. Let us combine it with its adjoint to get the 2-D laplacian operator. (You
might notice that the laplacian operator is “self-adjoint” meaning that the operator does the
same calculation that its adjoint does. Any operator of the form A∗A is self-adjoint because
(A∗A)∗ = A∗(A∗)∗ = A∗A. )

Laplacian in 2-D.lop
module l a p l a c 2 { # L a p l a c i a n o p e r a t o r i n 2−D
use i g r a d 2
l o g i c a l , p a r a m e t e r , p r i v a t e : : AJ = . t r u e . , FW = . f a l s e .
l o g i c a l , p a r a m e t e r , p r i v a t e : : AD = . t r u e . , ZP = . f a l s e .
r e a l , d imens ion (m1∗m2∗2 ) , a l l o c a t a b l e : : tmp
#%_ i n i t (m1 , m2)

i n t e g e r m1 , m2
c a l l i g r a d 2 _ i n i t (m1 , m2)

#%_lop ( x , y )
i n t e g e r s t a t 1 , s t a t 2
i f ( a d j ) {

s t a t 1 = i g r a d 2 _ l o p ( FW, ZP , y , tmp ) # tmp = g rad y
s t a t 2 = i g r a d 2 _ l o p ( AJ , add , x , tmp ) # x = x + g rad ’ tmp

} e l s e {
s t a t 1 = i g r a d 2 _ l o p ( FW, ZP , x , tmp ) # tmp = g rad x
s t a t 2 = i g r a d 2 _ l o p ( AJ , add , y , tmp ) # y = y + g rad ’ tmp

}
}

Subroutine lapfill2() is the same idea as mis1() except that the filter A has been spe-
cialized to the laplacian implemented by module laplac2.

Find 2-D missing data.r90
module l a p f i l l { # f i l l empty 2−D b i n s by minimum o u t p u t o f L a p l a c i a n o p e r a t o r

use l a p l a c 2
use cgstep_mod
use mask1
use solver_smp_mod

c o n t a i n s
s u b r o u t i n e l a p f i l l 2 ( n i t e r , m1 , m2 , yy , mfixed ) {

i n t e g e r , i n t e n t ( i n ) : : n i t e r , m1 , m2
l o g i c a l , d imens ion (m1∗m2 ) , i n t e n t ( i n ) : : mf ixed # mask f o r known
r e a l , d imens ion (m1∗m2 ) , i n t e n t ( i n o u t ) : : yy # model
r e a l , d imens ion (m1∗m2) : : z e r o # l a p l a c i a n o u t p u t
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l o g i c a l , d imens ion ( : ) , p o i n t e r : : msk
a l l o c a t e ( msk ( s i z e ( mfixed ) ) )
msk= . n o t . mf ixed
c a l l m a s k 1 _ i n i t ( msk )
c a l l l a p l a c 2 _ i n i t ( m1 , m2 ) ; z e r o = 0 . # i n i t i a l i z e
c a l l s o l v e r _ s m p (m=yy , d=zero , Fop= l a p l a c 2 _ l o p , s t e p p e r=c g s t e p , &

n i t e r=n i t e r , m0=yy , Jop=mask1_lop )
c a l l l a p l a c 2 _ c l o s e ( ) # g a r b a g e c o l l e c t i o n
c a l l c g s t e p _ c l o s e ( ) # g a r b a g e c o l l e c t i o n

}
}

Subroutine lapfill2() can be used for each of our two applications, (1) extending
the seismic data to fill space, and (2) fitting the map exactly to the wells and approxi-
mately to the seismic data. When extending the seismic data, the initially non-zero com-
ponents s , 0 are fixed and cannot be changed. That is done by calling lapfill2() with
mfixed=(s/=0.). When extending wells, the initially non-zero components w , 0 are
fixed and cannot be changed. That is done by calling lapfill2()with mfixed=(w/=0.).

The final map is shown in Figure 3.8.

Figure 3.8 Final map based on Laplacian roughening.

Results can be computed with various filters. I tried both ∇2 and ∇. There are disadvan-
tages of each, ∇ being too cautious and ∇2 perhaps being too aggressive. Figure 3.8 shows
the difference x between the extended seismic data and the extended wells. Notice that for
∇ the difference shows a localized “tent pole” disturbance about each well. For ∇2 there
could be large overshoot between wells, especially if two nearby wells have significantly
different values. I don’t see that problem here.

My overall opinion is that the Laplacian does the better job in this case. I have that
opinion because in viewing the extended gradient I can clearly see where the wells are.
The wells are where we have acquired data. We’d like our map of the world to not show
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where we acquired data. Perhaps our estimated map of the world cannot help but show
where we have and have not acquired data, but we’d like to minimize that aspect.

A good image of the earth hides our data acquisition footprint.

Figure 3.9 Difference between wells (the final map) and the extended seismic data. Left is plotted
at the wells (with gray background for zero). Center is based on gradient roughening and shows
tent-pole-like residuals at wells. Right is based on Laplacian roughening.

To understand the behavior theoretically, recall that in one dimension the filter ∇ inter-
polates with straight lines and ∇2 interpolates with cubics. This is because the fitting goal
0 ≈ ∇m, leads to ∂

∂m∗m
∗ ∇∗ ∇m = 0 or ∇∗ ∇m = 0, whereas the fitting goal 0 ≈ ∇2m

leads to ∇4m = 0 which is satisfied by cubics. In two dimensions, minimizing the output
of ∇ gives us solutions of Laplace’s equation with sources at the known data. It is as if ∇
stretches a rubber sheet over poles at each well, whereas ∇2 bends a stiff plate.

Just because ∇2 gives smoother maps than ∇ does not mean those maps are closer to
reality. This is a deeper topic, addressed in Chapter 7. It is the same issue we noticed when
comparing figures 3.1-3.5.

3.3 SEARCHING THE SEA OF GALILEE

Figure 3.10 shows a bottom-sounding survey of the Sea of Galilee1 at various stages of
processing. The ultimate goal is not only a good map of the depth to bottom, but images
useful for the purpose of identifying archaeological, geological, or geophysical details of
the sea bottom. The Sea of Galilee is unique because it is a fresh-water lake below sea-
level. It seems to be connected to the great rift (pull-apart) valley crossing east Africa. We
might delineate the Jordan River delta. We might find springs on the water bottom. We
might find archaeological objects.

The raw data is 132,044 triples, (xi, yi, zi), where xi ranges over about 12 km and where
1 Data collected by Zvi ben Avraham, TelAviv University. Please communicate with him zvi@jupiter1.tau.ac.il for

more details or if you make something publishable with his data.
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Figure 3.10 Views of the bottom of the Sea of Galilee.
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yi ranges over about 20 km. The lines you see in Figure 3.10 are sequences of data points,
i.e., the track of the survey vessel. The depths zi are recorded to an accuracy of about 10
cm.

The first frame in Figure 3.10 shows simple binning. A coarser mesh would avoid the
empty bins but lose resolution. As we refine the mesh for more detail, the number of empty
bins grows as does the care needed in devising a technique for filling them. This first frame
uses the simple idea from Chapter 1 of spraying all the data values to the nearest bin with
bin2() and dividing by the number in the bin. Bins with no data obviously need to be
filled in some other way. I used a missing data program like that in the recent section on
“wells not matching the seismic map.” Instead of roughening with a Laplacian, however, I
used the gradient operator igrad2. The solver is grad2fill().

low cut missing data.r90
module g r a d 2 f i l l { # min r (m) = L J m + L known where L i s a l owc u t f i l t e r .

use i g r a d 2
use cgstep_mod
use mask1
use solver_smp_mod

c o n t a i n s
s u b r o u t i n e g r a d 2 f i l l 2 ( n i t e r , m1 , m2 , mm, mfixed ) {

i n t e g e r , i n t e n t ( i n ) : : n i t e r , m1 , m2
l o g i c a l , d imens ion (m1∗m2 ) , i n t e n t ( i n ) : : mf ixed # mask f o r known
r e a l , d imens ion (m1∗m2 ) , i n t e n t ( i n o u t ) : : mm # model
r e a l , d imens ion (m1∗m2∗2) : : yy # lo wc u t o u t p u t
l o g i c a l , d imens ion ( : ) , p o i n t e r : : msk
a l l o c a t e ( msk ( s i z e ( mfixed ) ) )
msk= . n o t . mf ixed
c a l l m a s k 1 _ i n i t ( msk )
c a l l i g r a d 2 _ i n i t (m1 , m2 ) ; yy = 0 . # i n i t i a l i z e
c a l l s o l v e r _ s m p (m=mm, d=yy , Fop= i g r a d 2 _ l o p , s t e p p e r=c g s t e p , n i t e r=n i t e r , &

m0=mm, Jop=mask1_lop )
c a l l c g s t e p _ c l o s e ( )

}
}

The output of the roughening operator is an image, a filtered version of the depth, a
filtered version of something real. Such filtering can enhance the appearance of interesting
features. For example, scanning the shoreline of the roughened image (after missing data
was filled), we see several ancient shorelines, now submerged. The roughened map is often
more informative than the map itself.

The views expose several defects of the data acquisition and of our data processing.
The impulsive glitches (St. Peter’s fish?) need to be removed but we must be careful not to
throw out the sunken ships along with the bad data points. Even our best image shows clear
evidence of the recording vessel’s tracks. Strangely, some tracks are deeper than others.
Perhaps the survey is assembled from work done in different seasons and the water level
varied by season. Perhaps some days the vessel was more heavily loaded and the depth
sounder was on a deeper keel. As for the navigation equipment, we can see that some data
values are reported outside the lake!

We want the sharpest possible view of this classical site. A treasure hunt is never easy
and no one guarantees we will find anything of great value but at least the exercise is a
good warm-up for submarine petroleum exploration.
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3.4 CODE FOR THE REGULARIZED SOLVER

In Chapter 1 we defined linear interpolation as the extraction of values from between
mesh points. In a typical setup (occasionally the role of data and model are swapped), a
model is given on a uniform mesh and we solve the easy problem of extracting values
between the mesh points with subroutine lint1() The genuine problem is the inverse
problem, which we attack here. Data values are sprinkled all around, and we wish to find a
function on a uniform mesh from which we can extract that data by linear interpolation.
The adjoint operator for subroutine lint1() simply piles data back into its proper location
in model space without regard to how many data values land in each region. Thus some
model values may have many data points added to them while other model values get none.
We could interpolate by minimizing the energy in the model gradient, or that in the second
derivative of the model, or that in the output of any other roughening filter applied to the
model.

Formalizing now our wish that data d be extractable by linear interpolation F, from
a model m, and our wish that application of a roughening filter with an operator A have
minimum energy, we write the fitting goals:

0 ≈ Fm − d
0 ≈ Am

(3.14)

Suppose we take the roughening filter to be the second difference operator (1,−2, 1) scaled
by a constant ε, and suppose we have a data point near each end of the model and a third
data point exactly in the middle. Then, for a model space 6 points long, the fitting goal
could look like
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]
≈ 0 (3.15)

The residual vector has two parts, a data part rd on top and a model part rm on the
bottom. The data residual should vanish except where contradictory data values happen to
lie in the same place. The model residual is the roughened model.

Finding something unexpected is good science and engineering. For this we look both
in data space and in model space. In data space we look at the residual r. In model space,
we look at the residual projected there ∆m = F∗r. After iterating to completion we have
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∆m = 0 = F∗rd + A∗rm, a sum of two images identical but for polarity. They tell us what
we have learned from the data; how the model differs from what we thought it would be.

Two fitting goals (3.14) are so common in practice that it is convenient to adopt our least-
square fitting subroutine solver-smp accordingly. The modification is shown in module
solver-reg In addition to specifying the “data fitting” operator F (parameter Fop), we
need to pass the “model regularization” operator A (parameter Aop) and the size of its
output (parameter nAop) for proper memory allocation.

(When I first looked at module solver-reg I was appalled by the many lines of code,
especially all the declarations. Then I realized how much much worse was Fortran 77 where
I needed to write a new solver for every pair of operators. This one solver module works for
all operator pairs and for many optimization descent strategies because these “objects” are
arguments. These more powerful objects require declarations that are more complicated
than the simple objects of Fortran 77. As an author I have a dilemma: To make algorithms
compact (and seem simple) requires many careful definitions. When these definitions put
in the code, they are careful, but the code becomes annoyingly verbose. Otherwise, the
definitions must go in the surrounding natural language where they are not easily made
precise.)

generic solver with regularization.r90
module s o l v e r _ r e g _ m o d { # 0 = W ( F J m − d )

use chain0_mod + s o l v e r _ r e p o r t _ m o d # 0 = A m
l o g i c a l , p a r a m e t e r , p r i v a t e : : AJ = . t r u e . , FW = . f a l s e .
l o g i c a l , p a r a m e t e r , p r i v a t e : : AD = . t r u e . , ZP = . f a l s e .

c o n t a i n s
s u b r o u t i n e s o l v e r _ r e g ( m, d , Fop , Aop , s t e p p e r , nAop , n i t e r , eps &
, Wop, Jop , m0 , rm0 , e r r , r e sd , resm , mmov , rmov , ve rb ) {

o p t i o n a l : : Wop, Jop , m0 , rm0 , e r r , r e sd , resm , mmov , rmov , ve rb
i n t e r f a c e { #−−−−−−−−−−−−−−−−−−−−−−−−−− b e g i n d e f i n i t i o n s −−−−−−−−−−−

i n t e g e r f u n c t i o n Fop ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n Aop ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n Wop( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n Jop ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n s t e p p e r ( f i r s t ,m, dm , r , d r ) {

r e a l , d imens ion ( : ) : : m, dm , r , d r
l o g i c a l : : f i r s t }

}
r e a l , d imens ion ( : ) , i n t e n t ( i n ) : : d , m0 , rm0
i n t e g e r , i n t e n t ( i n ) : : n i t e r , nAop
l o g i c a l , i n t e n t ( i n ) : : ve rb
r e a l , i n t e n t ( i n ) : : eps
r e a l , d imens ion ( : ) , i n t e n t ( o u t ) : : m, e r r , r e sd , resm
r e a l , d imens ion ( : , : ) , i n t e n t ( o u t ) : : rmov , mmov
r e a l , d imens ion ( s i z e ( m) ) : : dm
r e a l , d imens ion ( s i z e ( d ) + nAop ) , t a r g e t : : r , dr , t t
r e a l , d imens ion ( : ) , p o i n t e r : : rd , drd , t d
r e a l , d imens ion ( : ) , p o i n t e r : : rm , drm , tm
i n t e g e r : : i t e r , s t a t
l o g i c a l : : f i r s t
rd => r ( 1 : s i z e ( d ) ) ; rm => r (1+ s i z e ( d ) : )
d rd => dr ( 1 : s i z e ( d ) ) ; drm => dr (1+ s i z e ( d ) : )
t d => t t ( 1 : s i z e ( d ) ) ; tm => t t (1+ s i z e ( d ) : )
i f ( p r e s e n t (Wop ) ) s t a t=Wop(FW, ZP,−d , rd ) # b e g i n i n i t i a l i z a t i o n −−−−−−−−−

e l s e rd = −d #Rd = −W d
rm = 0 . ; i f ( p r e s e n t ( rm0 ) ) rm=rm0 #Rm = Rm0
i f ( p r e s e n t ( m0 ) ) { m=m0 #m = m0

i f ( p r e s e n t (Wop ) ) c a l l c h a i n 0 (Wop, Fop ,FW,AD,m, rd , t d )
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e l s e s t a t= Fop (FW,AD,m, rd ) #Rd += WF m0
s t a t = Aop (FW,AD, eps ∗m0 , rm ) #Rm += e A m0

} e l s e m=0
f i r s t = . t r u e . ; #−−−−−−−−−−−−−−−−−−−−−−−−−−− b e g i n i t e r a t i o n s −−−−−−−−
do i t e r = 1 , n i t e r {

i f ( p r e s e n t ( Wop ) ) c a l l c h a i n 0 (Wop, Fop , AJ , ZP , dm , rd , t d )
e l s e s t a t = Fop ( AJ , ZP , dm , rd ) #dm = (WF) ’Rd
s t a t = Aop ( AJ ,AD, dm , eps ∗rm ) #dm += e A’Rm
i f ( p r e s e n t ( Jop ) ) { tm=dm ; s t a t=Jop (FW, ZP , tm , dm ) } #dm = J dm
i f ( p r e s e n t ( Wop ) ) c a l l c h a i n 0 (Wop, Fop ,FW, ZP , dm , drd , t d )
e l s e s t a t = Fop (FW, ZP , dm , drd ) #dRd = (WF) dm
s t a t = Aop (FW, ZP , eps ∗dm , drm ) #dRm = e A dm
s t a t = s t e p p e r ( f i r s t , m, dm , r , d r ) #m+=dm ; R+=dR
i f ( s t a t ==1) e x i t # g o t s t u c k d e s c e n d i n g
i f ( p r e s e n t ( mmov ) ) mmov ( : , i t e r ) = m( : s i z e (mmov , 1 ) ) # r e p o r t −−−−−
i f ( p r e s e n t ( rmov ) ) rmov ( : , i t e r ) = r ( : s i z e ( rmov , 1 ) )
i f ( p r e s e n t ( e r r ) ) e r r ( i t e r ) = d o t _ p r o d u c t ( rd , rd )
i f ( p r e s e n t ( ve rb ) ) { i f ( ve rb ) c a l l s o l v e r _ r e p o r t ( i t e r ,m, dm , rd , rm ) }
f i r s t = . f a l s e .

}
i f ( p r e s e n t ( r e s d ) ) r e s d = rd
i f ( p r e s e n t ( resm ) ) resm = rm ( : s i z e ( resm ) )

}
}

After all the definitions, we load the negative of the data into the residual. If a starting
model m0 is present, then we update the data part of the residual rd = Fm0 − d and we
load the model part of the residual rm = Am0. Otherwise we begin from a zero model
m0 = 0 and thus the model part of the residual rm is also zero. After this initialization,
subroutine solver_reg() begins an iteration loop by first computing the proposed model
perturbation ∆m (called g in the program) with the adjoint operator:

∆m ←−
[

F∗ A∗
] [

rd

rm

]
(3.16)

Using this value of ∆m, we can find the implied change in residual ∆r as

∆

[
rd

rm

]
←−

[
F
A

]
∆m (3.17)

and the last thing in the loop is to use the optimization step function stepper() to choose
the length of the step size and to choose how much of the previous step to include.

An example of using the new solver is subroutine invint1. I chose to implement the
model roughening operator A with the convolution subroutine tcai1() which has tran-
sient end effects (and an output length equal to the input length plus the filter length).
The adjoint of subroutine tcai1() suggests perturbations in the convolution input (not the
filter).

invers linear interp..r90
module i n v i n t { # i n v i n t −− INVerse I N T e r p o l a t i o n i n 1−D.

use l i n t 1
use t c a i 1
use cgstep_mod
use s o l v e r _ r e g _ m o d

c o n t a i n s
s u b r o u t i n e i n v i n t 1 ( n i t e r , coord , dd , o1 , d1 , aa , mm, eps , mmov) {

i n t e g e r , i n t e n t ( i n ) : : n i t e r # i t e r a t i o n s
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r e a l , i n t e n t ( i n ) : : o1 , d1 , eps # a x i s , s c a l e
r e a l , d imens ion ( : ) , p o i n t e r : : coord , aa # aa i s f i l t e r
r e a l , d imens ion ( : ) , i n t e n t ( i n ) : : dd # d a t a
r e a l , d imens ion ( : ) , i n t e n t ( o u t ) : : mm # model
r e a l , d imens ion ( : , : ) , i n t e n t ( o u t ) : : mmov # movie
i n t e g e r : : n r eg # s i z e o f A m
nreg = s i z e ( aa ) + s i z e ( mm) # t r a n s i e n t
c a l l l i n t 1 _ i n i t ( o1 , d1 , coord ) # i n t e r p o l a t i o n
c a l l t c a i 1 _ i n i t ( aa ) # f i l t e r i n g
c a l l s o l v e r _ r e g ( m=mm, d=dd , Fop= l i n t 1 _ l o p , s t e p p e r=c g s t e p , n i t e r=n i t e r , &

Aop= t c a i 1 _ l o p , nAop = nreg , eps = eps , mmov = mmov , ve rb = . t r u e . )
c a l l c g s t e p _ c l o s e ( )
}

}

Figure 3.11 shows an example for a (1,−2, 1) filter with ε = 1. The continuous curve
representing the model m passes through the data points. Because the models are computed
with transient convolution end-effects, the models tend to damp linearly to zero outside the
region where signal samples are given.

Figure 3.11 Sample points and estima-
tion of a continuous function through
them.

To show an example where the result is clearly a theoretical answer, I prepared another
figure with the simpler filter (1,−1). When we minimize energy in the first derivative of
the waveform, the residual distributes itself uniformly between data points so the solution
there is a straight line. Theoretically it should be a straight line because a straight line has
a vanishing second derivative, and that condition arises by differentiating by x∗, the mini-
mized quadratic form x∗A∗Ax, and getting A∗Ax = 0. (By this logic, the curves between
data points in Figure 3.11 must be cubics.) The (1,−1) result is shown in Figure 3.12.

Figure 3.12 The same data samples and
a function through them that minimizes
the energy in the first derivative.

The example of Figure 3.12 has been a useful test case for me. You’ll see it again in
later chapters. What I would like to show you here is a movie showing the convergence to
Figure 3.12. Convergence occurs rapidly where data points are close together. The large
gaps, however, fill at a rate of one point per iteration.
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3.4.1 Abandoned theory for matching wells and seismograms

Let us consider theory to construct a map m that fits dense seismic data s and the well data
w. The first goal 0 ≈ Lm − w says that when we linearly interpolate from the map, we
should get the well data. The second goal 0 ≈ A(m − s) (where A is a roughening operator
like ∇ or ∇2) says that the map m should match the seismic data s at high frequencies but
need not do so at low frequencies.

0 ≈ Lm − w
0 ≈ A(m − s)

(3.18)

Although (3.18) is the way I originally formulated the well-fitting application, I aban-
doned it for several reasons: First, the map had ample pixel resolution compared to other
sources of error, so I switched from linear interpolation to binning. Once I was using bin-
ning, I had available the simpler empty-bin approaches. These have the further advantage
that it is not necessary to experiment with the relative weighting between the two goals
in (3.18). A formulation like (3.18) is more likely to be helpful where we need to han-
dle rapidly changing functions where binning is inferior to linear interpolation, perhaps in
reflection seismology where high resolution is meaningful.

3.5 PRECONCEPTION AND CROSS VALIDATION

First we first look at data d. Then we think about a model m, and an operator L to link the
model and the data. Sometimes the operator is merely the first term in a series expansion
about (m0,d0). Then we fit d − d0 ≈ L(m − m0). To fit the model, we must reduce the
fitting residuals. Realizing that the importance of a data residual is not always simply the
size of the residual but is generally a function of it, we conjure up (topic for later chapters)
a weighting function (which could be a filter) operator W. This defines our data residual:

rd = W[L(m −m0) − (d − d0)] (3.19)

Next we realize that the data might not be adequate to determine the model, perhaps
because our comfortable dense sampling of the model ill fits our economical sparse sam-
pling of data. Thus we adopt a fitting goal that mathematicians call “regularization” and we
might call a “model style” goal or more simply, a quantification of our preconception of
the best model. We express this by choosing an operator A, often simply a roughener like
a gradient (the choice again a topic in this and later chapters). It defines our model residual
by Am or A(m −m0), say we choose

rm = Am (3.20)

In an ideal world, our model preconception (prejudice?) would not conflict with mea-
sured data, but real life is much more interesting than that. Since conflicts between data
and preconceived notions invariably arise (they are why we pay for data acquisition) we
need an adjustable parameter that measures our “bullheadedness”, how much we intend
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to stick to our preconceived notions in spite of contradicting data. This parameter is gen-
erally called epsilon ε because we like to imagine that our bullheadedness (prejudice?) is
small. (In mathematics, ε is often taken to be an infinitesimally small quantity.) Although
any bullheadedness seems like a bad thing, it must be admitted that measurements are
imperfect too. Thus as a practical matter we often find ourselves minimizing

min := rd · rd + ε
2 rm · rm (3.21)

and wondering what to choose for ε. I have two suggestions: My simplest suggestion is to
choose ε so that the residual of data fitting matches that of model styling. Thus

ε =

√
rd · rd

rm · rm
(3.22)

My second suggestion is to think of the force on our final solution. In physics, force is
associated with a gradient. We have a gradient for the data fitting and another for the model
styling:

gd = L∗W∗rd (3.23)

gm = A∗rm (3.24)

We could balance these forces by the choice

ε =

√
gd · gd

gm · gm
(3.25)

Although we often ignore ε in discussing the formulation of an application, when time
comes to solve the problem, reality intercedes. Generally, rd has different physical units
than rm (likewise gd and gm) and we cannot allow our solution to depend on the accidental
choice of units in which we express the problem. I have had much experience choosing ε,
but it is only recently that I boiled it down to the above two suggestions. Normally I also
try other values, like double or half those of the above choices, and I examine the solutions
for subjective appearance. If you find any insightful examples, please tell me about them.

Computationally, we could choose a new ε with each iteration, but it is more expeditious
to freeze ε, solve the problem, recompute ε, and solve the problem again. I have never seen
a case where more than one repetition was necessary.

People who work with small applications (less than about 103 vector components) have
access to an attractive theoretical approach called cross-validation. Simply speaking, we
could solve the problem many times, each time omitting a different data value. Each so-
lution would provide a model that could be used to predict the omitted data value. The
quality of these predictions is a function of ε and this provides a guide to finding it. My
objections to cross validation are two-fold: First, I don’t know how to apply it in the large
applications like we solve in this book (I should think more about it); and second, people
who worry much about ε, perhaps first should think more carefully about their choice of
the filters W and A, which is the focus of this book. Notice that both W and A can be
defined with a scaling factor which is like scaling ε. Often more important in practice, with
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W and A we have a scaling factor that need not be constant but can be a function of space
or spatial frequency within the data space and/or model space.

EXERCISES:

1 Figures 3.1–3.4 seem to extrapolate to vanishing signals at the side boundaries. Why
is that so, and what could be done to leave the sides unconstrained in that way?

2 Show that the interpolation curve in Figure 3.2 is not parabolic as it appears, but cubic.
(: First show that (∇2)∗ ∇2u = 0.)

3 Verify by a program example that the number of iterations required with simple con-
straints is the number of free parameters.

4 A signal on a uniform mesh has missing values. How should we estimate the mean?
5 It is desired to find a compromise between the Laplacian roughener and the gradient

roughener. What is the size of the residual space?
6 Like the seismic prospecting industry, you have solved a huge problem using binning.

You have computer power left over to do a few iterations with linear interpolation.
How much does the cost per iteration increase? Should you refine your model mesh,
or can you use the same model mesh that you used when binning?

7 Nuclear energy having finally reached its potential has dried up the prospecting in-
dustries so you find yourself doing medical imaging (or earthquake seismology).
You probe the human body from all sides on a dense regular mesh in cylindrical co-
ordinates. Unfortunately you need to represent your data in fourier space. There is
no such thing as a fast fourier transform in cylindrical coordinates, and slow fourier
transforms are pitifully slow. Your only hope to keep up with your competitors is to
somehow do your FT’s in cartesian coordinates. Write down the sequence of steps to
achieve your goals using the methods of this chapter.





4
The helical coordinate

For many years it has been true that our most powerful signal-analysis techniques are
in one-dimensional space, while our most important applications are in multi-dimensional
space. The helical coordinate system makes a giant step towards overcoming this difficulty.

Many geophysical map estimation applications appear to be multidimensional, but actu-
ally they are not. To see the tip of the iceberg, consider this example: On a two-dimensional

cartesian mesh, the function

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

has the autocorrelation
1 2 1
2 4 2
1 2 1

.

Likewise, on a one-dimensional cartesian mesh,
the function 1 1 0 0 · · · 0 1 1

has the autocorrelation 1 2 1 0 · · · 0 2 4 2 0 · · · 1 2 1 .
Observe the numbers in the one-dimensional world are identical with the numbers in the
two-dimensional world. This correspondence is no accident.

4.1 FILTERING ON A HELIX

Figure 4.1 shows some two-dimensional shapes that are convolved together. The left panel
shows an impulse response function, the center shows some impulses, and the right shows
the superposition of responses.

A surprising, indeed amazing, fact is that Figure 4.1 was not computed with a two-
dimensional convolution program. It was computed with a one-dimensional computer pro-
gram. It could have been done with anybody’s one-dimensional convolution program, ei-
ther in the time domain or in the fourier domain. This magical trick is done with the helical
coordinate system.

A basic idea of filtering, be it in one dimension, two dimensions, or more, is that you
have some filter coefficients and some sampled data; you pass the filter over the data;
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Figure 4.1 Two-dimensional convolution as performed in one dimension by module helicon

at each location you find an output by crossmultiplying the filter coefficients times the
underlying data and summing the terms.

The helical coordinate system is much simpler than you might imagine. Ordinarily, a
plane of data is thought of as a collection of columns, side by side. Instead, imagine the
columns stored end-to-end, and then coiled around a cylinder. This is the helix. Fortran
programmers will recognize that fortran’s way of storing 2-D arrays in one-dimensional
memory is exactly what we need for this helical mapping. Seismologists sometimes use
the word “supertrace” to describe a collection of seismograms stored “end-to-end”.

Figure 4.2 shows a helical mesh for 2-D data on a cylinder. Darkened squares depict a
2-D filter shaped like the Laplacian operator ∂xx + ∂yy. The input data, the filter, and the
output data are all on helical meshes all of which could be unrolled into linear strips. A
compact 2-D filter like a Laplacian, on a helix is a sparse 1-D filter with long empty gaps.

Since the values output from filtering can be computed in any order, we can slide the
filter coil over the data coil in any direction. The order that you produce the outputs is
irrelevant. You could compute the results in parallel. We could, however, slide the filter
over the data in the screwing order that a nut passes over a bolt. The screw order is the same
order that would be used if we were to unwind the coils into one-dimensional strips and
convolve them across one another. The same filter coefficients overlay the same data values
if the 2-D coils are unwound into 1-D strips. The helix idea allows us to obtain the same
convolution output in either of two ways, a one-dimensional way, or a two-dimensional
way. I used the one-dimensional way to compute the obviously two-dimensional result in
Figure 4.1.

4.1.1 Review of 1-D recursive filters

Convolution is the operation we do on polynomial coefficients when we multiply polyno-
mials. Deconvolution is likewise for polynomial division. Often these ideas are described
as polynomials in the variable Z. Take X(Z) to denote the polynomial whose coefficients
are samples of input data, and let A(Z) likewise denote the filter. The convention I adopt



4.1 FILTERING ON A HELIX 93

d

a b c

Figure 4.2 Filtering on a helix. The same filter coefficients overlay the same data values if the 2-D
coils are unwound into 1-D strips. (Mathematica drawing by Sergey Fomel)

here is that the first coefficient of the filter has the value +1, so the filter’s polynomial is
A(Z) = 1 + a1Z + a2Z2 + · · ·. To see how to convolve, we now identify the coefficient of
Zk in the product Y(Z) = A(Z)X(Z). The usual case (k larger than the number Na of filter
coefficients) is

yk = xk +

Na∑
i=1

aixk−i (4.1)

Convolution computes yk from xk whereas deconvolution (also called back substitution)
does the reverse. Rearranging (4.1) we get

xk = yk −

Na∑
i=1

aixk−i (4.2)

where now we are finding the output xk from its past outputs xk−i and from the present
input yk. We see that the deconvolution process is essentially the same as the convolution
process, except that the filter coefficients are used with opposite polarity; and they are
applied to the past outputs instead of the past inputs. That is why deconvolution must be
done sequentially while convolution can be done in parallel.

4.1.2 Multidimensional deconvolution breakthrough

Deconvolution (polynomial division) can undo convolution (polynomial multiplication). A
magical property of the helix is that we can consider 1-D convolution to be the same as 2-D
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convolution. Hence is a second magical property: We can use 1-D deconvolution to undo
convolution, whether that convolution was 1-D or 2-D. Thus, we have discovered how to
undo 2-D convolution. We have discovered that 2-D deconvolution on a helix is equivalent
to 1-D deconvolution. The helix enables us to do multidimensional deconvolution.

Deconvolution is recursive filtering. Recursive filter outputs cannot be computed in par-
allel, but must be computed sequentially as in one dimension, namely, in the order that the
nut screws on the bolt.

Recursive filtering sometimes solves big problems with astonishing speed. It can prop-
agate energy rapidly for long distances. Unfortunately, recursive filtering can also be un-
stable. The most interesting case, near resonance, is also near instability. There is a large
literature and extensive technology about recursive filtering in one dimension. The helix
allows us to apply that technology to two (and more) dimensions. It is a huge technological
breakthrough.

In 3-D we simply append one plane after another (like a 3-D fortran array). It is easier
to code than to explain or visualize a spool or torus wrapped with string, etc.

4.1.3 Examples of simple 2-D recursive filters

Let us associate x- and y-derivatives with a finite-difference stencil or template. (For sim-
plicity take ∆x = ∆y = 1.)

∂

∂x
= 1 −1 (4.3)

∂

∂y
=

1
−1

(4.4)

Convolving a data plane with the stencil (4.3) forms the x-derivative of the plane. Con-
volving a data plane with the stencil (4.4) forms the y-derivative of the plane. On the other
hand, deconvolving with (4.3) integrates data along the x-axis for each y. Likewise, de-
convolving with (4.4) integrates data along the y-axis for each x. Next we look at a fully
two-dimensional operator (like the cross derivative ∂xy).

A nontrivial two-dimensional convolution stencil is

0 −1/4
1 −1/4

−1/4 −1/4
(4.5)

We will convolve and deconvolve a data plane with this operator. Although everything
is shown on a plane, the actual computations are done in one dimension with equations
(4.1) and (4.2). Let us manufacture the simple data plane shown on the left in Figure 4.3.
Beginning with a zero-valued plane, we add in a copy of the filter (4.5) near the top of the
frame. Nearby add another copy with opposite polarity. Finally add some impulses near
the bottom boundary. The second frame in Figure 4.3 is the result of deconvolution by the
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filter (4.5) using the one-dimensional equation (4.2). Notice that deconvolution turns the
filter itself into an impulse, while it turns the impulses into comet-like images. The use of
a helix is evident by the comet images wrapping around the vertical axis.

Figure 4.3 Illustration of 2-D deconvolution. Left is the input. Right is after deconvolution with the
filter (4.5) as preformed by by module polydiv

The filtering in Figure 4.3 ran along a helix from left to right. Figure 4.4 shows a second
filtering running from right to left. Filtering in the reverse direction is the adjoint. After
deconvolving both ways, we have accomplished a symmetrical smoothing. The final frame
undoes the smoothing to bring us exactly back to where we started. The smoothing was
done with two passes of deconvolution and it is undone by two passes of convolution. No
errors, no evidence remains of any of the boundaries where we have wrapped and truncated.

Figure 4.4 Recursive filtering backwards (leftward on the space axis) is done by the adjoint of 2-D
deconvolution. Here we see that 2-D deconvolution compounded with its adjoint is exactly inverted
by 2-D convolution and its adjoint.

Chapter 5 explains the important practical role to be played by a multidimensional op-
erator for which we know the exact inverse. Other than multidimensional Fourier transfor-
mation, transforms based on polynomial multiplication and division on a helix are the only
known easily invertible linear operators.
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In seismology we often have occasion to steer summation along beams. Such an impulse
response is shown in Figure 4.6.

Figure 4.5 A simple low-order 2-D fil-
ter whose inverse contains plane waves
of two different dips. One of them is spa-
tially aliased.

Of special interest are filters that destroy plane waves. The inverse of such a filter creates
plane waves. Such filters are like wave equations. A filter that creates two plane waves is
illustrated in figure 4.5.

Figure 4.6 A simple low-order 2-D filter whose inverse times its inverse adjoint, is approximately a
dipping seismic arrival.

4.1.4 Coding multidimensional de/convolution

Let us unroll the filter helix seen in Figure 4.2 and see what we have. Start from the idea that
a 2-D filter is generally made from a cluster of values near one another in two dimensions
similar to the Laplacian operator in the figure. We see that in the helical approach, a 2-D
filter is a 1-D filter containing some long intervals of zeros. The intervals are about the
length of a 1-D seismogram.

Our program for 2-D convolution with a 1-D convolution program, could convolve with
the somewhat long 1-D strip, but it is much more cost effective to ignore the many zeros,
which is what we do. We do not multiply by the backside zeros, nor do we even store them
in memory. Whereas an ordinary convolution program would do time shifting by a code
line like iy=ix+lag, Module helicon ignores the many zero filter values on backside of
the tube by using the code iy=ix+lag(ia) where a counter ia ranges over the nonzero
filter coefficients. Before operator helicon is invoked, we need to prepare two lists, one
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list containing nonzero filter coefficients flt(ia), and the other list containing the corre-
sponding lags lag(ia)measured to include multiple wraps around the helix. For example,
the 2-D Laplace operator can be thought of as the 1-D filter

1 0 · · · 0 1 −4 1 0 · · · 0 1 → helical boundaries
1

1 −4 1
1

(4.6)
The first filter coefficient in equation (4.6) is +1 as implicit to module helicon. To apply
the Laplacian on a 1000 × 1000 mesh requires the filter inputs:

i lag(i) flt(i)
--- ------ -----
1 999 1.
2 1000 -4.
3 1001 1.
4 2000 1.

Here we choose to use “declaration of a type”, a modern computer language feature that
is absent from Fortran 77. Fortran 77 has the built in complex arithmetic type. In module
helix we define a type filter, actually, a helix filter. After making this definition, it will
be used by many programs. The helix filter consists of three vectors, a real valued vector
of filter coefficients, an integer valued vector of filter lags, and an optional vector that has
logical values “.TRUE.” for output locations that will not be computed (either because of
boundary conditions or because of missing inputs). The filter vectors are the size of the
nonzero filter coefficients (excluding the leading 1.) while the logical vector is long and
relates to the data size. The helixmodule allocates and frees memory for a helix filter. By
default, the logical vector is not allocated but is set to null with the nullify operator and
ignored. This directive is used by the compiler for optimization. When the logical array is
unneeded it is neither allocated nor accessible.

definition for helix-type filters.r90
module h e l i x { # DEFINE h e l i x f i l t e r t y p e

t y p e f i l t e r {
r e a l , d imens ion ( : ) , p o i n t e r : : f l t # ( nh ) f i l t e r c o e f f i c i e n t s
i n t e g e r , d imens ion ( : ) , p o i n t e r : : l a g # ( nh ) f i l t e r l a g s
l o g i c a l , d imens ion ( : ) , p o i n t e r : : mis # ( nd ) boundary c o n d i t i o n s

}
c o n t a i n s

s u b r o u t i n e a l l o c a t e h e l i x ( aa , nh ) { # a l l o c a t e a f i l t e r
t y p e ( f i l t e r ) : : aa
i n t e g e r : : nh # c o u n t o f f i l t e r c o e f s ( e x c l 1 )
a l l o c a t e ( aa%f l t ( nh ) , aa%l a g ( nh ) ) # a l l o c a t e f i l t e r and l a g s .
n u l l i f y ( aa%mis ) # s e t n u l l p o i n t e r f o r " mis " .
aa%f l t = 0 . # z e r o f i l t e r c o e f v a l u e s

}
s u b r o u t i n e d e a l l o c a t e h e l i x ( aa ) { # d e s t r o y a f i l t e r

t y p e ( f i l t e r ) : : aa
d e a l l o c a t e ( aa%f l t , aa%l a g ) # f r e e memory
i f ( a s s o c i a t e d ( aa%mis ) ) # i f l o g i c a l s were a l l o c a t e d

d e a l l o c a t e ( aa%mis ) # f r e e them
}

}
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For those of you with no Fortran 90 experience, the “%” appearing in the helix module
denotes a pointer. Fortran 77 has no pointers (or everything is a pointer). The C, C++, and
Java languages use “.” to denote pointers. C and C++ also have a second type of pointer
denoted by “->”. The behavior of pointers is somewhat different in each language. Never-
the-less, the idea is simple. In module helicon you see the expression aa%flt(ia). It
refers to the filter named aa. Any filter defined by the helixmodule contains three vectors,
one of which is named flt. The second component of the flt vector in the aa filter is
referred to as aa%flt(2) which in the example above refers to the value 4.0 in the center
of the laplacian operator. For data sets like above with 1000 points on the 1-axis, this value
4.0 occurs after 1000 lags, thus aa%lag(2)=1000.

Our first convolution operator tcai1 was limited to one dimension and a particular
choice of end conditions. With the helix and Fortran 90 pointers, the operator helicon is
a multidimensional filter with considerable flexibility (because of the mis vector) to work
around boundaries and missing data.

helical convolution.lop
module h e l i c o n { # Convo lu t i on , i n v e r s e t o d e c o n v o l u t i o n .
# R e q u i r e s t h e f i l t e r be c a u s a l w i th an i m p l i c i t " 1 . " a t t h e o n s e t .
use h e l i x
t y p e ( f i l t e r ) : : aa
#% _ i n i t ( aa )
#% _lop ( xx , yy )
i n t e g e r iy , ix , i a
i f ( a d j ) # z e r o l a g

xx += yy
e l s e

yy += xx
do i a = 1 , s i z e ( aa%l a g ) {

do i y = 1 + aa%l a g ( i a ) , s i z e ( yy ) {
i f ( a s s o c i a t e d ( aa%mis ) ) { i f ( aa%mis ( i y ) ) c y c l e }
i x = i y − aa%l a g ( i a )
i f ( a d j )

xx ( i x ) += yy ( i y ) ∗ aa%f l t ( i a )
e l s e

yy ( i y ) += xx ( i x ) ∗ aa%f l t ( i a )
}

}
}

The code fragment aa%lag(ia) corresponds to b-1 in tcai1
Operator helicon did the convolution job for Figure 4.1. As with tcai1 the adjoint of

filtering is filtering backwards which means unscrewing the helix.
The companion to convolution is deconvolution. The module polydiv is essentially the

same as polydiv1 but here it was coded using our new filter type in module helix
which will simplify our many future uses of convolution and deconvolution. Although
convolution allows us to work around missing input values, deconvolution does not (any
input affects all subsequent outputs), so polydiv never references aa%mis(ia).

helical deconvolution.lop
module p o l y d i v { # H e l i x p o l y n o m i a l d i v i s i o n
use h e l i x
i n t e g e r : : nd
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t y p e ( f i l t e r ) : : aa
r e a l , d imens ion ( nd ) , a l l o c a t a b l e : : t t
#% _ i n i t ( nd , aa )
#% _lop ( xx , yy )
i n t e g e r i a , ix , i y
t t = 0 .
i f ( a d j ) {

do i x= nd , 1 , −1 {
t t ( i x ) = yy ( i x )
do i a = 1 , s i z e ( aa%l a g ) {

i y = i x + aa%l a g ( i a ) ; i f ( i y > nd ) n e x t
t t ( i x ) −= aa%f l t ( i a ) ∗ t t ( i y )
}

}
xx += t t

} e l s e {
do i y= 1 , nd {

t t ( i y ) = xx ( i y )
do i a = 1 , s i z e ( aa%l a g ) {

i x = i y − aa%l a g ( i a ) ; i f ( i x < 1) n e x t
t t ( i y ) −= aa%f l t ( i a ) ∗ t t ( i x )
}

}
yy += t t
}

}

4.2 KOLMOGOROFF SPECTRAL FACTORIZATION

Spectral factorization addresses a deep mathematical problem not solved by mathemati-
cians until 1939. Given any spectrum |F(ω)|, find a causal time function f (t) with this
spectrum. A causal time function is one that vanishes at negative time t < 0. We will mix
spectral factorization with the helix idea to find many applications in geophysical image
estimation.

The most abstract method of spectral factorization is that of the Russian mathematician
A.N.Kolmogoroff. I include it here because it is by far the fastest, so much so that giant
problems become practical such as the solar physics example coming up.

Given that C(ω) fourier transforms to a causal function of time, it is next proven that eC

fourier transforms to a causal function of time. Its filter inverse is e−C . Grab yourself a cup
of coffee and hide yourself away in a quiet place while you focus on the proof in the next
paragraph.

A causal function cτ vanishes at negative τ. Its Z transform C(Z) = c0 + c1Z + c2Z2 +

c3Z3 + · · ·, with Z = eiω∆t is really a Fourier sum. Its square C(Z)2 convolves a causal
with itself so it is causal. Each power of C(Z) is causal, hence eC = 1 + C + C2/2 + · · ·, a
sum of causals, is causal. The time-domain coefficients for eC could be computed putting
polynomials into power series or faster by Fourier transforms. The wavelet eC has inverse
e−C also causal. A causal with a causal inverse is said to be “minimum phase”. The filter
1−Z/2 with inverse 1+Z/2+Z2/4+ · · · is so. The delay filter Z5 has the noncausal inverse
Z−5 is not (output before input).

The next paragraph defines “Kolmogoroff spectral factorization”. This arises in appli-
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cations where one begins with an energy spectrum |r|2 and factors it into an reiφ times its
conjugate. The inverse fourier transform of that reiφ is causal.

Relate amplitude r = r(ω) and phase φ = φ(ω) to a causal time function cτ.

|r|eiφ = eln |r|eiφ = eln |r|+iφ = ec0+c1Z+c2Z2+c3Z3+··· = e
∑
τ=0 cτZτ (4.7)

Given a spectrum r(ω) we will find a filter with that spectrum. Since r(ω) is a real even
function of ω, so is its logarithm. Let the inverse Fourier transform of ln |r(ω)| be uτ, where
uτ is a real even function of time. Imagine a real odd function of time vτ.

|r|eiφ = eln |r|+iφ = e
∑
τ(uτ+vτ)Zτ (4.8)

The phase φ(ω) transforms to vτ. We can assert causality by choosing vτ so that uτ + vτ = 0
(= cτ) for all negative τ. This defines vτ at negative τ. Since vτ is odd, it is known at positive
lags too. More simply, vτ is created when uτ is multiplied by a step function of size 2. This
causal exponent (c0, c1, · · ·) creates a causal filter |r|eiφ with the specified spectrum r(ω).

We easily manufacture an inverse filter by changing the polarity of the cτ. This filter is
also causal by the same reasoning. Thus these filters are causal with a causal inverse. Such
filters are commonly called “minimum phase”.

Spectral factorization arises in a variety of contexts. Here’s one: Rain drops showering
on a tin roof create for you a signal whose spectrum you can compute, but what would be
the wavelet of a single drop? Spectral factorization gives it. Divide this wavelet out from
the data to get a record of impulses, one for each rain drop (theoretically!). The boiling
surface of the sun is coming soon.

4.2.1 Kolmogoroff code
subroutine kolmogoroff( n, cx) # Spectral factorization.
integer i, n # input: cx = amplitude spectrum
complex cx(n) # output: cx = FT of min phase wavelet
do i= 1, n

cx(i) = clog( cx(i) )
call ftu( -1., n, cx)
do i= 2, n/2 { # Make it causal changing only the odd part.

cx(i) = cx(i) * 2.
cx(n-i+2) = 0.
}

call ftu( +1., n, cx)
do i= 1, n

cx(i) = cexp( cx(i))
return; end

Everyone has their own favorite fourier transform code, so why am I offering mine? Be-
cause you MUST get the scale factors correct. Few worries if you accidentally replace
eC by 2eC , because your humble plotting program might do that. But if you accidentally
replace eC by e2C , you have squared it!

subroutine ftu( signi, nx, cx ) # Fourier transform
# complex fourier transform with traditional scaling (FGDP)
#
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# 1 nx signi*2*pi*i*(j-1)*(k-1)/nx
# cx(k) = -------- * sum cx(j) * e
# scale j=1 for k=1,2,...,nx=2**integer
#
# scale=1 for forward transform signi=1, otherwise scale=1/nx
integer nx, i, j, k, m, istep
real signi, arg
complex cx(nx), cmplx, cw, cdel, ct
i=1; while( i<nx) i=2*i
if( i != nx ) call erexit(’ftu: nx not a power of 2’)
do i= 1, nx

if( signi<0.)
cx(i) = cx(i) / nx

j = 1; k = 1
do i= 1, nx {

if (i<=j) { ct = cx(j); cx(j) = cx(i); cx(i) = ct }
m = nx/2
while (j>m && m>1) { j = j-m; m = m/2 } # "&&" means .AND.
j = j+m
}

repeat {
istep = 2*k; cw = 1.; arg = signi*3.14159265/k
cdel = cmplx( cos(arg), sin(arg))
do m= 1, k {

do i= m, nx, istep
{ ct=cw*cx(i+k); cx(i+k)=cx(i)-ct; cx(i)=cx(i)+ct }

cw = cw * cdel
}

k = istep
if(k>=nx) break
}

return; end

The ftu fast Fourier transform code above has a restriction that the data length must be a
power of 2. Zero time and frequency are the first point in the vector, then positive times,
then negative times.

It is a exercise for the student to show that a complex-valued time function has a positive
spectrum that is non-symmetrical in frequency but it may be factored with the same code.

4.2.2 Constant Q medium

From the absorption law of a material, spectral factorization yields its impulse response.
The most basic absorption law is the constant Q model. According to it, for a downgoing
wave the absorption is proportional to the frequency ω, proportional to time in the medium
z/v, and inversely proportional to the “quality” Q of the medium. Altogether the spectrum
of a wave passing through a thickness z will be changed by the factor e−|ω|τ = e−|ω|(z/v)/Q.
This frequency function is plotted in the top line of Figure 4.7.

The middle function in Figure 4.7 is the autocorrelation giving on top the spectrum
e−|ω|τ. The third function is the factorization. An impulse entering the medium comes out
with this shape. There is no physics in this analysis, only mathematics which assumes the
broadened pulse is causal with an abrupt arrival. The short wavelengths are concentrated
near the sharp corner while the long wavelengths are spread throughout. A physical system
could cause the pulse to spread further (effectively by an additional all-pass filter), but
physics cannot make it more compact.
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Figure 4.7 Autocorrelate the bottom signal to get the middle whose FT is the top. Spectral factoriza-
tion works the other way, from top to bottom.

All distances from the source see the same shape, but stretched in proportion to distance.
The apparent Q is the traveltime to the source divided by the width of the pulse.

4.2.3 Causality in two dimensions

Our foundations, the basic convolution-deconvolution pair (4.1) and (4.2) are applicable
only to filters with all coefficients after zero lag. Filters of physical interest generally con-
centrate their coefficients near zero lag. Requiring causality in 1-D and concentration in
2-D leads to shapes such as these:

h c 0
p d 0
q e 1
s f a
u g b

=

h c ·

p d ·

q e ·

s f a
u g b

+

· · 0
· · 0
· · 1
· · ·

· · ·

2 − D filter = variable + constrained

(4.9)

where a, b, c, ..., u are coefficients we will find by least squares.
The complete story is rich in mathematics and in concepts, but to sum up, filters fall into

two categories according to the numerical values of their coefficients. There are filters for
which equations (4.1) and (4.2) work as desired and expected. These filters are called “min-
imum phase”. There are also filters for which (4.2) is a disaster numerically, the feedback
process diverging to infinity.

Divergent cases correspond to physical processes that are not simply described by initial
conditions but require also reflective boundary conditions so information flows backwards,
i.e. anticausally. Equation (4.2) only allows for initial conditions.
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I oversimplify by trying to collapse an entire book (FGDP) into a few sentences by
saying here that for any fixed 1-D spectrum there exist many filters. Of these, only one has
stable polynomial division. That filter has its energy compacted as soon as possible after
the “1.0” at zero lag.

4.2.4 Causality in three dimensions

The top plane in Figure 4.8 is the 2-D filter seen in equation (4.9). Geometrically, the three-
dimensional generalization of a helix, Figure 4.8 shows a causal filter in three dimensions.
Think of the little cubes as packed with the string of the causal 1-D function. Under the
“1” is packed with string, but none above it. Behind the “1” is packed with string, but
none in front of it. The top plane can be visualized as the area around the end of the 1-D
string. Above the top plane are zero-valued anticausal filter coefficients. This 3-D cube is

Figure 4.8 A 3-D causal filter at the
starting end of a 3-D helix.

1

like the usual Fortran packing of a 3-D array with one confusing difference. The starting
location where the “1” is located is not at the Fortran (1,1,1) location. Details of indexing
are essential, but complicated, and found near the end of this chapter.

The “1” that defines the end of the one-dimensional filter becomes in three dimensions a
point of central symmetry. Every point inside a 3-D filter has a mate opposite the “1” that
is outside the filter. All together they fill the whole space leaving no holes. From this you
may deduce that the “1” must lie on the side of a face as shown in Figure 4.8. It cannot
lie on the corner of a cube. It cannot be the Fortran f(1,1,1). If it were there, the filter
points inside with their mirror points outside would not full the entire space. It could not
represent all possible 3-D autocorrelation functions.
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4.2.5 Blind deconvolution and the solar cube

An area of applications that leads directly to spectral factorization is “blind deconvolution.”
Here we begin with a signal. We form its spectrum and factor it. We could simply inspect
the filter and interpret it, or we might deconvolve it out from the original data. This topic
deserves a fuller exposition, say for example as defined in some of my earlier books. Here
we inspect a novel example that incorporates the helix.

Solar physicists have learned how to measure the seismic field of the sun surface. It’s
chaotic. If you created an impulsive explosion on the surface of the sun, what would the
response be? James Rickett and I applied the helix idea along with Kolmogoroff spectral
factorization to find the impulse response of the sun. Figure 4.9 shows a raw data cube
and the derived impulse response. The sun is huge so the distance scale is in megameters
(Mm). The United States is 5 Mm wide. Vertical motion of the sun is measured with a
video-camera like device that measures vertical motion by an optical doppler shift. From
an acoustic/seismic point of view, the surface of the sun is a very noisy place. The figure
shows time in kiloseconds (Ks). We see about 15 cycles in 5 Ks which is 1 cycle in about
333 sec. Thus the sun seems to oscillate vertically with about a 5 minute period. The top
plane of the raw data in Figure 4.9 (left panel) happens to have a sun spot in the center. The
data analysis here is not affected by the sun spot so please ignore it.

Figure 4.9 Raw seismic data on the sun (left). Impulse response of the sun (right) derived by Helix-
Kolmogoroff spectral factorization.

The first step of the data processing is to transform the raw data to its spectrum. With the
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helix assumption, computing the spectrum is virtually the same thing in 1-D space as in
3-D space. The resulting spectrum was passed to Kolmogoroff spectral factorization code,
a 1-D code. The resulting impulse response is on the right side of Figure 4.9. The plane we
see on the right top is not lag time τ = 0; it is lag time τ = 2 Ks. It shows circular rings,
as ripples on a pond. Later lag times (not shown) would be the larger circles of expanding
waves. The front and side planes show tent-like shapes.

The slope of the tent gives the (inverse) velocity of the wave (as seen on the surface of
the sun). The horizontal velocity we see on the sun surface turns out (by Snell’s law) to be
the same as that at the bottom of the ray. On the front face at early times we see the low
velocity (steep) wavefronts and at later times we see the faster waves. This is because the
later arrivals reach more deeply into the sun.

Look carefully, and you can see two (or even three!) tents inside one another. These
“inside tents” are the waves that have bounced once (or more!) from the surface of the
sun. When a ray goes down and back up to the sun surface, it reflects and takes off again
with the same ray shape. The result is that a given slope on the traveltime curve can be
found again at twice the distance at twice the time. Very close to t = 0 see horizontal
waveforms extending only a short distance from the origin. These are electromagnetic
waves of essentially infinite velocity.

4.3 FACTORED LAPLACIAN == HELIX DERIVATIVE

I had learned spectral factorization as a method for single seismograms. After I learned it,
every time I saw a positive function I’d wonder if it made sense to factor it. When total
field magnetometers were invented, I found it as a way to deduce vertical and horizontal
magnetic components. A few pages back you saw how to use factorization to deduce
the waveform passing through an absorptive medium. Then we saw how the notion of
“impulse response” applies not only to signals, but allows use of random noise on the
sun to deduce the 3-D impulse response there. But the most useful application of spectral
factorization so far is what comes next, factoring the Laplace operator, −∇2. Its fourier
transform −((ikx)2+(iky)2) ≥ 0 is positive, so it is a spectrum. The useful tool we’ll uncover
I dub the “helix derivative”.

The signal

r = −∇2 = −1 0 · · · 0 −1 4 −1 0 · · · 0 −1 (4.10)

is an autocorrelation function because it is symmetrical about the “4,” and the Fourier
transform of −∇2 is −((ikx)2 + (iky)2) ≥ 0 which is positive for all frequencies (kx, ky).
Kolmogoroff spectral-factorization gives this wavelet h:

h = 1.791 −.651 −.044 −.024 · · · · · · −.044 −.087 −.200 −.558
(4.11)

In other words, the autocorrelation of (4.11) is (4.10). This is not obvious from the numbers
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themselves because the computation requires a little work, but dropping all the smaller
numbers allows you a rough check.

In this book section only I use abnormal notation for bold letters. Here h, r are signals,
while H and R are images, neither being matrices or vectors. Recall from chapter 1 that a
filter is a signal packed into a matrix to make a filter operator.

Let the time reversed version of h be denoted h∗. This notation is consistent with an idea
from Chapter 1 that the adjoint of a filter matrix is another filter matrix with a reversed
filter. In engineering it is conventional to use the asterisk symbol “∗” to denote convolution.
Thus, the idea that the autocorrelation of a signal h is a convolution of the signal h with its
time reverse (adjoint) can be written as h∗ ∗ h = h ∗ h∗ = r.

Wind the signal r around a vertical-axis helix to see its two-dimensional shape R:

r → helical boundaries
−1

−1 4 −1
−1

= R (4.12)

This 2-D image (which can be packed into a filter operator) is the negative of the finite-
difference representation of the Laplacian operator, generally denoted ∇2 = ∂2

∂x2 +
∂2

∂y2 . Now
for the magic: Wind the signal h around the same helix to see its two-dimensional shape H

H =
1.791 −.651 −.044 −.024 · · ·

· · · −.044 −.087 −.200 −.558
(4.13)

In the representation (4.13) we see the coefficients diminishing rapidly away from maxi-
mum value 1.791. My claim is that the two-dimensional autocorrelation of (4.13) is (4.12).
You verified this idea earlier when the numbers were all ones. You can check it again in a
few moments if you drop the small values, say 0.2 and smaller.

Physics on a helix can be viewed thru the eyes of matrices and numerical analysis. This is
not easy because the matrices are so huge. Discretize the (x, y)-plane to an N×M array and
pack the array into a vector of N × M components. Likewise pack the Laplacian operator
∂xx + ∂yy into a matrix. For a 4 × 3 plane, that matrix is shown in equation (4.14).

− ∇2 =



4 −1 · · −1 · · · · · · ·

−1 4 −1 · · −1 · · · · · ·

· −1 4 −1 · · −1 · · · · ·

· · −1 4 h · · −1 · · · ·

−1 · · h 4 −1 · · −1 · · ·

· −1 · · −1 4 −1 · · −1 · ·

· · −1 · · −1 4 −1 · · −1 ·

· · · −1 · · −1 4 h · · −1
· · · · −1 · · h 4 −1 · ·

· · · · · −1 · · −1 4 −1 ·

· · · · · · −1 · · −1 4 −1
· · · · · · · −1 · · −1 4



(4.14)
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The two-dimensional matrix of coefficients for the Laplacian operator is shown in (4.14),
where, on a cartesian space, h = 0, and in the helix geometry, h = −1. (A similar parti-
tioned matrix arises from packing a cylindrical surface into a 4 × 3 array.) Notice that the
partitioning becomes transparent for the helix, h = −1. With the partitioning thus invisi-
ble, the matrix simply represents one-dimensional convolution and we have an alternative
analytical approach, one-dimensional Fourier Transform. We often need to solve sets of
simultaneous equations with a matrix similar to (4.14). The method we use is triangular
factorization.

Although the autocorrelation r has mostly zero values, the factored autocorrelation a has
a great number of nonzero terms. Fortunately they seem to be converging rapidly (in the
middle) so truncation (of the middle coefficients) seems reasonable. I wish I could show
you a larger matrix, but all I can do is to pack the signal a into shifted columns of a lower
triangular matrix A like this:

A =



1.8 · · · · · · · · · · ·

−.6 1.8 · · · · · · · · · ·

. . . −.6 1.8 · · · · · · · · ·

−.2
. . . −.6 1.8 · · · · · · · ·

−.6 −.2
. . . −.6 1.8 · · · · · · ·

· −.6 −.2
. . . −.6 1.8 · · · · · ·

· · −.6 −.2
. . . −.6 1.8 · · · · ·

· · · −.6 −.2
. . . −.6 1.8 · · · ·

· · · · −.6 −.2
. . . −.6 1.8 · · ·

· · · · · −.6 −.2
. . . −.6 1.8 · ·

· · · · · · −.6 −.2
. . . −.6 1.8 ·

· · · · · · · −.6 −.2
. . . −.6 1.8



(4.15)

If you will allow me some truncation approximations, I now claim that the laplacian rep-
resented by the matrix in equation (4.14) is factored into two parts −∇2 = A∗A which
are upper and lower triangular matrices whose product forms the autocorrelation seen in
(4.14). Recall that triangular matrices allow quick solutions of simultaneous equations by
backsubstitution. That is what we do with our deconvolution program.

Spectral factorization produces not merely a causal wavelet with the required autocor-
relation. It produces one that is stable in deconvolution. Using H in one-dimensional poly-
nomial division, we can solve many formerly difficult problems very rapidly. Consider the
Laplace equation with sources (Poisson’s equation). Polynomial division and its reverse
(adjoint) gives us p = (q/H)/H∗ which means that we have solved ∇2p = −q by using
polynomial division on a helix. Using the seven coefficients shown, the cost is fourteen
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multiplications (because we need to run both ways) per mesh point. An example is shown
in Figure 4.10.

Figure 4.10 Deconvolution by a filter whose autocorrelation is the two-dimensional Laplacian oper-
ator. Amounts to solving the Poisson equation. Left is q; Middle is q/H; Right is (q/H)/H∗.

Figure 4.10 contains both the helix derivative and its inverse. Contrast them to the x- or
y-derivatives (doublets) and their inverses (axis-parallel lines in the (x, y)-plane). Simple
derivatives are highly directional whereas the helix derivative is only slightly directional
achieving its meagre directionality entirely from its phase spectrum.

4.4 HELIX LOW-CUT FILTER

Since the autocorrelation of H is H∗ ∗H = R = −∇2 is a second derivative, the operator H
must be something like a first derivative. As a geophysicist, I found it natural to compare
the operator ∂

∂y with H by applying them to a local topographic map. The result shown in
Figure 4.11 is that H enhances drainage patterns whereas ∂

∂y enhances mountain ridges.
The operator H has curious similarities and differences with the familiar gradient and

divergence operators. In two-dimensional physical space, the gradient maps one field to
two fields (north slope and east slope). The factorization of −∇2 with the helix gives us the
operator H that maps one field to one field. Being a one-to-one transformation (unlike gra-
dient and divergence) the operator H is potentially invertible by deconvolution (recursive
filtering).

I have chosen the name “helix derivative” or “helical derivative” for the operator H. A
flag pole has a narrow shadow behind it. The helix integral (middle frame of Figure 4.10)
and the helix derivative (left frame) show shadows with an angular bandwidth approaching
180◦.

Our construction makes H have the energy spectrum k2
x + k2

y , so the magnitude of the

Fourier transform is
√

k2
x + k2

y . It is a cone centered and with value zero at the origin. By
contrast, the components of the ordinary gradient have amplitude responses |kx| and |ky|

that are lines of zero across the (kx, ky)-plane.
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Figure 4.11 Topography, helical derivative, slope south.
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The rotationally invariant cone in the Fourier domain contrasts sharply with the nonrota-
tionally invariant helix derivative in (x, y)-space. The difference must arise from the phase
spectrum. The factorization (4.13) is nonunique in that causality associated with the helix
mapping can be defined along either x- or y-axes; thus the operator (4.13) can be rotated or
reflected.

In practice we often require an isotropic filter. Such a filter is a function of kr =
√

k2
x + k2

y .
It could be represented as a sum of helix derivatives to integer powers.

If you want to see some tracks on the side of a hill, you want to subtract the hill and
see only the tracks. Usually, however, you don’t have a very good model for the hill. As
an expedient you could apply a low-cut filter to remove all slowly variable functions of
altitude. In chapter 1 we found the Sea of Galilee in Figure 1.3 to be too smooth for viewing
pleasure so we made the roughened versions in Figure 1.6, a one-dimensional filter that we
could apply over the x-axis or the y-axis. In Fourier space such a filter has a response
function of kx or a function of ky. The isotropy of physical space tells us it would be
more logical to design a filter that is a function of k2

x + k2
y . In Figure 4.11 we saw that

the helix derivative H does a nice job. The Fourier magnitude of its impulse response is

kr =
√

k2
x + k2

y . There is a little anisotropy connected with phase (which way should we
wind the helix, on x or y?) but it is not nearly so severe as that of either component of the
gradient, the two components having wholly different spectra, amplitude |kx| or |ky|.

4.4.1 Improving low-frequency behavior

It is nice having the 2-D helix derivative, but we can imagine even nicer 2-D low-cut filters.
In one dimension we designed a filter with an adjustable parameter, a cutoff frequency.
In 1-D we compounded a first derivative (which destroys low frequencies) with a leaky
integration (which undoes the derivative at all other frequencies). The analogous filter in
2-D would be −∇2/(−∇2+k2

0), which would first be expressed as a finite difference (−Z−1+

2.00 − Z)/(−Z−1 + 2.01 − Z) and then factored as we did the helix derivative.
We can visualize a plot of the magnitude of the 2-D Fourier transform of the filter equa-

tion (4.13). It is a 2-D function of kx and ky and it should resemble kr =
√

k2
x + k2

y . The

point of the cone kr =
√

k2
x + k2

y becomes rounded by the filter truncation so kr does not
reach zero at the origin of the (kx, ky)-plane. We can force it to vanish at zero frequency by
subtracting .183 from the lead coefficient 1.791. I did not do that subtraction in Figure 4.12
which explains the whiteness in the middle of the lake. I gave up on playing with both k0

and filter length, and now merely play with the sum of the filter coefficients.

4.4.2 Filtering mammograms

I prepared a half dozen medical X-rays like Figure 4.13. The doctor brought her young son
to my office one evening to evaluate the results. In a dark room I would show the original
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Figure 4.12 Galilee roughened by gradient and by helical derivative.

X-ray on a big screen and then suddenly switch to the helix derivative. Every time I did this,
her son would exclaim “Wow!” The doctor was not so easily impressed, however. She was
not accustomed to the unfamiliar image. Fundamentally, the helix derivative applied to her
data does compress the dynamic range making weaker features more readily discernible.
We were sure of this from theory and from various geophysical examples. The subjective
problem was her unfamiliarity with our display. I found that I could always spot anoma-
lies more quickly on the filtered display, but then I would feel more comfortable when
I would discover those same anomalies also present (though less evident) in the original
data. Thinking this through, I decided the doctor would likely have been as impressed had I
used a spatial low-cut filter instead of the helix derivative. That would have left the details
of her image (above the cutoff frequency) unchanged altering only the low frequencies,
thereby allowing me to increase the gain.

First I had a problem preparing Figure 4.13. It shows shows the application of the helix
derivative to a medical X-ray. The problem was that the original X-ray was all positive
values of brightness so there was a massive amount of spatial low frequency present. Ob-
viously an x-derivative or a y-derivative would eliminate the low frequency, but the helix
derivative did not. This unpleasant surprise arises because the filter in equation (4.13) was
truncated after a finite number of terms. Adding up the terms actually displayed in equation
(4.13), they sum to .183 whereas theoretically the sum of all the terms should be zero. From
the ratio of .183/1.791 we can say that the filter pushes zero frequency amplitude 90% of
the way to zero value. When the image contains very much zero frequency amplitude, this
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Figure 4.13 Mammogram (medical X-
ray). The cancer is the “spoked wheel.”
(I apologize for the inability of paper
publishing technology to exhibit a clear
grey image.) The tiny white circles are
metal foil used for navigation. The little
halo around a circle exhibits the impulse
response of the helix derivative.

is not good enough. Better results could be obtained with more coefficients, and I did use
more coefficients, but simply removing the mean saved me from needing a costly number
of filter coefficients.

A final word about the doctor. As she was about to leave my office she suddenly asked
whether I had scratched one of her X-rays. We were looking at the helix derivative and it did
seem to show a big scratch. What should have been a line was broken into a string of dots.
I apologized in advance and handed her the original film negatives which she proceeded to
inspect. “Oh,” she said, “Bad news. There are calcification nodules along the ducts.” So the
scratch was not a scratch, but an important detail that had not been noticed on the original
X-ray. Times have changed since then. Nowadays mammography has become digital and
appropriate filtering is defaulted into their presentation.

In preparing an illustration for here, I learned one more lesson. The scratch was small, so
I enlarged a small portion of the mammogram for display. The very process of selecting a
small portion followed by scaling the amplitude between maximum and minimum darkness
of printer ink had the effect enhancing the visibility of the scratch on the mammogram
itself. Now Figure 4.14 shows it to be perhaps even clearer than on the helix derivative.

4.5 SUBSCRIPTING A MULTIDIMENSIONAL HELIX

Basic utilities transform back and forth between multidimensional matrix coordinates and
helix coordinates. The essential module used repeatedly in applications later in this book
is createhelixmodWe begin here from its intricate underpinnings.

Fortran77 has a concept of a multidimensional array being equivalent to a one-dimensional
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Figure 4.14 Not a scratch. Reducing the (x, y)-space range of the illustration allowed boosting the
gain, thus making the non-scratch more prominent.

array. Given that the hypercube specification nd=(n1,n2,n3,...) defines the storage
dimension of a data array, we can refer to a data element as either dd(i1,i2,i3,...)
or dd( i1 +n1*(i2-1) +n1*n2*(i3-1) +...). The helix says to refer to the multidi-
mensional data by its equivalent one-dimensional index (sometimes called its vector sub-
script or linear subscript).

The filter, however, is a much more complicated story than the data: First, we require
all filters to be causal. In other words, the Laplacian doesn’t fit very well, since it is intrin-
sically noncausal. If you really want noncausal filters, you will need to provide your own
time shifts outside the tools supplied here. Second, a filter is usually a small hypercube, say
aa(a1,a2,a3,...) and would often be stored as such. For the helix we must store it in a
special one-dimensional form. Either way, the numbers na= (a1,a2,a3,...) specify the
dimension of the hypercube. In cube form, the entire cube could be indexed multidimen-
sionally as aa(i1,i2,...) or it could be indexed one-dimensionally as aa(ia,1,1,...)
or sometimes1 aa(ia) by letting ia cover a large range. When a filter cube is stored in its
normal “tightly packed” form the formula for computing its one-dimensional index ia is

ia = i1 +a1*(i2-1) +a1*a2*(i3-1) + ...

When the filter cube is stored in an array with the same dimensions as the data, data(n1,n2,n3,...),
the formula for ia is

ia = i1 +n1*(i2-1) +n1*n2*(i3-1) + ...

1 Some programming minutia: Fortran77 does not allow you to refer to an array by both its cartesian coordinates and by its
linear subscript in the same subroutine. To access it both ways, you need a subroutine call, or you dimension it as
data(n1,n2,...) and then you refer to it as data(id,1,1,...). Fortran90 follows the same rule outside modules.
Where modules use other modules, the compiler does not allow you to refer to data both ways, unless the array is declared as
allocatable.
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The fortran compiler knows how to convert from the multidimensional cartesian indices
to the linear index. We will need to do that, as well as the converse. Module cartesian
below contains two subroutines that explicitly provide us the transformations between the
linear index i and the multidimensional indices ii= (i1,i2,...). The two subroutines
have the logical names cart2line and line2cart.

helical-cartesian coordinate conversion.r90
module c a r t e s i a n { # i n d e x t r a n s f o r m ( v e c t o r t o m a t r i x ) and i t s i n v e r s e
c o n t a i n s

s u b r o u t i n e l i n e 2 c a r t ( nn , i , i i ) {
i n t e g e r , d imens ion ( : ) , i n t e n t ( i n ) : : nn # c a r t e s i a n axes ( n1 , n2 , n3 , . . . )
i n t e g e r , d imens ion ( : ) , i n t e n t ( o u t ) : : i i # c a r t e s n c o o r d s ( i1 , i2 , i3 , . . . )
i n t e g e r , i n t e n t ( i n ) : : i # e q u i v a l e n t 1−D l i n e a r i n d e x
i n t e g e r : : a x i s , n123
n123 = 1
do a x i s = 1 , s i z e ( nn ) {

i i ( a x i s ) = mod ( ( i −1 ) / n123 , nn ( a x i s ) ) + 1
n123 = n123 ∗ nn ( a x i s )
}

}
s u b r o u t i n e c a r t 2 l i n e ( nn , i i , i ) {

i n t e g e r , d imens ion ( : ) , i n t e n t ( i n ) : : nn , i i
i n t e g e r : : i , a x i s , n123
n123 = 1 ; i = 1
do a x i s = 1 , s i z e ( nn ) {

i = i + ( i i ( a x i s ) −1)∗ n123
n123 = n123 ∗ nn ( a x i s )
}

}
}

The fortran linear index is closely related to the helix. There is one major difference,
however, and that is the origin of the coordinates. To convert from the linear index to the
helix lag coordinate, we need to subtract the fortran linear index of the “1.0” which is
usually taken at center= (1+a1/2, 1+a2/2, ..., 1). (On the last dimension, there
is no shift because nobody stores the volume of zero values that would occur before the
1.0.) The cartesian module fails for negative subscripts. Thus we need to be careful to
avoid thinking of the filter’s 1.0 (shown in Figure 4.8) as the origin of the multidimensional
coordinate system although the 1.0 is the origin in the one-dimensional coordinate system.

Even in one dimension (see the matrix in equation (1.4)), to define a filter operator we
need to know not only filter coefficients and a filter length, but we also need to know the
data length. To define a multidimensional filter using the helix idea, besides the properties
intrinsic to the filter, we also need to know the circumference of the helix, i.e., the length
on the 1-axis of the data’s hypercube as well as the other dimensions nd=(n1,n2,...) of
the data’s hypercube.

Thinking about convolution on the helix, it is natural to think about the filter and data
being stored in the same way, that is, by reference to the data size. This would waste so
much space, however, that our helix filter module helix instead stores the filter coefficients
in one vector and their lags in another. The i-th coefficient value of the filter goes in
aa%flt(i) and the i-th lag ia(i) goes in aa%lag(i). The lags are the same as the
fortran linear index except for the overall shift of the 1.0 of a cube of data dimension nd.



4.5 SUBSCRIPTING A MULTIDIMENSIONAL HELIX 115

Our module for convolution on a helix, helicon has already an implicit “1.0” at the filter’s
zero lag so we do not store it. (It is an error to do so.)

Module createhelixmod allocates memory for a helix filter and builds filter lags along
the helix from the hypercube description. The hypercube description is not the literal cube
seen in Figure 4.8 but some integers specifying that cube: the data cube dimensions nd,
likewise the filter cube dimensions na, the parameter center identifying the location of
the filter’s “1.0”, and a gap parameter used in a later chapter. To find the lag table, module
createhelixmod first finds the fortran linear index of the center point on the filter hyper-
cube. Everything before that has negative lag on the helix and can be ignored. (Likewise,
in a later chapter we see a gap parameter that effectively sets even more filter coefficients
to zero so their lags can be ignored too.) Then it sweeps from the center point over the rest
of the filter hypercube calculating for a data-sized cube nd, the fortran linear index of each
filter element.

constructing helix filter in N-D.r90
module c r e a t e h e l i x m o d { # C r e a t e h e l i x f i l t e r l a g s and mis
use h e l i x
use c a r t e s i a n
c o n t a i n s

f u n c t i o n c r e a t e h e l i x ( nd , c e n t e r , gap , na ) r e s u l t ( aa ) {
t y p e ( f i l t e r ) : : aa # needed by h e l i c o n .
i n t e g e r , d imens ion ( : ) , i n t e n t ( i n ) : : nd , na # d a t a and f i l t e r axes
i n t e g e r , d imens ion ( : ) , i n t e n t ( i n ) : : c e n t e r # n o r m a l l y ( na1 / 2 , na2 / 2 , . . . , 1 )
i n t e g e r , d imens ion ( : ) , i n t e n t ( i n ) : : gap # n o r m a l l y ( 0 , 0 , 0 , . . . , 0 )
i n t e g e r , d imens ion ( s i z e ( nd ) ) : : i i # c a r t e s i a n i n d e x e s
i n t e g e r : : na123 , i a , ndim , nh , l ag0a , l a g 0 d
i n t e g e r , d imens ion ( : ) , a l l o c a t a b l e : : l a g

nh= 0 ; na123 = p r o d u c t ( na ) ; ndim = s i z e ( nd )
a l l o c a t e ( l a g ( na123 ) ) # f i l t e r cube s i z e
c a l l c a r t 2 l i n e ( na , c e n t e r , l a g 0 a ) # l a g 0 a = i n d e x p o i n t i n g t o t h e " 1 . 0 "
do i a = 1+ l ag0a , na123 { # i a i s f o r t r a n l i n e a r i n d e x .

c a l l l i n e 2 c a r t ( na , i a , i i ) # i i ( i a ) i s f o r t r a n a r r a y i n d i c e s .
i f ( any ( i i <= gap ) ) n e x t # i g n o r e some l o c a t i o n s
nh = nh + 1 # g o t a n o t h e r l i v e one .
c a l l c a r t 2 l i n e ( nd , i i , l a g ( nh ) ) # g e t i t s f o r t r a n l i n e a r i n d e x
}

c a l l c a r t 2 l i n e ( nd , c e n t e r , l a g 0 d ) # l a g 0 d i s c e n t e r s h i f t f o r nd_cube
c a l l a l l o c a t e h e l i x ( aa , nh ) # nh becomes s i z e o f f i l t e r on h e l i x .
aa%l a g = l a g ( 1 : nh ) − l a g 0 d ; # l a g = f o r t r a n _ l i n e a r _ i n d e x − c e n t e r
aa%f l t = 0 . 0 ; d e a l l o c a t e ( l a g )
}

}

Near the end of the code you see the calculation of a parameter lag0d. This is the count
of the number of zeros that a data-sized fortran array would store in a filter cube before the
filter’s 1.0. We need to subtract this shift from the filter’s fortran linear index to get the lag
on the helix.

A filter can be represented literally as a multidimensional cube like equation (4.9) shows
us in two dimensions or like Figure 4.8 shows us in three dimensions. Unlike the helical
form, in literal cube form, the zeros preceding the “1.0” are explicitly present so lag0
needs to be added back in to get the fortran subscript. To convert a helix filter aa to fortran’s
multidimensional hypercube cube(n1,n2,...) is module box:
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Convert helix filter.r90
module box { # Conve r t h e l i x f i l t e r t o hype rcube : cube ( na ( 1 ) , na ( 2 ) , . . . )
use h e l i x
use c a r t e s i a n
c o n t a i n s

s u b r o u t i n e boxn ( nd , c e n t e r , na , aa , cube ) {
i n t e g e r , d imens ion ( : ) , i n t e n t ( i n ) : : nd , c e n t e r , na # ( ndim )
t y p e ( f i l t e r ) , i n t e n t ( i n ) : : aa
r e a l , d imens ion ( : ) , i n t e n t ( o u t ) : : cube
i n t e g e r , d imens ion ( s i z e ( nd ) ) : : i i
i n t e g e r : : j , l ag0a , lag0d , id , i a
cube = 0 . ; # cube=0
c a l l c a r t 2 l i n e ( na , c e n t e r , l a g 0 a ) # l o c a t e t h e 1 . 0 i n t h e na_cube .
cube ( l a g 0 a ) = 1 . # p l a c e i t .
c a l l c a r t 2 l i n e ( nd , c e n t e r , l a g 0 d ) # l o c a t e t h e 1 . 0 i n t h e nd_cube .
do j = 1 , s i z e ( aa%l a g ) { # i n s p e c t t h e e n t i r e h e l i x

i d = aa%l a g ( j ) + l a g 0 d # i n d e x = h e l i x _ l a g + c e n t e r _ d
c a l l l i n e 2 c a r t ( nd , id , i i ) # i i ( i d ) = c a r t e s i a n i n d i c e s
c a l l c a r t 2 l i n e ( na , i i , i a ) # i a ( i i ) = l i n e a r i n d e x i n aa
cube ( i a ) = aa%f l t ( j ) # copy t h e f i l t e r c o e f f i c i e n t
}

}
}

The box module is normally used to display or manipulate a filter that was estimated in
helical form (usually estimated by the least-squares method).

The inverse process to box is to convert a fortran hypercube to a helix filter. For this we
have module unbox. It abandons all zero-valued coefficients such as those that should be
zero before the box’s 1.0. It abandons the “1.0” as well, because it is implicitly present in
the helix convolution module helicon

Convert hypercube filter to helix.r90
module unbox { # h e l i x f i l t e r aa = cube ( a1 , a2 , . . . )
use h e l i x
use c a r t e s i a n
c o n t a i n s

f u n c t i o n unboxn ( nd , c e n t e r , na , cube ) r e s u l t ( aa ) {
t y p e ( f i l t e r ) : : aa
i n t e g e r , d imens ion ( : ) , i n t e n t ( i n ) : : nd , c e n t e r , na # ( ndim )
r e a l , d imens ion ( : ) , i n t e n t ( i n ) : : cube # cube ( a1 , a2 , . . . )
l o g i c a l , d imens ion ( s i z e ( cube ) ) : : keep # keep ( a1 ∗ a2 ∗ . . . )
i n t e g e r , d imens ion ( s i z e ( nd ) ) : : i i # ( ndim )
i n t e g e r : : i c , l ag0a , lag0d , i , h
c a l l c a r t 2 l i n e ( na , c e n t e r , l a g 0 a )
c a l l c a r t 2 l i n e ( nd , c e n t e r , l a g 0 d )
keep = ( abs ( cube ) > e p s i l o n ( cube ) ) # e p s i l o n i s a F o r t r a n i n t r i n s i c
keep ( l a g 0 a ) = . f a l s e . # throw away t h e 1 . 0 .
c a l l a l l o c a t e h e l i x ( aa , c o u n t ( keep ) ) ; h = 0
do i c = 1 , s i z e ( cube ) { # sweep cube

i f ( keep ( i c ) ) { h = h + 1 # on ly t h e k e e p e r s
c a l l l i n e 2 c a r t ( na , i c , i i ) # i i ( i c )= i n d i c e s on na
c a l l c a r t 2 l i n e ( nd , i i , i ) # i = i n d e x on nd
aa%l a g ( h ) = i − l a g 0 d # l a g = i n d e x − c e n t e r
aa%f l t ( h ) = cube ( i c ) # copy c o e f s .
}

}
}

}

An example of using unboxwould be copying some numbers such as the factored laplacian
in equation (4.13) into a cube and then converting it to a helix.
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A reasonable arrangement for a small 3-D filter is na=(5,3,2) and center=(3,2,1).
Using these arguments, I used createhelixmod to create a filter. I set all the helix filter
coefficients to 2. Then I used module box to put it in a convenient form for display. After
this conversion, the coefficient aa(3,2,1) is 1, not 2. Finally, I printed it:

0.000 0.000 0.000 0.000 0.000
0.000 0.000 1.000 2.000 2.000
2.000 2.000 2.000 2.000 2.000
---------------------------------
2.000 2.000 2.000 2.000 2.000
2.000 2.000 2.000 2.000 2.000
2.000 2.000 2.000 2.000 2.000

Different data sets have different sizes. To convert a helix filter from one data size to
another, we could drop the filter into a cube with module cube. Then we could extract it
with module unbox specifying any data set size we wish. Instead we use module regrid
prepared by Sergey Fomel which does the job without reference to an underlying filter
cube. He explains his regrid module thus:

Imagine a filter being cut out of a piece of paper and glued on another paper, which is then rolled to
form a helix.

We start by picking a random point (let’s call it rand) in the cartesian grid and placing the filter
so that its center (the leading 1.0) is on top of that point. rand should be larger than (or equal to)
center and smaller than min (nold, nnew), otherwise the filter might stick outside the grid (our
piece of paper.) rand=nold/2 will do (assuming the filter is small), although nothing should change
if you replace nold/2 with a random integer array between center and nold - na.

The linear coordinate of rand is h0 on the old helix and h1 on the new helix. Recall that the
helix lags aa%lag are relative to the center. Therefore, we need to add h0 to get the absolute helix
coordinate (h). Likewise, we need to subtract h1 to return to a relative coordinate system.

Convert filter to different data size.r90
module r e g r i d { # c o n v e r t a h e l i x f i l t e r from one s i z e d a t a t o a n o t h e r
use h e l i x
use c a r t e s i a n
c o n t a i n s

s u b r o u t i n e r e g r i d n ( nold , nnew , aa ) {
i n t e g e r , d imens ion ( : ) , i n t e n t ( i n ) : : nold , nnew # o l d and new h e l i x g r i d
t y p e ( f i l t e r ) : : aa
i n t e g e r , d imens ion ( s i z e ( no ld ) ) : : i i
i n t e g e r : : i , h0 , h1 , h
c a l l c a r t 2 l i n e ( nold , no ld / 2 , h0 ) # l a g o f any n e a r midd le p o i n t on no ld
c a l l c a r t 2 l i n e ( nnew , no ld / 2 , h1 ) # l a g on nnew
do i = 1 , s i z e ( aa%l a g ) { # f o r a l l g i v e n f i l t e r c o e f f i c i e n t s

h = aa%l a g ( i ) + h0 # what i s t h i s ?
c a l l l i n e 2 c a r t ( nold , h , i i ) #
c a l l c a r t 2 l i n e ( nnew , i i , h ) #
aa%l a g ( i ) = h − h1 # what i s t h i s

}
}

}

4.6 INVERSE FILTERS AND OTHER FACTORIZATIONS

Mathematics sometimes seems a mundane subject, like when it does the “accounting” for
an engineer. Other times it brings unexpected amazing new concepts into our lives. This is
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the case with the study of causality and spectral factorization. There are many little-known,
amazing, fundamental ideas here, some merely named, one worked through to results.

Start with an example. Consider a mechanical object. We can strain it and watch it stress
or we can stress it and watch it strain. We feel knowledge of the present and past stress
history is all we need to determine the present value of strain. Likewise, the converse,
history of strain should tell us the stress. We could say there is a filter that takes us from
stress to strain; likewise another filter takes us from strain to stress. What we have here is
a pair of filters that are mutually inverse under convolution. In the Fourier domain, one is
literally the inverse of the other. What is remarkable is that in the time domain, both are
causal. They both vanish before zero lag τ = 0.

Not all causal filters have a causal inverse. The best known name for one that does
is “minimum-phase filter.” Unfortunately, this name is not suggestive of the fundamental
property of interest, “causal with a causal (convolutional) inverse.” I could call it CCI.
An example of a causal filter without a causal inverse is the unit delay operator — with
Z-transforms, the operator Z itself. If you delay something, you can’t get it back without
seeing into the future, which you are not allowed to do. Mathematically, 1/Z cannot be
expressed as a polynomial (actually, a convergent infinite series) in positive powers of Z.

Physics books don’t tell us where to expect to find transfer functions that are CCI. I
think I know why they don’t. Any causal filter has a “sharp edge” at zero time lag where
it switches from non responsiveness to responsiveness. The sharp edge might cause the
spectrum to be large at infinite frequency. If so, the inverse filter is small at infinite fre-
quency. Either way, one of the two filters is unmanageable with Fourier transform theory
which (you might have noticed in the mathematical fine print) requires signals (and spec-
tra) to have finite energy which means the function must get real small in that immense
space on the t-axis and the ω axis. It is impossible for a function to be small and its inverse
be small. These imponderables become manageable in the world of Time Series Analysis
(discretized time axis).

4.6.1 Uniqueness and invertability

Interesting questions arise when we are given a spectrum and find ourselves asking how to
find a filter that has that spectrum. Is the answer unique? We’ll see not. Is there always an
answer that is causal? Almost always, yes. Is there always an answer that is causal with a
causal inverse (CCI)? Almost always, yes.

Let us have an example. Consider a filter like the familiar time derivative (1,−1) except
let us down weight the −1 a tiny bit, say (1,−ρ) where 0 << ρ < 1. Now the filter (1,−ρ)
has a spectrum (1 − ρZ)(1 − ρ/Z) with autocorrelation coefficients (−ρ, 1 + ρ2,−ρ) that
look a lot like a second derivative, but it is a tiny bit bigger in the middle. Two different
waveforms, (1,−ρ) and its time reverse both have the same autocorrelation. In principle,
spectral factorization could give us both (1,−ρ) and (ρ,−1) but we always want only the
one that is CCI which is the one we get from Kolmogoroff. The bad one is weaker on
its first pulse. Its inverse is not causal. Below are two expressions for the filter inverse to
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(ρ,−1), the first divergent (filter coefficients at infinite lag are infinitely strong), the second
convergent but non causal.

1
ρ − Z

=
1
ρ

(1 + Z/ρ + Z2/ρ2 + · · ·) (4.16)

1
ρ − Z

=
−1
Z

(1 + ρ/Z + ρ2/Z2 + · · ·) (4.17)

(Please multiply each equation by ρ − Z and see it reduce to 1 = 1).
We begin with a power spectrum and our goal is to find a CCI filter with that spectrum.

If we input to the filter an infinite sequence of random numbers (white noise) we should
output something with the original power spectrum.

We easily inverse Fourier transform the square root of the power spectrum getting a
symmetrical time function, but we need a function that vanishes before τ = 0. On the other
hand, if we already had a causal filter with the correct spectrum we could manufacture
many others. To do so all we need is a family of delay operators to convolve with. A pure
delay filter does not change the spectrum of anything. Same for frequency-dependent delay
operators. Here is an example of a frequency-dependent delay operator: First convolve with
(1,2) and then deconvolve with (2,1). Both these have the same amplitude spectrum so their
ratio has a unit amplitude (and nontrivial phase). If you multiply (1 + 2Z)/(2 + Z) by its
Fourier conjugate (replace Z by 1/Z) the resulting spectrum is 1 for all ω.

Anything whose nature is delay is death to CCI. The CCI has its energy as close as
possible to τ = 0. More formally, my first book, FGDP, proves that the CCI filter has for all
time τ more energy between t = 0 and t = τ than any other filter with the same spectrum.

Spectra can be factorized by an amazingly wide variety of techniques, each of which
gives you a different insight into this strange beast. They can be factorized by factoring
polynomials, by inserting power series into other power series, by solving least squares
problems, by taking logarithms and exponentials in the Fourier domain. I’ve coded most
of them and still find them all somewhat mysterious.

Theorems in Fourier analysis can be interpreted physically in two different ways, one as
given, the other with time and frequency reversed. For example, convolution in one domain
amounts to multiplication in the other. If we were to express the CCI concept with reversed
domains, instead of saying the “energy comes as quick as possible after τ = 0” we would
say “the frequency function is as close to ω = 0 as possible.” In other words, it is minimally
wiggly with time. Most applications of spectral factorization begin with a spectrum, a real,
positive function of frequency. I once recognized the opposite case and achieved minor

fame by starting with a real, positive function of space, a total magnetic field
√

H2
x + H2

z

measured along the x-axis and I reconstructed the magnetic field components Hx and Hz

that were minimally wiggly in space (FGDP p.61).
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4.6.2 Cholesky decomposition

Conceptually the simplest computational method of spectral factorization might be “Cholesky
decomposition.” For example, the matrix of (4.15) could have been found by Cholesky fac-
torization of (4.14). The Cholesky algorithm takes a positive-definite matrix Q and factors
it into a triangular matrix times its transpose, say Q = T∗ T.

It is easy to reinvent the Cholesky factorization algorithm. To do so, simply write all the
components of a 3×3 triangular matrix T and then explicitly multiply these elements times
the transpose matrix T∗. You will find that you have everything you need to recursively
build the elements of T from the elements of Q. Likewise for a 4 × 4 matrix, etc.

The 1×1 case shows that the Cholesky algorithm requires square roots. Matrix elements
are not always numbers. Sometimes they are polynomials such as Z-transforms. To avoid
square roots there is a variation of the Cholesky method. In this variation, we factor Q into
Q = T∗DT where D is a diagonal matrix.

Once a matrix has been factored into upper and lower triangles, solving simultaneous
equations is simply a matter of two back substitutions: (We looked at a special case of
back substitution with equation (1.22).) For example, we often encounter simultaneous
equations of the form B∗ Bm = B∗ d. Suppose the positive-definite matrix B∗ B has been
factored into triangle form T∗ Tm = B∗ d. To find m we first backsolve T∗ x = B∗ d for the
vector x. Then we back solve Tm = x. When T happens to be a band matrix, then the first
back substitution is filtering down a helix and the second is filtering back up it. Polynomial
division is a special case of back substitution.

Poisson’s equation ∇2p = −q requires boundary conditions which we can honor when
we filter starting from both ends. We cannot simply solve Poisson’s equation as an initial-
value problem. We could insert the laplace operator into the polynomial division program,
but the solution would diverge.

Being a matrix method, the Cholesky method of factorization has a cost proportional to
the cube of the size of the matrix. Because our applications are very large and because the
Cholesky method does not produce a useful result if we stop part way to completion, we
look further. The Cholesky method is a powerful method but it does more than we require.
The Cholesky method does not require band matrices, yet these matrices are what we very
often find in applications, so we seek methods that take advantage of the special properties
of band matrices.

4.6.3 Toeplitz methods

Band matrices are often called Toeplitz matrices. In the subject of Time Series Analysis are
found spectral factorization methods that require computations proportional to the dimen-
sion of the matrix squared. They can often be terminated early with a reasonable partial
result. Two Toeplitz methods, the Levinson method and the Burg method are described
in my first textbook, FGDP. Our interest is multidimensional data sets so the matrices of
interest are truely huge and the cost of Toeplitz methods is proportional to the square of
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the matrix size. Thus, before we find Toeplitz methods especially useful, we may need to
find ways to take advantage of the sparsity of our filters.

EXERCISES:

1 Observe the matrix (1.4) which corresponds to subroutine tcai1What is the matrix
corresponding to helicon ?





5
Preconditioning

In Chapter 1 we developed adjoints and in Chapter 2 we developed inverse operators. Log-
ically, correct solutions come only through inversion. Real life, however, seems nearly the
opposite. This is puzzling but intriguing. It seems an easy path to fame and profit would
be to go beyond adjoints by introducing some steps of inversion. It is not that easy. Images
contain so many unknowns. Mostly we cannot iterate to completion and need concern our-
selves with the rate of convergence. Often necessity will limit us to a handful of iterations
where in principle millions or billions are required.

When you fill your car with gasoline, it derives more from an adjoint than an inverse.
Industrial seismic data processing relates more to adjoints than to inverses though there is
a place for both, of course. It cannot be much different with medical imaging.

First consider cost. For simplicity, consider a data space with N values and a model (or
image) space of the same size. The computational cost of applying a dense adjoint operator
increases in direct proportion to the number of elements in the matrix, in this case N2. To
achieve the minimum discrepancy between modeled data and observed data (inversion)
theoretically requires N iterations raising the cost to N3.

Consider an image of size m × m = N. Continuing, for simplicity, to assume a dense
matrix of relations between model and data, the cost for the adjoint is m4 whereas the cost
for inversion is m6. We’ll consider computational costs for the year 2000, but noticing that
costs go as the sixth power of the mesh size, the overall situation will not change much in
the foreseeable future. Suppose you give a stiff workout to a powerful machine; you take
an hour to invert a 4096 × 4096 matrix. The solution, a vector of 4096 components could
be laid into an image of size 64 × 64 = 26 × 26 = 4096. Here is what we are looking at for
costs:

adjoint cost (m × m)2 (512 × 512)2 (2929)2 236

inverse cost (m × m)3 (64 × 64)3 (2626)3 236

These numbers tell us that for applications with dense operators, the biggest images that
we are likely to see coming from inversion methods are 64×64 whereas those from adjoint
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methods are 512×512. For comparison, your vision is comparable to your computer screen
at 1000 × 1000.

Figure 5.1 Jos greets Andrew, “Wel-
come back Andrew” from the Peace
Corps. At a resolution of 512× 512, this
picture is about the same as the reso-
lution as the paper it is printed on, or
the same as your viewing screen, if you
have scaled it up to 50% of screen size.

Web http://sep.stanford.edu/sep/jon/family/jos/gifmovie.html holds a movie blinking be-
tween Figures 5.1 and 5.2.

This cost analysis is oversimplified in that most applications do not require dense oper-
ators. With sparse operators, the cost advantage of adjoints is even more pronounced since
for adjoints, the cost savings of operator sparseness translate directly to real cost savings.
The situation is less favorable and more muddy for inversion. The reason that Chapter 2
covers iterative methods and neglects exact methods is that in practice iterative methods
are not run to their theoretical completion but they run until we run out of patience. But
that leaves hanging the question of what percent of theoretically dictated work is actually
necessary. If we struggle to accomplish merely one percent of the theoretically required
work, can we hope to achieve anything of value?

Cost is a big part of the story, but the story has many other parts. Inversion, while being
the only logical path to the best answer, is a path littered with pitfalls. The first pitfall is
that the data is rarely able to determine a complete solution reliably. Generally there are
aspects of the image that are not learnable from the data.

When I first realized that practical imaging methods in with wide industrial use amounted
merely to the adjoint of forward modeling, I (and others) thought an easy way to achieve
fame and fortune would be to introduce the first steps towards inversion along the lines of
Chapter 2. Although inversion generally requires a prohibitive number of steps, I felt that
moving in the gradient direction, the direction of steepest descent, would move us rapidly
in the direction of practical improvements. This turned out to be optimistic. It was too
slow. But then I learned about the conjugate gradient method that spectacularly overcomes
a well-known speed problem with the method of steepest descent. I came to realize that it
was still too slow. I learned this by watching the convergence in Figure 5.8. This led me to
the helix method in Chapter 4. Here we’ll see how it speeds many applications.



5.1 PRECONDITIONED DATA FITTING 125

Figure 5.2 Jos greets Andrew, “Wel-
come back Andrew” again. At a resolu-
tion of 64× 64 the pixels are clearly vis-
ible. From far the pictures are the same.
From near, examine their glasses.

We’ll also come to understand why the gradient is such a poor direction both for steepest
descent and for conjugate gradients. An indication of our path is found in the contrast
between an exact solution and the gradient.

m = (A∗A)−1A∗d (5.1)

∆m = A∗d (5.2)

They differ by the factor (A∗A)−1. This factor is sometimes called a spectrum and in some
situations it literally is a frequency spectrum. Our updates do not have the spectrum of the
thing we are trying to build. No wonder it’s slow! Here we’ll find for many applications
that “preconditioning” with the helix is a better way.

5.1 PRECONDITIONED DATA FITTING

Iterative methods (like conjugate-directions) can sometimes be accelerated by a change of
variables. The simplest change of variable is called a “trial solution”. Formally, we write
the solution as

m = Sp (5.3)

where m is the map we seek, columns of the matrix S are “shapes” that we like, and
coefficients in p are unknown coefficients to select amounts of the favored shapes. The
variables p are often called the “preconditioned variables”. It is not necessary that S be an
invertible matrix, but we’ll see later that invert-ability is helpful. Inserting the trial solution
m = Sp into 0 ≈ Fm − d gives

0 ≈ Fm − d (5.4)

0 ≈ FSp − d (5.5)
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We pass the operator FS to our iterative solver. After finding the best fitting p, we merely
evaluate m = Sp to get the solution to the original problem.

We hope this change of variables has saved effort. For each iteration, there is a little
more work: Instead of the iterative application of F and F∗ we have iterative application of
FS and S∗F∗.

Our hope is that the number of iterations decreases because we are clever, or because
we have been lucky in our choice of S. Hopefully, the extra work of the preconditioner
operator S is not large compared to F. If we should be so lucky that S = F−1, then we
get the solution immediately. Obviously we would try any guess with S ≈ F−1. Where I
have known such S matrices, I have often found that convergence is accelerated, but not by
much. Sometimes it is worth using FS for a while in the beginning, but later it is cheaper
and faster to use only F. A practitioner might regard the guess of S as prior information,
like the guess of the initial model m0.

For a square matrix S, the use of a preconditioner should not change the ultimate solu-
tion. Taking S to be a tall rectangular matrix, reduces the number of adjustable parameters,
changes the solution, gets it quicker, but lower resolution.

5.1.1 Preconditioner with a starting guess

We often have a starting solution m0. You might worry that you could not find the starting
preconditioned variable p0 = S−1m0 because you did not know the inverse of S. We solve
this problem using a shifted unknown m̃.

0 ≈ Fm − d typical regression
0 ≈ F(m̃ +m0) − d Define m = m̃ +m0

0 ≈ Fm̃ + Fm0 − d
0 ≈ Fm̃ − d̃ Defines d̃

Implicitly define p by m̃ = Sp.
0 ≈ FSp − d̃ You iterate for p.

m̃ = Sp from your definition
m = m̃ +m0 Got the answer.

which solves the problem never needing S−1. Unfortunately, as we will see later, this con-
clusion is only valid while there is no regularization.

5.1.2 Guessing the preconditioner

We are tasked with coming up with “trial solutions”. That’s a pretty vague assignment.
Some kind of a scaling, smoothing, or shaping transformation S of some mysterious “pre-
conditioned space” p should represent the model m we seek. We begin by investigating
how the shaper S alters the gradient.
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m = Sp introduces S, implicitly defines p
∆m = S∆p consequence of the above
∆m = F∗r gradient is adjoint upon residual

0 ≈ r = Fm − d residual in terms of m
r = F(Sp) − d residual in terms of p

0 ≈ r = (FS)p − d reordering calculation
∆p = (FS)∗r gradient is adjoint upon residual
∆p = S∗F∗r reordering
∆m = (SS∗)F∗r recalling ∆m = S∆p

We may compare the gradient ∆m with and without preconditioning.

∆m = F∗r original
∆m = (SS∗)F∗r with preconditioning transformation

When the first vanishes, the second will. When the second vanishes, the first will provided
(SS∗) is a nonsingular matrix. As our choice of S is quite arbitrary, it is marvelous the
freedom we have to monkey with the gradient.

Remember that r starts off being −d. Compare the (SS∗) scaled gradient to the analytic
solution.

∆m = (SS∗) F∗r modified gradient
m = (F∗F)−1F∗d analytic solution

Mathematically we see it would be delightful if (SS∗) were something like (F∗F)−1 but we
rarely have ideas how to accomplish that. We do however, have some understanding of the
world of images, and understand where on the image we would like iterations to concen-
trate first, and what spatial frequencies are more relevant than others. If we cannot go all
the way, as we cannot in giant imaging problems, it is important to make the important
steps early.

5.2 PRECONDITIONING THE REGULARIZATION

The basic formulation of a geophysical estimation problem consists of setting up two goals,
one for data fitting, and the other for model shaping. With two goals, preconditioning is
somewhat different. The two goals may be written as:

0 ≈ Fm − d (5.6)

0 ≈ Am (5.7)

which defines two residuals, a so-called “data residual” and a “model residual” that are
usually minimized by conjugate-direction, least-squares methods.

To fix ideas, let us examine a toy example. The data and the first three rows of the matrix
below are random numbers truncated to integers. The model roughening operator A is a
first differencing operator times 100.
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d(m) F(m,n) iter Sum(|grad|)

-100. 62. 18. 2. 75. 99. 45. 93. -41. -15. 80. 1 69262.0000
-83. 31. 80. 92. -67. 72. 81. -41. 87. -17. -38. 2 19012.8203
20. 3. -21. 58. 38. 9. 18. -81. 22. -14. 20. 3 10639.0791
0. 100.-100. 0. 0. 0. 0. 0. 0. 0. 0. 4 4578.7988
0. 0. 100.-100. 0. 0. 0. 0. 0. 0. 0. 5 2332.3352
0. 0. 0. 100.-100. 0. 0. 0. 0. 0. 0. 6 1676.6978
0. 0. 0. 0. 100.-100. 0. 0. 0. 0. 0. 7 622.7415
0. 0. 0. 0. 0. 100.-100. 0. 0. 0. 0. 8 454.1242
0. 0. 0. 0. 0. 0. 100.-100. 0. 0. 0. 9 290.6053
0. 0. 0. 0. 0. 0. 0. 100.-100. 0. 0. 10 216.0749
0. 0. 0. 0. 0. 0. 0. 0. 100.-100. 0. 11 1.0488
0. 0. 0. 0. 0. 0. 0. 0. 0. 100.-100. 12 0.0061
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 13 0.0000

The rightmost column shows the sum of the absolute values of the gradient. Notice
at the tenth iteration, the gradient suddenly plunges. Since there are ten unknowns and
the matrix is obviously full-rank, conjugate-gradient theory tells us to expect the exact
solution at the tenth iteration. This is the first miracle of conjugate gradients. Failure to
achieve a precisely zero gradient at the 11th step is a precision issue that could be addressed
with double precision arithmetic. The residual itself (not shown) does not approach zero.
Thirteen linear equations defeat the ten adjustable coefficients.

5.2.1 The second miracle of conjugate gradients

The second miracle of conjugate gradients is exhibited below. The data and data fitting
matrix are the same, but the model damping is simplified.

d(m) F(m,n) iter Sum(|grad|)

-100. 62. 18. 2. 75. 99. 45. 93. -41. -15. 80. 1 69262.0000
-83. 31. 80. 92. -67. 72. 81. -41. 87. -17. -38. 2 5486.2095
20. 3. -21. 58. 38. 9. 18. -81. 22. -14. 20. 3 2755.6702
0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 0.0012
0. 0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 5 0.0011
0. 0. 0. 100. 0. 0. 0. 0. 0. 0. 0. 6 0.0006
0. 0. 0. 0. 100. 0. 0. 0. 0. 0. 0. 7 0.0006
0. 0. 0. 0. 0. 100. 0. 0. 0. 0. 0. 8 0.0005
0. 0. 0. 0. 0. 0. 100. 0. 0. 0. 0. 9 0.0005
0. 0. 0. 0. 0. 0. 0. 100. 0. 0. 0. 10 0.0012
0. 0. 0. 0. 0. 0. 0. 0. 100. 0. 0. 11 0.0033
0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 0. 12 0.0033
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 13 0.0000

Even though the matrix is full-rank, we see the residual drop about 6 decimal places after
the third iteration! This convergence behavior is well known in the computational mathe-
matics literature. Despite its practical importance, it doesn’t seem to have a name or iden-
tified discoverer. So I call it the “second miracle.”

Practitioners usually don’t like the identity operator for model-shaping. Generally they
prefer to penalize wiggliness. For practitioners, the lesson of the second miracle of conju-
gate gradients is that we have a choice of many iterations, or learning to transform inde-
pendent variables so that the regularization operator becomes an identity matrix. Basically,
such a transformation reduces the iteration count from something about the size of the
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model space to something about the size of the data space. Such a transformation is called
preconditioning.

More generally, the model goal 0 ≈ Am introduces a roughening operator like a gra-
dient, a Laplacian, or in chapter 7 a Prediction-Error Filter (PEF). Thus the model goal
is usually a filter, unlike the data-fitting goal which involves all manner of geometry and
physics. When the model goal is a filter its inverse is also a filter. Of course this includes
multidimensional filters with a helix.

The preconditioning transformation m = Sp gives us

0 ≈ FSp − d
0 ≈ ASp

(5.8)

The operator A is a roughener while S is a smoother. The choices of both A and S are
somewhat subjective. This suggests that we eliminate A altogether by defining it to be
proportional to the inverse of S, thus AS = I. The fitting goals become

0 ≈ FSp − d
0 ≈ ε p

(5.9)

which enables us to benefit from the “second miracle”. After finding p, we obtain the final
model with m = Sp.

The solution m is likely to come out smooth because we typically over-sample axes of
physical quantities. We typically penalize roughness in it by our choice of a regularizaton
operator. That means the precondioning variable p typically has a wider frequency band-
width than p. In chapter 7 we will see how to make the spectrum of p come out white
(tending to flat spectrum).

5.2.2 Importance of scaling

Another simple toy example shows us the importance of scaling. We use the same example
as above except but we make the diagonal penalty function vary slowly with location.

d(m) F(m,n) iter Sum(|grad|)

-100. 62. 16. 2. 53. 59. 22. 37. -12. -3. 8. 1 42484.1016
-83. 31. 72. 74. -47. 43. 40. -16. 26. -3. -4. 2 8388.0635
20. 3. -19. 46. 27. 5. 9. -32. 7. -3. 2. 3 4379.3032
0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 1764.9844
0. 0. 90. 0. 0. 0. 0. 0. 0. 0. 0. 5 868.9418
0. 0. 0. 80. 0. 0. 0. 0. 0. 0. 0. 6 502.5179
0. 0. 0. 0. 70. 0. 0. 0. 0. 0. 0. 7 450.0512
0. 0. 0. 0. 0. 60. 0. 0. 0. 0. 0. 8 185.2923
0. 0. 0. 0. 0. 0. 50. 0. 0. 0. 0. 9 247.1021
0. 0. 0. 0. 0. 0. 0. 40. 0. 0. 0. 10 338.7060
0. 0. 0. 0. 0. 0. 0. 0. 30. 0. 0. 11 119.5686
0. 0. 0. 0. 0. 0. 0. 0. 0. 20. 0. 12 34.3372
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 10. 13 0.0000

We observe that solving the same problem for the scaled variables has required a severe
increase in the number of iterations required to get the solution. We lost the benefit of the
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second CG miracle. Even the rapid convergence predicted for the 10-th iteration is delayed
until the 12-th.

Another curious fact may be noted here. The gradient does not decrease monotonically.
It is known theoretically that the residual does decrease monotonically, but the gradient
need not. I did not show the norm of the residual, because I wanted to display a function
that vanishes at convergence, and the residual does not.

5.3 YOU BETTER MAKE YOUR RESIDUALS IID!

In the statistical literature is a concept that repeatedly arises, the idea that some statistical
variables are IID, namely Independent, Identically Distributed. In practice we’ll see many
random looking variables, some much closer than others to IID. Theoretically, the ID part
of IID means the random variables come from Identical probability Density functions. In
practice, the ID part mostly means the variables have the same variance. The “I” before
the ID means that the variables are statistically Independent of one another. Neighboring
values should not be positively correlated, meaning low frequencies are present. In the
subject area of this book, signals, images, and earth volumes, the “I” before the ID means
that our residual spaces are white – have all frequencies present in roughly equal amounts.
In other words the “I” means the statistical variables have no significant correlation in time
or space. Chapter 7 gives a method of finding a filter as a model styler (regularizer) that
accomplishes this goal. IID random variables have fairly uniform variance in both physical
space and in Fourier space.

IID random variables have uniform variance in both physical space and Fourier space.

In a geophysical project it is important the residual between observed data and mod-
eled data is not far from IID. To raw residuals we should apply weights and filters to get
IID residuals. We minimize sums of squares of residuals. If any residuals are small, their
squares are tiny, so such regression equations are effectively ignored. We would hardly
ever want that. Consider echo seismograms. They get weak at late time. So even with
a bad fit the difference between real and theoretical seismograms is necessarily weak at
late times. We don’t want the data at late times to be ignored. So we boost up the resid-
ual there. We choose W to be a diagonal matrix that boosts late times in the regression
0 ≈ r =W(Fm − d)

An example with too much low (spatial) frequency in a residual might arise in a topo-
graphic study. It is not unusual for the topographic wavelength to exceed the survey size.
Here we should choose W to be a filter to boost up the higher frequencies. Perhaps W
should contain a derivative or a Laplacian. If you set up and solve a data modeling problem
and then find r is not IID, you should consider changing your W. Chapter 7 coming up
provides a systematic approach to whitening residuals.

Now let us include regularization 0 ≈ Am and a preconditioning variable p. We have our
data fitting goal and our model styling goal, the first with a residual rd in data space, the
second with a residual rm in model space. We have had to choose a regularization operator
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A = S−1 and a scaling factor ε.

0 ≈ rd = W(FSp − d) = F̃Sp − d̃ (5.10)

0 ≈ rm = ε p (5.11)

This system of two regressions could be packed into one; the two residual vectors stacked
on top of each other, likewise the operators F and εI. The IID notion seems to apply to this
unified system. That gives us a clue how we should have chosen the regularization operator
A. Not only should rd be IID, but also should rm. But within a scale ε, rm = p. Thus the
preconditioning variable is not simply something to speed computational convergence. It is
a variable that should be IID. If it is not coming out that way, we should consider changing
A. Chapter 7 addresses the task of choosing an A so that rm comes out IID.

We should choose a weighting function (and/or operator) W so data residuals are IID.
We should also choose our regularization operator A = S−1 so the preconditioning
variable p comes out IID.

5.3.1 Choice of a unitless epsilon

The parameter epsilon ε strikes the balance between our data-fitting goal and our model-
styling goal. These two regression systems typically have differing physical units, hence
the numerical value of ε is accidental, for example comparing milliseconds to meters.

0 ≈ rd =W(FSp − d) (5.12)

0 ≈ rm = ε p (5.13)

The numerical value of ε is meaningless before we learn to express the idea in a unitless
(dimensionless) manner. Without pretending we are doing physics, let us use some of the
language of thermodynamics, a physical field that does deal with equilibria and random
fluctuations. Define an energy ratio u and a volume ratio v that can be used to bring ε to
unitless form. Naturally, the square roots arise because we will be minimizing quadratic
functions of residuals.

u = energy ratio =

√
rd · rd

p · p

v = volume ratio =

√
nrd

np

Can we really think of “volume” as related to the number np of components in the model
space? Perhaps. Likewise the data space? Less likely. And is the energy measure really an
appropriate one? Maybe. What is the goal of these speculative thoughts? The goal is to give
you a starting numerical value for ε, say ε = 1. Your final guide is your own experimental
experience. Try either one of these:
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0 ≈ rm = εextrinsic u p (5.14)

0 ≈ rm = εintrinsic (u/v) p (5.15)

5.4 THE PRECONDITIONED SOLVER

Summing up the ideas above, we start from fitting goals

0 ≈ Fm − d
0 ≈ Am

(5.16)

and we change variables from m to p using m = A−1p

0 ≈ Fm − d = FA−1 p − d
0 ≈ Am = I p

(5.17)

Preconditioning means iteratively fitting by adjusting the p variables and then finding the
model by using m = A−1p. You’ll notice the code below allows for common additional
features, a weighting function on the data residuals, allows for a starting p0, allows for
masking constraints J on p, and allows for scaling the regularization by an ε.

A new reusable preconditioned solver is the module solver-prc. Likewise the model-
ing operator F is called Fop and the smoothing operator A−1 is called Sop. Details of the
code are only slightly different from the regularized solver solver-reg.

Preconditioned solver.r90
module s o l v e r _ p r c _ m o d { # 0 = W ( F S J p − d )

use chain0_mod + s o l v e r _ r e p o r t _ m o d # 0 = I p
l o g i c a l , p a r a m e t e r , p r i v a t e : : AJ = . t r u e . , FW = . f a l s e .
l o g i c a l , p a r a m e t e r , p r i v a t e : : AD = . t r u e . , ZP = . f a l s e .

c o n t a i n s
s u b r o u t i n e s o l v e r _ p r c ( m, d , Fop , Sop , s t e p p e r , nSop , n i t e r , eps &
, Wop, Jop , p0 , rm0 , e r r , r e sd , resm , mmov , rmov , ve rb ) {

o p t i o n a l : : Wop, Jop , p0 , rm0 , e r r , r e sd , resm , mmov , rmov , ve rb
i n t e r f a c e { #−−−−−−−−−−−−−−−−−−−−−−−−−− b e g i n d e f i n i t i o n s −−−−−−−−−−−

i n t e g e r f u n c t i o n Fop ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n Sop ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n Wop( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n Jop ( ad j , add ,m, d ) { r e a l : :m( : ) , d ( : ) ; l o g i c a l : : ad j , add }
i n t e g e r f u n c t i o n s t e p p e r ( f i r s t ,m, dm , r , d r ) {

r e a l , d imens ion ( : ) : : m, dm , r , d r
l o g i c a l : : f i r s t }

}
r e a l , d imens ion ( : ) , i n t e n t ( i n ) : : d , p0 , rm0
i n t e g e r , i n t e n t ( i n ) : : n i t e r , nSop
l o g i c a l , i n t e n t ( i n ) : : ve rb
r e a l , i n t e n t ( i n ) : : eps
r e a l , d imens ion ( : ) , i n t e n t ( o u t ) : : m, e r r , r e sd , resm
r e a l , d imens ion ( : , : ) , i n t e n t ( o u t ) : : rmov , mmov
r e a l , d imens ion ( s i z e ( m) ) : : p , dm
r e a l , d imens ion ( s i z e ( d ) + nSop ) , t a r g e t : : r , dr , t t
r e a l , d imens ion ( : ) , p o i n t e r : : rd , drd , t d
r e a l , d imens ion ( : ) , p o i n t e r : : rm , drm , tm
i n t e g e r : : i t e r , s t a t
l o g i c a l : : f i r s t
rd => r ( 1 : s i z e ( d ) ) ; rm => r (1+ s i z e ( d ) : )
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drd => dr ( 1 : s i z e ( d ) ) ; drm => dr (1+ s i z e ( d ) : )
t d => t t ( 1 : s i z e ( d ) ) ; tm => t t (1+ s i z e ( d ) : )
i f ( p r e s e n t ( Wop ) ) s t a t=Wop(FW, ZP,−d , rd ) # b e g i n i n i t i a l i z a t i o n −−−−−−−−

e l s e rd = −d #Rd = −W d
rm = 0 . ; i f ( p r e s e n t ( rm0 ) ) rm=rm0 #Rm = Rm0
i f ( p r e s e n t ( p0 ) ) { p=p0 # p = p0

i f ( p r e s e n t ( Wop ) ) c a l l c h a i n 0 (Wop, Fop , Sop ,FW,AD, p , rd , tm , t d )
e l s e c a l l c h a i n 0 ( Fop , Sop ,FW,AD, p , rd , tm )# Rd += WFS p0
rm = rm + eps ∗p #Rm += e I p0

} e l s e p=0
f i r s t = . t r u e . ; #−−−−−−−−−−−−−−−−−−−−−−−−−− b e g i n i t e r a t i o n s −−−−−−−−−−−−
do i t e r = 1 , n i t e r {

i f ( p r e s e n t (Wop ) ) c a l l c h a i n 0 (Wop, Fop , Sop , AJ , ZP , dm , rd , tm , t d )
e l s e c a l l c h a i n 0 ( Fop , Sop , AJ , ZP , dm , rd , tm ) #dm = (WFS) ’Rd
dm = dm + eps ∗rm #dm += e I ’Rm
i f ( p r e s e n t ( Jop ) ) { tm=dm ; s t a t=Jop (FW, ZP , tm , dm )}#dm = J dm
i f ( p r e s e n t (Wop ) ) c a l l c h a i n 0 (Wop, Fop , Sop ,FW, ZP , dm , drd , tm , t d )
e l s e c a l l c h a i n 0 ( Fop , Sop ,FW, ZP , dm , drd , tm ) #dRd = (WFS) dm
drm = eps ∗dm #dRm = e I dm
s t a t = s t e p p e r ( f i r s t , p , dm , r , d r ) #m+=dm ; R+=dR
i f ( s t a t ==1) e x i t # g o t s t u c k d e s c e n d i n g
s t a t = Sop (FW, ZP , p ,m) #m = S p
i f ( p r e s e n t ( mmov ) ) mmov ( : , i t e r ) = m( : s i z e (mmov , 1 ) ) # r e p o r t −−−−−
i f ( p r e s e n t ( rmov ) ) rmov ( : , i t e r ) = r ( : s i z e ( rmov , 1 ) )
i f ( p r e s e n t ( e r r ) ) e r r ( i t e r ) = d o t _ p r o d u c t ( rd , rd )
i f ( p r e s e n t ( ve rb ) ) { i f ( ve rb ) c a l l s o l v e r _ r e p o r t ( i t e r ,m, dm , rd , rm ) }
f i r s t = . f a l s e .

}
i f ( p r e s e n t ( r e s d ) ) r e s d = rd
i f ( p r e s e n t ( resm ) ) resm = rm ( : s i z e ( resm ) )

}
}

5.5 OPPORTUNITIES FOR SMART DIRECTIONS

Recall the fitting goals (5.10) with weights W being absorbed into the operator F and the
data d.

0 ≈ rd = Fm − d = FA−1 p − d
0 ≈ rm = Am = I p

(5.18)

Without preconditioning we have the search direction

∆mbad =
[

F∗ A∗
] [ rd

rm

]
(5.19)

and with preconditioning we have the search direction

∆pgood =
[

(FA−1)∗ I
] [ rd

rm

]
(5.20)

The essential feature of preconditioning is not that we perform the iterative optimization
in terms of the variable p. The essential feature is that we use a search direction that is a
gradient with respect to p∗ not m∗. Using Am = p we have A∆m = ∆p. This enables us to
define a good search direction in m space.

∆mgood = A−1∆pgood = A−1(A−1)∗F∗rd + A−1rm (5.21)
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Define the gradient by g = F∗rd and notice that rm = p.

∆mgood = A−1(A−1)∗ g +m (5.22)

The search direction (5.22) shows a positive-definite operator scaling the gradient. Each
component of any gradient vector is independent of each other. All independently point
(negatively) to a direction for descent. Obviously, each can be scaled by any positive num-
ber. Now we have found that we can also scale a gradient vector by a positive definite
matrix and we can still expect the conjugate-direction algorithm to descend, as always, to
the “exact” answer in a finite number of steps. This is because modifying the search direc-
tion with A−1(A−1)∗ is equivalent to solving a conjugate-gradient problem in p. We’ll see
in Chapter 7, that our specifying A−1(A−1)∗ amounts to us specifying a prior expectation
of the spectrum of the model m.

5.5.1 The meaning of the preconditioning variable p

To accelerate convergence of iterative methods we often change variables. The model-
styling regression 0 ≈ εAm is changed to 0 ≈ εp. Experience shows, however, that the
variable p is often more interesting to look at than the model m. Why should a new variable
introduced for computational convenience turn out to have more interpretive value? There
is a little theory underlying this. Begin from

0 ≈W(Fm − d) (5.23)

0 ≈ ε Am (5.24)

Introduce the preconditioning variable p.

0 ≈W(FA−1p − d) (5.25)

0 ≈ ε p (5.26)

Rewrite this as a single regression

0 ≈

[
rd

rm

]
=

[
WFA−1

ε I

]
p −

[
Wd

0

]
(5.27)

The gradient vanishes at the best solution. To get the gradient we put the residual into the
adjoint operator. Thus we put the residuals (column vector) in (5.27) into the transpose of
the operator in (5.27), the row ((WFA−1)∗, εI). Finally replace the ≈ by =. Thus

0 = (WFA−1)∗ rd + ε rm

0 = (WFA−1)∗ rd + ε
2 p (5.28)

The two terms in Equation (5.28) are identical but oppositely signed. These terms represent
images in model space. This image represents the fight between the data space residual and
the model space residual. You really do want to plot this image. It shows the battle of (1)
the model wanted by the data against (2) our preconceived statistical model expressed by
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our model styling goal. That’s why the preconditioned variable p is interesting to inspect
and interpret. It is not simply a computational convenience. It is telling you what you have
learned from data (that someone has recorded at great expense!).

The preconditioning variable p is not simply a computational convenience. This
model-space image p tells us where our data contradicts our prior model. Admire
it! Make a movie of it evolving with iteration.

If I were young and energetic like you I would write a new basic tool for optimization.
Instead of scanning only the space of the gradient and previous step, it would scan also over
the “smart” direction. This should offer the benefit of preconditioning the regularization at
early iterations while offering more assured fitting data at late iterations. The improved
module for cgstep would need to solve a 3 × 3 matrix. I’d also be looking for ways to
make assure all ∆m directions were scaled to have the prior model spectrum and prior
energy function of space.

5.5.2 Need for an invertible preconditioner

It is important to use regularization to solve many examples. It is important to precondition
because in practice computer power is often a limiting factor. It is important to be able to
begin from a nonzero starting solution because in nonlinear problems then we must restart
from the result of an earlier solution. Putting all three requirements together leads to a little
problem. It turns out the three together lead us to needing a preconditioning transformation
that is invertible. Let us see why this is so.

0 ≈ Fm − d
0 ≈ Am

(5.29)

First we change variables from m to u = m − m0. Clearly u starts from u0 = 0, and
m = u +m0. Then our regression pair becomes

0 ≈ Fu + (Fm0 − d)
0 ≈ Au + Am0

(5.30)

This result differs from the original regression in only two minor ways, (1) revised data,
and (2) a little more general form of the regularization, the extra term Am0.

Now let us introduce preconditioning. From the regularization we see this introduces the
preconditioning variable p = Au. Our regression pair becomes:

0 ≈ FA−1p + (Fm0 − d)
0 ≈ p + Am0

(5.31)

Here is the problem: Now we require both A and A−1 operators. In 2- and 3-dimensional
spaces we don’t know very many operators with an easy inverse. Indeed, that is why I
found myself pushed to come up with the helix methodology of Chapter 4 – because it
provides invertible operators for smoothing and roughening.
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5.6 INTERVAL VELOCITY

A bread-and-butter problem in seismology is building the velocity as a function of depth
(or vertical travel time) starting from certain measurements. The measurements are de-
scribed elsewhere (BEI for example). They amount to measuring the integral of the velocity
squared from the surface down to the reflector. It is known as the RMS (root-mean-square)
velocity. Although good quality echoes may arrive often, they rarely arrive continuously for
all depths. Good information is interspersed unpredictably with poor information. Luckily
we can also estimate the data quality by the “coherency” or the “stack energy”. In summary,
what we get from observations and preprocessing are two functions of travel-time depth,
(1) the integrated (from the surface) squared velocity, and (2) a measure of the quality of
the integrated velocity measurement. Some definitions:

d is a data vector whose components range over the vertical traveltime depth τ, and whose
component values contain the scaled RMS velocity squared τv2

RMS/∆τ where
τ/∆τ is the index on the time axis.

W is a diagonal matrix along which we lay the given measure of data quality. We will use
it as a weighting function.

C is the matrix of causal integration, a lower triangular matrix of ones.
D is the matrix of causal differentiation, namely, D = C−1.
u is a vector whose components range over the vertical traveltime depth τ, and whose

component values contain the interval velocity squared v2
interval.

From these definitions, under the assumption of a stratified earth with horizontal reflectors
(and no multiple reflections) the theoretical (squared) interval velocities enable us to define
the theoretical (squared) RMS velocities by

Cu = d (5.32)

In other words, any component of di measures the integral of a material property from the
earth surface to the depth of i. We wish to find the material property everywhere. That will
be u. If we integrate it from the surface downward with causal integration C we should get
the measurements d.

With imperfect data, our data fitting goal is to minimize the residual

0 ≈ W [Cu − d] (5.33)

where W is some weighting function we will need to choose. To find the interval velocity
where there is no data (where the stack power theoretically vanishes) we have the “model
damping” goal to minimize the wiggliness p of the squared interval velocity u.

0 ≈ Du = p (5.34)

We precondition these two goals by changing the optimization variable from interval
velocity squared u to its wiggliness p. Substituting u = Cp gives the two goals expressed
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as a function of wiggliness p.

0 ≈W
[
C2p − d

]
(5.35)

0 ≈ ε p (5.36)

5.6.1 Balancing good data with bad

Choosing the size of ε chooses the stiffness of the curve that connects regions of good
data. Our first test cases gave solutions we interpreted to be too stiff at early times and too
flexible at later times. This suggested we weaken ε at early times and strengthen it later.
Since we wanted to keep ε constant with time, so we strengthened W at early times and
weakened it at later times as you see in the program below

Figure 5.3 Raw CMP gather (left), Semblance scan (middle), and semblance value used for weight-
ing function (right).

Converting RMS to interval velocity.r90
module vrms2int_mod { # Trans fo rm from RMS t o i n t e r v a l v e l o c i t y

use c a u s i n t
use we igh t
use mask1
use cgstep_mod
use s o l v e r _ p r c _ m o d

c o n t a i n s
s u b r o u t i n e v r m s 2 i n t ( n i t e r , eps , weight , vrms , v i n t ) {

i n t e g e r , i n t e n t ( i n ) : : n i t e r # i t e r a t i o n s
r e a l , i n t e n t ( i n ) : : eps # s c a l i n g p a r a m e t e r
r e a l , d imens ion ( : ) , i n t e n t ( i n o u t ) : : vrms # RMS v e l o c i t y
r e a l , d imens ion ( : ) , i n t e n t ( o u t ) : : v i n t # i n t e r v a l v e l o c i t y
r e a l , d imens ion ( : ) , p o i n t e r : : we i gh t # d a t a w e i g h t i n g
i n t e g e r : : s t , i t , n t
l o g i c a l , d imens ion ( s i z e ( v i n t ) ) : : mask
l o g i c a l , d imens ion ( : ) , p o i n t e r : : msk
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Figure 5.4 Observed RMS velocity and that predicted by a stiff model with ε = 4. (Clapp)

Figure 5.5 Observed RMS velocity and that predicted by a flexible model with ε = .25 (Clapp)

r e a l , d imens ion ( s i z e ( vrms ) ) : : d a t , wt
r e a l , d imens ion ( : ) , p o i n t e r : : wght
n t = s i z e ( vrms )
do i t = 1 , n t {

d a t ( i t ) = vrms ( i t ) ∗ vrms ( i t ) ∗ i t
wt ( i t ) = we ig h t ( i t ) ∗ ( 1 . / i t ) # d e c r e a s e we ig h t wi th t ime
}

mask = . f a l s e . ; mask ( 1 ) = . t r u e . # c o n s t r a i n f i r s t p o i n t
v i n t = 0 . ; v i n t ( 1 ) = d a t ( 1 )
a l l o c a t e ( wght ( s i z e ( wt ) ) )
wght=wt
c a l l w e i g h t _ i n i t ( wght )
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a l l o c a t e ( msk ( s i z e ( mask ) ) )
msk= . n o t . mask
c a l l m a s k 1 _ i n i t ( msk )
c a l l s o l v e r _ p r c ( m=v i n t , d=da t , Fop= c a u s i n t _ l o p , s t e p p e r=c g s t e p , n i t e r=n i t e r , &

Sop= c a u s i n t _ l o p , nSop=nt , eps = eps , ve rb = . t r u e . , Jop=mask1_lop , &
p0=v i n t , Wop=w e i g h t _ l o p )

c a l l c g s t e p _ c l o s e ( )
s t = c a u s i n t _ l o p ( . f a l s e . , . f a l s e . , v i n t , d a t )
do i t = 1 , n t

vrms ( i t ) = s q r t ( d a t ( i t ) / i t )
v i n t = s q r t ( v i n t )
}

}

5.6.2 Lateral variations

The analysis above appears one dimensional in depth. Conventional interval velocity esti-
mation builds a velocity-depth model independently at each lateral location. Here we have
a logical path for combining measurements from various lateral locations. We can change
the regularization to something like 0 ≈ ∇u. Instead of merely minimizing the vertical
gradient of velocity we minimize its spatial gradient. Luckily we have preconditioning and
the helix to speed the solution.

5.6.3 Blocky models

Sometimes we seek a velocity model that increases smoothly with depth through our scat-
tered measurements of good-quality RMS velocities. Other times, we seek a blocky model.
(Where seismic data is poor, a well log could tell us whether to choose smooth or blocky.)
Here we see an estimation method that can choose the blocky alternative, or some combi-
nation of smooth and blocky.

Consider the five layer model in Figure 5.6. Each layer has unit traveltime thickness (so
integration is simply summation). Let the squared interval velocities be (a, b, c, d, e) with
strong reliable reflections at the base of layer c and layer e, and weak, incoherent, “bad”
reflections at bases of (a, b, d). Thus we measure V2

c the RMS velocity squared of the top
three layers and V2

e that for all five layers. Since we have no reflection from at the base of
the fourth layer, the velocity in the fourth layer is not measured but a matter for choice. In
a smooth linear fit we would want d = (c + e)/2. In a blocky fit we would want d = e.

Our screen for good reflections looks like (0, 0, 1, 0, 1) and our screen for bad ones looks
like the complement (1, 1, 0, 1, 0). We put these screens on the diagonals of diagonal ma-
trices G and B. Our fitting goals are:

3V2
c ≈ a + b + c (5.37)

5V2
e ≈ a + b + c + d + e (5.38)

u0 ≈ a (5.39)

0 ≈ −a + b (5.40)
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Figure 5.6 A layered earth model. The
layer interfaces cause reflections. Each
layer has a constant velocity in its inte-
rior.

0 ≈ −b + c (5.41)

0 ≈ −c + d (5.42)

0 ≈ −d + e (5.43)

For the blocky solution, we do not want the fitting goal (5.42). Further explanations await
completion of examples.

5.7 INVERSE LINEAR INTERPOLATION

Figure 5.7 The input data are irregu-
larly sampled.

The first example is a simple synthetic test for 1-D inverse interpolation. The input data
were randomly subsampled (with decreasing density) from a sinusoid (Figure 5.7). The
forward operator L in this case is linear interpolation. We seek a regularly sampled model
that could predict the data with a forward linear interpolation. Sparse irregular distribution
of the input data makes the regularization enforcement a necessity. I applied convolution
with the simple (1,−1) difference filter as the operator D that forces model continuity
(the first-order spline). An appropriate preconditioner S in this case is recursive causal
integration.

As expected, preconditioning provides a much faster rate of convergence. Since iteration
to the exact solution is never achieved in large-scale problems, the results of iterative opti-
mization may turn out quite differently. Bill Harlan points out that the two goals in (5.16)
conflict with each other: the first one enforces “details” in the model, while the second
one tries to smooth them out. Typically, regularized optimization creates a complicated
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Figure 5.8 Convergence history of inverse linear interpolation. Left: regularization, right: precon-
ditioning. The regularization operator A is the derivative operator (convolution with (1,−1). The
preconditioning operator S is causal integration.

model at early iterations. At first, the data fitting goal (5.16) plays a more important role.
Later, the regularization goal (5.16) comes into play and simplifies (smooths) the model
as much as needed. Preconditioning acts differently. The very first iterations create a sim-
plified (smooth) model. Later, the data fitting goal adds more details into the model. If we
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stop the iterative process early, we end up with an insufficiently complex model, not an in-
sufficiently simplified one. Figure 5.8 provides a clear illustration of Harlan’s observation.

Figure 5.9 measures the rate of convergence by the model residual, which is a distance
from the current model to the final solution. It shows that preconditioning saves many
iterations. Since the cost of each iteration for each method is roughly equal, the efficiency
of preconditioning is evident.

Figure 5.9 Convergence of the iterative
optimization, measured in terms of the
model residual. The “p” points stand for
preconditioning; the “r” points, regular-
ization.

The module invint2 invokes the solvers to make Figures 5.8 and 5.9. We use con-
volution with helicon for the regularization and we use inverse convolution (recursion)
with polydiv for the preconditioning. The code looks fairly straightforward except for the
oxymoron known=aa%mis.

Inverse linear interpolation.r90
module i n v i n t 2 { # I n v e r s e l i n e a r i n t e r p o l a t i o n

use l i n t 1
use h e l i c o n # r e g u l a r i z e d by h e l i x f i l t e r i n g
use p o l y d i v # p r e c o n d i t i o n e d by i n v e r s e f i l t e r i n g
use cgstep_mod
use s o l v e r _ r e g _ m o d
use s o l v e r _ p r c _ m o d

c o n t a i n s
s u b r o u t i n e i n v i n t ( n i t e r , coord , ord , o1 , d1 , mm, mmov , eps , aa , method ) {

l o g i c a l , i n t e n t ( i n ) : : method
i n t e g e r , i n t e n t ( i n ) : : n i t e r
r e a l , i n t e n t ( i n ) : : o1 , d1 , eps
r e a l , d imens ion ( : ) , i n t e n t ( i n ) : : o rd
t y p e ( f i l t e r ) , i n t e n t ( i n ) : : aa
r e a l , d imens ion ( : ) , i n t e n t ( o u t ) : : mm
r e a l , d imens ion ( : , : ) , i n t e n t ( o u t ) : : mmov # model movie
r e a l , d imens ion ( : ) , p o i n t e r : : coord # c o o r d i n a t e
c a l l l i n t 1 _ i n i t ( o1 , d1 , coord )
i f ( method ) { # p r e c o n d i t i o n i n g

c a l l p o l y d i v _ i n i t ( s i z e (mm) , aa )
c a l l s o l v e r _ p r c ( Fop= l i n t 1 _ l o p , s t e p p e r=c g s t e p , n i t e r=n i t e r , m=mm, d=ord ,

Sop=p o l y d i v _ l o p , nSop= s i z e (mm) , eps=eps , mmov=mmov , ve rb = . t r u e . )
c a l l p o l y d i v _ c l o s e ( )

} e l s e { # r e g u l a r i z a t i o n
c a l l h e l i c o n _ i n i t ( aa )
c a l l s o l v e r _ r e g ( Fop= l i n t 1 _ l o p , s t e p p e r=c g s t e p , n i t e r=n i t e r , m=mm, d=ord ,

Aop=h e l i c o n _ l o p , nAop= s i z e (mm) , eps=eps , mmov=mmov , ve rb = . t r u e . )
}
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c a l l c g s t e p _ c l o s e ( )
}

}

5.8 EMPTY BINS AND PRECONDITIONING

There are at least three ways to fill empty bins. Two require a roughening operator A while
the third requires a smoothing operator which (for comparison purposes) we denote A−1.
The three methods are generally equivalent though they differ in significant details.

The original way in Chapter 3 is to restore missing data by ensuring that the restored
data, after specified filtering, has minimum energy, say Am ≈ 0. Introduce the selection
mask operator K, a diagonal matrix with ones on the known data and zeros elsewhere (on
the missing data). Thus 0 ≈ A(I −K +K)m or

0 ≈ A(I −K)m + Amk , (5.44)

where we define mk to be the data with missing values set to zero by mk = Km.
A second way to find missing data is with the set of goals

0 ≈ Km − mk

0 ≈ εAm
(5.45)

and take the limit as the scalar ε → 0. At that limit, we should have the same result as
equation (5.44).

There is an important philosophical difference between the first method and the second.
The first method strictly honors the known data. The second method acknowledges that
when data misfits the regularization theory, it might be the fault of the data so the data
need not be strictly honored. Just what balance is proper falls to the numerical choice of ε,
a nontrivial topic.

A third way to find missing data is to precondition equation (5.45), namely, try the
substitution m = A−1p.

0 ≈ KA−1p − mk

0 ≈ εp
(5.46)

There is no simple way of knowing beforehand what is the best value of ε. Practitioners like
to see solutions for various values of ε. Of course that can cost a lot of computational effort.
Practical exploratory data analysis is more pragmatic. Without a simple clear theoretical
basis, analysts generally begin from p = 0 and abandon the fitting goal εIp ≈ 0. Implicitly,
they take ε = 0. Then they examine the solution as a function of iteration, imagining that
the solution at larger iterations corresponds to smaller ε. There is an eigenvector analysis
indicating some kind of basis for this approach, but I believe there is no firm guidance.
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5.8.1 SeaBeam

Figure 5.10 shows an image of deep sea water bottom in the Pacific of a sea-floor spreading
center produced acoustically by a device called SeaBeam. Students here tried all three
methods of filling empty bins on the this data using the laplacian as a regularizer. From an
interpretive point of view, differences among the three methods were minor and as expected
so only one is shown in Figure 5.10.

Figure 5.10 Seabeam data before and after empty bin filling with a laplacian.

5.9 GIANT PROBLEMS

This book does not solve giant problems, but it does solve personal-computer sized prob-
lems in the manner of giant problems. There is big money in solving giant problems. Big
money brings specialist solutions beyond the scope of this book. But let us take a look.
Closest to me is the seismic survey industry. Model space is three dimensional, a cube,
roughly a thousand 2-D screen fulls, a screen full being a thousand by a thousand, a gigbyte
in total. That’s model space. Data space is five dimensional. A seismogram is a thousand
time points. Our energy source lies in two dimensions on the earth surface plane, as do
our receivers. All this compounds roughly to 1000 to the 5th power, a thousand terrabytes,
a petabyte. Fully convergent solutions needing 1015 iterations of operators is ridiculous,
while more than a handful are nearly so. We think mainly of using only the adjoint. Theory
and experimentation offer some guidance. Remember that adjoints are great when they are
unitary (already an inverse). Adjoints can be improved by making them more unitary. They
can be made more unitary by finding one good diagonal weighting function before and an-
other after. Recalling “IID,” adjoints are also made more unitary by band matrices that have
the effect of whitening their output. Simple band matrices are the gradient and the Lapla-
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cian. More generally, a compact way to whiten spectra is multidimensional autoregression,
a method expounded in Chapter 7.

5.9.1 A hundred iterations

Lurking in every giant problem are many problems of smaller size. In the large scale seis-
mic imaging problem lie problems of velocity estimation, multiple reflection elimination,
and many more.

Envision a large problem feasible in a hundred iterations. Many of my colleagues work
on such problems. Maybe half would also use exotic parallel computer architectures. Those
with ample energy and intellectual capacity to tackle such machines are rewarded by
speedup factors of ten to a hundred, rewarded also by a diverse population of industries
hiring. This skill stays in demand because new architectures rapidly obsolete earlier gen-
erations. The other half, people like me, have the luxury of software (like in this book)
decaying at a slower pace. That leaves us needed time to tune our imaginations to extract-
ing the structure of more complex problems.

It is a giant leap of faith that we can accomplish something of value with a mere hundred
iterations in a task that theoretically demands quadrillions. Experience shows that we often
do, and we do so by experimenting with “intuitive” methods. The first I shall call “faking
the epsilon”.

5.9.2 Faking the epsilon

Burdened by a problem of oppressive size, any trick, honest or sly, is nice to know. I’ll tell
you a trick that is widely used. Many studies are done ignoring (abandoning) the model
styling regression (second fitting regression below):

0 ≈ FA−1p − d
0 ≈ ε p

(5.47)

Since we have a numerically poor idea of what epsilon should be, it is nice to be rid of
it. The pragmatic person iterates the data fitting regression only, watches the solution as a
function of iteration, and stops when tired, or (more hopefully) stops at the iteration that
is subjectively most pleasing. The epsilon-faking trick does not really speed things. But it
eliminates the need for scan over epsilon. It also simplifies the coding :-)

Why does this crude approximation seem to work? The preconditioner is based on an
analytic solution (A−1 is an inverse) to the regularization, so naturally, early iterations
tend to already fit the regularization. That means early iterations are struggling instead to
fit the data. The longer you run though, the better the data fit, and the more the actual
regularization should be coming into play. But on-going research often fails to run that far.

Figure 5.8 shows the idea that early iterations fit the straight lines. They are honoring the
preconditioner. At later iterations the data fits better. Why do straight-line solutions honor
the regularization? Refer to the discussion near Figure 3.12.
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5.9.3 When preconditioning becomes a liability

Theoretically, preconditioning does not reduce the number of iterations required for an ex-
act solution, but it gets us closer quicker, so we may hope to omit all the work of the later
iterations. Surprisingly and unfortunately several of my colleagues have observed later iter-
ations where preconditioning actually slows convergence. Then we are better off reverting
to the non-preconditioned initial form. Sorry, but I am unable to offer guidance or any
method to cope with this issue other than your own application-dependent experimenta-
tion.

5.9.4 Earthquake depth illustrates a null space

In the dawn of the era of computerized earthquake seismology someone decided to add
earthquake depth to their catalog. Traditionally, they had solved for only three unknowns,
latitude, longitude, and time of source at the source, i.e. origin time. Now they would add
a fourth, the depth. They wrote down the 4 × 4 system of equations and solved it. Erratic
results. So then they froze the depth at zero, solved for the old three variables, only then
introducing the depth. Problem solved. (Compared to seismograph separation, zero depth
is an excellent approximation.)

I first understood the earthquake experience as an issue with non-linear problems. True
that earthquake travel time is not a linear function of distance, so the nonlinearity could
lead to difficulty. But something more is going on. When any seismometer is far from
the earthquake, the waves arrive propagating nearly vertically (earth curvature and v(z)
ray bending). Source depth affects such data in much the same way as time origin shift.
Thus they are near a null-space. Whenever near a null space, especially with a non-linear
problem, a good starting solution is needed.

5.9.5 The starting solution matters!

In principle, regularization solves the null-space problem, but that’s only for those people
lucky enough to have applications so small they can afford to iterate to completion. Think
of this trivial 2-D null-space situation: A parabolic penalty on one spatial axis with no
penalty on the other axis. Imagine a house facing north-east with a parabolic rain gutter
mounted perfectly horizontally on one edge of the house roof. The null space is anywhere
on the center line along the bottom of the gutter. Anywhere you begin, steepest descent
brings you immediately to the gutter bottom in a location that depends on where you be-
gan. Now tilt the gutter a little bit so the water drips off one end of the rain drain. Steepest
descent now overshoots a little so, as we saw in Chapter 2, a tortuous path of right an-
gle turning ensues. (Recall Figure 2.5.) The conjugate direction method quickly solves
this trivial 2-D problem, but in a 150,000 dimensional lake bottom problem, conjugate di-
rections taken only a few dozen iterations will not do as well. When the data modeling
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operator contains a null space, only the regularization can pull us away from it, and a small
number of iterations may be unable to do the job. So we need a good starting location.

Textbook theory may tell us final solutions are independent of starting location, but
we learn otherwise from non-linear problems, and we learn otherwise from linear but
large problems.

5.9.6 Null space versus starting solution

The simplest null-space problem has one data point d emerging from two model points.

d ≈
[

a b
] [

x
y

]
(5.48)

The null space is any solution that produces no data. You can add an arbitrary amount β of
the null space getting another solution as good as the first. Here is the full solution.[

x
y

]
≈

d
2ab

[
b
a

]
+ β

[
−b

a

]
(5.49)

Iterative methods can neither subtract nor add any null space to your initial solution. It
is obvious in this simple case because the gradient (here the matrix adjoint) dotted into the
null-space vector vanishes. Suppose a and b are matrices while d, x, and y are vectors. Al-
though more complicated, something similar happens. You can test whether an application
involves a null space by comparing the results of various starting solutions.

Other traps arise in the world of images. Rarely are we able to iterate to full completion
so we might say, “practically speaking this application has null spaces.” For example, if
we know that zero frequency is theoretically a null space, we would say, “The null space
contains low frequencies.” We cannot avoid such issues.

The textbook way of dealing with null spaces is to require the researcher to set up model
styling goals (regularizations). This demands assumptions from the researcher, assump-
tions which are often hard to specify. Luckily there is another path to consider. We could
choose the initial solution more carefully.

In regression (5.48) extended to images we might hope not to have a null-space problem
when we begin iterating from (x, y) = (0, 0) but this is not true. This is a pitfall which in
an application context took me some years to recognize. Notice what happens the first step
you move away from (x, y) = (0, 0). Your solution becomes a constant β times the gradient.
The image extension of (5.48) being[

x
y

]
= β

[
A∗d
B∗d

]
(5.50)

If the operators A and B resemble filters, it is pretty clear that x and y will be correlated.
Physically, this could be nonsense. We might be trying to discover if and how x and y are
correlated. Or we might wish to demand they be uncorrelated.
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I have no general method for you, but offer a suggestion that works for one family
of applications and may be suggestive for others. Traditionally it might happen that y is
ignored, effectively taking y = 0. That happens when the data is better explained by A
alone than by B alone. Solve first for x alone. Call it x0. Now define a new variable x̃
such that x = x0 + x̃. Introducing your innovative concept (estimating y) your regression
becomes:

0 ≈ r = A(x0 + x̃) + By − d (5.51)

0 ≈ r = Ax̃ + By − (d − Ax0) (5.52)

Start off from (x̃, y) = (0, 0). Like equation (5.50) the first step leads to[
x̃
y

]
= β

[
A∗r
B∗r

]
(5.53)

which is very different from equation 5.50 because r is very different from d. Although
we may still have an annoying or inappropriate correlation between x̃ and y, it is a lot less
annoying than a correlation between x and y.

Solve an oversimplified physical problem first. Use its easy solution as the starting
point for your glorious innovation.



6
Noisy images, non-Gaussian

We have characterized images and signals by amplitude in space and time. We have also
characterized them by frequencies. In Chapter 7 we characterize them by their multidi-
mensional spectrum. Most often signal amplitudes and spectra have a consistent behavior.
The classic well-behaved signal has a Gaussian statistical density, meaning that signal
may have been built from many independent causes (central limit theorem). When these
characteristics are unchanging, the signal is said to be stationary.

But sometimes signals just burst out in unpredictable ways we are hard pressed to char-
acterize. This can happen in model space as well as data space. As this is real life, we must
have a chapter to deal with it, a usable theory to deal with it, and a fascinating data set
loaded with it. This is the chapter.

Here we introduce erratic bursty noise which is difficult to fit in any statistical model. To
handle it we need the robust estimation procedures introduced here. Here we will handle
both bursty noise and stationary noise at the same time. As has been our theme, we’ll take
a path suited to large spaces.

6.1 MEANS, MEDIANS, MODES, AND MEASURES

Norms and penalty functions are positive measures of the size of a vector. For example, the
square root of the sum of the squares of components of a data vector d is called its `2 norm
denoted ‖d‖2. We often have a model parameter, here m2, make a residual m2 − d from it,
and then minimize the squared `2 norm of the residual

0 =
d

dm2

N∑
i=1

(m2 − di)2 (6.1)

It is quick to find the numeric value for the model parameter m2 which turns out to be the
arithmetic mean of the data values, m2 =

1
N

∑
di.

Inspiring this chapter is the `1 norm. Minimizing the `1 norm of the same residual we
have

0 =
d

dm1

N∑
i=1

|m1 − di| (6.2)
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Let us work it out. We need the derivative of the absolute value function. This derivative is
called the signum function, denoted sgn(). It is +1 for positive residuals, −1 for negative
residuals, and undefined for zero valued residuals. So equation (6.2) becomes

0 =

N∑
i=1

sgn(m1 − di) (6.3)

Equation (6.3) says m1 must be chosen so that half the residuals are +1 and the other
half are −1. In other words, m1 is the median of the data. The median of the three values
(8, 7, 921) is 8. The median has shrugged off the huge outlier, the humongous value that
had no business being there. The `1 norm also enables multivariate model building in the
presence of erratic, bursty noise. A powerful tool!

Yet another average is the “mode.” It is the most commonly occurring value. For exam-
ple, in the number sequence (1, 1, 2, 3, 5) the mode is 1 because it occurs the most times.
Mathematically, the mode minimizes the zero norm of the residual. Recall that except for
the number zero, any positive number raised to the zero power is +1. But zero raised to any
power is zero, so every time m0 matches a data value you get a zero. The minimum penalty
goes to the value that matches the most data values. This book finds little use for the mode.
If this book contained a probability density function we would note that the mode is at its
maximum value.

1 2 3 4 5 6

10

20

30

40

50

60

1 2 3 4 5 6

2

4

6

8

10

12

14

1 2 3 4 5 6

1

2

3

4

5

6

7

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Figure 6.1 Mean, median, and mode. The coordinate is m. Top is the `2, `1, and `1/10 ≈ `0 measures
of the scalar m − 1. Bottom is the same measures of the data set m − (1, 1, 2, 3, 5). (Made with
Mathematica.)

`2(r) and `1(r) are convex functions (positive second derivative for any component of
r). This fact leads to the triangle inequalities `p(a) + `p(b) ≥ `p(a + b) for p ≥ 1 and
assures that gradients lead to a unique bottom. Because there is no triangle inequality for
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`0, mathematicians would not call it a “norm.” They call it a “measure.” Soon this chapter
introduces another measure (penalty function) h(r) that is not a norm because αh(r) ,
h(αr) for α > 0, but it is convex because its second derivative h′′(r) ≥ 0 is everywhere
positive. As with least squares, that means we can safely use gradients to find a unique
minimum. Using h(r), the final answer is independent of the initial guess.

6.1.1 Percentiles and Hoare’s algorithm

The median is the 50-th percentile. After residuals are ordered from smallest to largest,
the 90-th percentile is the value with 10% of the values above and 90% below. At our lab
the default value for clipping plots of field data is at the 99th percentile. In other words,
magnitudes above the 99-th percentile are plotted at the 99-th percentile. Any percentile
is most easily defined if the population of values ai, for i = 1, 2, ..., n has been sorted into
order so that ai ≤ ai+1 for all i. Then the 90-th percentile is ak where k = (90n)/100.

We can save much work by using Hoare’s algorithm. It does not fully order the whole
list, only enough of it to find the desired quantile. Hoare’s algorithm is an outstanding
example of the power of a recursive function, a function that calls itself. The main idea is
this: We start by selecting a random value taken from the list of numbers. Then we split
the list into two piles, one pile all values greater than the selected, the other pile all less.
The quantile is in one of these piles, and by looking at their sizes, we know which one. So
we repeat the process on that pile and ignore the other other one. Eventually the pile size
reduces to one, and we have the answer.

In Fortran 77 or C it would be natural to split the list into two piles as follows:

We divide the list of numbers into two groups, a group below ak and another group above ak. This
reordering can be done “in place.” Start one pointer at the top of the list and another at the bottom.
Grab an arbitrary value from the list (such as the current value of ak). March the two pointers towards
each other until you have an upper value out of order with ak and a lower value out of order with
ak. Swap the upper and lower value. Continue until the pointers merge somewhere midlist. Now you
have divided the list into two sublists, one above your (random) value ak and the other below.

Fortran 90 has some higher level intrinsic vector functions that simplify matters. When
a is a vector and ak is a value, a>ak is a vector of logical values that are true for each
component that is larger than ak. The integer count of how many components of a are
larger than ak is given by the Fortran intrinsic function count(a>ak). A vector containing
only values less than ak is given by the Fortran intrinsic function pack(a,a<ak).

Theoretically about 2n comparisons are expected to find the median of a list of n values.
The code below (from Sergey Fomel) for this task is quantile.

percentile.r90
module q u a n t i l e _ m o d { # q u a n t i l e f i n d e r . median = q u a n t i l e ( s i z e ( a ) / 2 , a )
c o n t a i n s

r e c u r s i v e f u n c t i o n q u a n t i l e ( k , a ) r e s u l t ( v a l u e ) {
i n t e g e r , i n t e n t ( i n ) : : k # p o s i t i o n i n a r r a y
r e a l , d imens ion ( : ) , i n t e n t ( i n ) : : a
r e a l : : v a l u e # o u t p u t v a l u e o f q u a n t i l e
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i n t e g e r : : j
r e a l : : ak
ak = a ( k )
j = c o u n t ( a < ak ) # how many a ( : ) < ak
i f ( j >= k )

v a l u e = q u a n t i l e ( k , pack ( a , a < ak ) )
e l s e {

j = c o u n t ( a > ak ) + k − s i z e ( a )
i f ( j > 0)

v a l u e = q u a n t i l e ( j , pack ( a , a > ak ) )
e l s e

v a l u e = ak
}

}
}

6.1.2 The weighted mean

The weighted mean m is

m =

∑N
i=1 w2

i di∑N
i=1 w2

i

(6.4)

where w2
i > 0 is the squared weighting function. This is the solution to the `2 fitting

problem 0 ≈ wi(m − di); in other words,

0 =
d

dm

N∑
i=1

[wi(m − di)]2 (6.5)

There is a weighed median too. It’s needed in `1 line search. But we’ll be taking another
path more suited to image estimation.

6.2 HYPERBOLIC OR HYBRID (`1, `2) MODEL FITTING

I’ve seen many multi-variable applications improved when least-squares (`2) model fitting
was changed to least absolute values (`1). I’ve never seen the reverse. Mathematicians love
`1. Why not adopt it? Three reasons: (1) They haven’t come up with a large scale solver
as fast and convenient as `2. (2) Tiny residuals vote oppositely at the faintest perturbation.
(3) We have something more suitable here, the hyperbolic penalty function (HPF). Con-
vexity gives the HPF method a welcome stability and convergence not shared by its more
primative forerunner, IRLS (Iterated Reweighted Least Squares).

Here our conjugate-direction method is merged with Newton iteration to give some of
the useful `1 characteristics to familiar `2 formulations. The merged method we call the
HYCD method. A hybrid penalty function for residuals ri has a new parameter, a threshold
at which `2 behavior transits to `1. Applications suggest two different thresholds, one for
the data fitting, the other for the model styling (prior knowledge or regularization). Each
fitting goal requires a threshold of residual, let us call it Rd for the data fitting, and Rm for
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the model styling. It is always annoying to need to specify parameters, but these two pa-
rameters, I claim, are a basic part of the application setting, not a requirement of numerical
analysis.

The meaning of the thresholds Rd and Rm is quite clear. For a shot gather with about
30% of the area saturated with ground roll noise, choose Rd around the 70th percentile of
the fitting residual. As for the model styling, we often seek earth models that are blocky.
In other words, earth models whose derivatives are spiky. For blocks about 20 points long
the spikes should average about 20 points apart. Thus about 95% of the residuals should
be in the `2 area while only about 5% in the `1 area allowing 5% of the spikes to be of
unlimited size. This is an Rm at about the 95th percentile of |rm| = |εmi|. (On early iterations
you might omit the model styling by setting ε = 0 leaving time to establish an initial m.)
Thus I conclude that in a wide variety of practical examples fitting goals for both data
and model need not go far from the usual `2 norm, but they do need to incorporate some
residual values out in the `1 zone, possibly far out in it.

A convex penalty function that smoothly transits from `2 to `1 behavior is the hyperbola.
It is parabolic (`2 like) in the middle, but asymptotes to `1-like straight lines. A circle
t2 = z2 + x2 seen in (t, x) space is a hyperbola with a parameter z. This suggests the
penalty function h2 = R2 + r2 where r is the residual, R is the threshold parameter, and
where h(r) is the penalty. Customarily there is no penalty when the residual vanishes, so
to accommodate that custom (making no fundamental change) we subtract the constant
R from h. Thus the hybrid penalty function promoted here is the origin-shifted hyperbola
h(r) =

√
R2 + r2 − R. We could call this approach the Hyperbolic method or the Hybrid

method. The word “hybrid” is suggestive of being between `1 and `2 norms, but it is not so
precise a word as “hyperbolic”. It may be tempting to call the hyperbolic penalty function
(HPF) the hybrid norm, but actually it is not a norm. Mathematically, norms satisfy α‖r‖ =
‖αr‖ for α > 0. HPF does not have this property.

In practice the thresholds Rd and Rm are superseded by their inverses, gains. Upon appli-
cation of the properly chosen gain to the raw data (or model) we have new variables in the
neighborhood of unity, and so the penalty function reduces to h(r) =

√
1 + g2r2 − 1. The

simpler penalty function is nice, but the real reason to switch from thresholds to gains, is
that gains may be time and space variable, and even frequency variable. Many applications
express gain by an operator G or an operator W. More on that later.

6.2.1 Some convex functions and their derivatives

Consider now some choices for convex functions and their derivatives.
`2 norm = Least Squares:

C = r2/2 (6.6)

C′ = r (6.7)

C′′ = 1 > 0 (6.8)
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`1 norm:

C = |r| (6.9)

C′ = sgn(r) (6.10)

C′′ = 0 or +∞ ≥ 0 (6.11)

Hyperbolic (or Hybrid) Penalty Function (HPF):

h = (1 + q2)1/2 − 1 (6.12)

h′ = q / (1 + q2)1/2 (6.13)

h′′ = 1 / (1 + q2)3/2 ≥ 0 (6.14)

The hyperbolic (or hybrid) penalty function (HPF) is not expressed here as a function of
residual r, but of scaled residual q = gr. By adjusting the scale g, equations (6.12-6.14) can
look like either `2 or `1 depending on the numerical value of gr. In practice, the factor g is
often taken to the inverse of the value of some percentile of residual magnitudes. Hence q
is unit-free or dimensionless.

Because of the erratic behavior of C′′ for `1, and our coming use of second order Taylor
series, the conjugate direction solver we examine next is not intended for use near the `1
limit. It will turn out we can have many residuals at that limit, but not too many (whatever
that means!). Luckily most applications do not require us to have most residuals near that
limit.

Equation (6.13) plays such a large role in results to come that I give it the name “soft
clip.” The clip function itself arises in graphic display devices where a certain brightness
of image is desired. When a physical limit (called “the clip”) is reached, larger values are
replaced by the maximum value. Likewise for minimum values.

Equation (6.13) at small |gr| behaves as g`2, namely h′(r) = gr. At large |gr| it behaves
as `1, namely h′(r) = sgn(r). Over its whole range h′(r) behaves as a clip function, though
with a soft transition near |gr| = 1. As a demonstration of the soft clip function, a fam-
ily of not untypical seismic reflection signals d shown in Figure 6.2 is passed through
h′ = h′(d) = h′(d). The intended pleasing result is that large portions of signal of little
practical interest have become clipped (turned into “soft” rectangle functions) allowing a
gain increase bringing smaller up into view (and up to where data fitting codes will notice
them).

At convergence we find the vanishing of the gradient ∆m = 0. We will soon see the
familiar gradient ∆m = F∗r becomes ∆m = F∗h′(q), the new aspect being that the scaled
residual is now softclipped.

6.2.2 Filtered and gained residuals

The innovation here is that the residual becomes soft-clipped, but most applications addi-
tionally require residuals being transformed to IID by means of gains in physical space and
fourier space embedded in an operator, say G. We could embed the soft-clipping constant g
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Figure 6.2 Reflection data d before (top) and after (bottom) soft clip h′ = h′(d). Clipping large
amplitudes enables small ones to be seen.

with the operator G, but the application analyst will be dealing with them separately. (This
is like the regularization 0 ≈ εAm having the ε embedded into the A.) For the moment,
we’ll take the g part to be embedded in filter/gain part G but we may pull it out later.

The gained residual qk =
∑

i gk,iri occurs so often it has several names besides the
“gained residual”. It may be called the “statistical residual” or the “sparse residual”. (We
haven’t used it long enough to know which name will stick.) In summary:

q = G(Fm − d) = Gr (6.15)

qk =
∑

i

gk,i

∑
j

Fi, jm j − di

 (6.16)

Sorry to introduce a new variable name for an old idea, but to avoid coding bugs, you
will be seeing much less of the residual r and more of the gained and filtered residual
q = Gr.

The following derivation applies to any convex function C. Having little experience in
choice of convex functions we specialize to the notation of the hyperbolic function h(q).
The average penalty measure for mismatch between theory and data is

h̄(m) =
1
N

N∑
i=1

h(qi) (6.17)

Let h′(qi) denote dh/dq evaluated at qi. Define the softclip vector h′(q) by applying h′() to
each component of q. This is the slope of the penalty function. If the penalty function were
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that of least squares, we would have h′ = q.

h′(q) =
dh(qi)

dqi
= h′i = h′ (6.18)

We plan to minimize the average penalty h̄(q(m)). To change the statistical residual com-
ponent qk by changing the model component m j we need from equation (6.16) the matrix
of derivatives.

dqk

dm j
=

∑
i

gk,iFi, j (6.19)

Viewed as a matrix dqk/dm j is rectangular with one dimension the size of model space
m, the other dimension the size of residual space q. To multiply this matrix by a column
vector the size of m we write it as GF. To multiply it by a column vector the size of q we
write it as F∗G∗. The search direction becomes

∆m = N
dh̄

dm j
=

∑
k

dh
dqk

dqk

dm j
=

∑
k

dqk

dm j

dh
dqk

= F∗G∗ h′(q) (6.20)

This is simply the old normal equations result of chapter 2 that 0 = ∆m = F∗r compli-
cated in appearance by the filter-gain G and the hyperbolic penalty r→ h′(r).

You’ve got the answer when the soft-clipped residual is orthogonal to all the fitting
functions.

6.2.3 Gaining versus weighting

In the `2 world there is no distinction between gaining and weighting because
∑

i(wiri)2 is
the same as

∑
i w2

i r2
i . With HPF we might choose to distinguish gaining and weighting. We

could minimize this expression that contains both:

h̄ =
∑

i

wi h(giri) (6.21)

Both w and g enable us to suppress residuals. Why bother with w? In data fitting the `1/`2
threshold suppresses the giant residuals. In model styling the threshold may encourage
chunkier models. Although weights seem largely supplanted by gains within a regression,
when we include regularization or we have a row of models, scales like epsilon ε come into
play again. Epsilon ε is a simple weight. An example of a “row of models” is water depth
data as a sum of (1) tide and (2) location.

It seems wonderful that we may choose spatial patterns of weights and gaining func-
tions quite arbitrarily, and it is well that we no longer need rely on the primitive expedient
of tapering data near boundaries (falsifying data), but I have found this opportunity easily
abused. One day upon minimizing energy in the weighted (down gained) residual of an im-
age, I discovered all the energy had gone outside the boundaries! I had wished the residual
instead spread throughout the image.
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The moral of the story is to view always both weighted and unweighted residuals.

Including model styling (regularization) we minimize the scalar:

min
m

h̄(Gd(Fm − d)) + ε h̄(Gmm) (6.22)

which we often express as two regression sets

0 ≈h qd = Gd(Fm − d) (6.23)

0 ≈h qm = εGmm (6.24)

Here we have introduced the notation that regression equations, normally denoted by ≈,
when using the hyperbolic penalty function (HPF) are denoted by ≈h.

Occasionally we might add something to the regularization like Gmm0 or noise for geo-
stat. These add to the line search, but do not change the gradient. Key to doing our job is
the gradient:

0 = ∆m = F∗G∗d h′(Gdr) + ε G∗m h′(Gmm) (6.25)

It’s curious to notice the gradient now twice contains the gain, though once “softened”.

6.3 THEORY FOR HYPERBOLIC FITTER CODE

The hyperbolic penalty function (HPF) is convex, so we know that convergence should
be assured even though we are solving this non-linear problem. So let us begin with a
simple solver. To avoid clutter, let the gain G be embedded in the operator F and data d.
Define a model update direction by the gradient ∆m = F∗G∗h′(Gr) = F∗G∗h′(q). Since
q = G(Fm − d) the gained residual update direction is ∆q = GF∆m. To find the distance
α to move in those directions

m← m + α∆m (6.26)

q← q + α∆q (6.27)

choose the scalar α to minimize the average penalty

h̄(α) =
1
N

∑
i

h(qi + α∆qi) (6.28)

It is a one-dimensional function of α. Finding the minimum should not be difficult. We
make a million Taylor series, one for each residual qi. Inspect one of them. The first three
terms of the Taylor series make a parabola tangent to the hyperbola at that residual. Even
if this particular residual lies far out on the asymptote of the hyperbola the residual may
move some distance before its Taylor series becomes a poor fit. Adding together the many
second order polynomials in α, the sum is also a second order polynomial in α so we easily
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find the minimum. Let h′i and h′′i be first and second derivatives of h(qi) at qi. Then equation
(6.28) becomes a familiar least squares problem.

h̄(α) =
1
N

∑
i

hi + (α∆qi)h′i + (α∆qi)2h′′i /2 (6.29)

To find α, set dh̄/dα = 0. Then solve for α.

0 =
dh̄
dα

=
∑

i

∆qih′i + α(∆qi)2h′′i (6.30)

The Newton method applied to the method of steepest descents is to first find α and then
use it to update the residual q and the model m.

α = −

∑
i ∆qih′i∑

i(∆qi)2h′′i
(6.31)

q = q + α∆q (6.32)

m = m + α∆m (6.33)

After this we are not finished because moving q changes the convex function values and all
its derivatives (hi, h′i , h

′′
i ). The Newton algorithm is simply to iterate the sequence (6.31) to

(6.33). This is Newton line search. It is cheap. Eventually we get to the bottom along the
line we are scanning and are ready for a new line. That’s when we pay the money to com-
pute a new ∆m = F∗G∗h′(q) and a new ∆q = GF∆m. This is non-linear steepest descent.
The reliability of the method is assured by the convexity of the hyperbolic function.

The new result (6.31) for α is closely related to our early result in chapter 2, equation
(2.57). Take our current result to the ungained least squares case h = r2/2, h′i = ri, and
h′′ = 1 so in equation (6.31), α reduces to the familiar −

∑
i ∆qi qi /

∑
i(∆qi)2 = α =

−(∆r · r)/(∆r · ∆r). Recognizing that r has become h′(q), the new numerator is the same
as the old but for gain and soft clipping, while the new denominator scales each term by
h′′i . Equation (6.14) says the new denominator scales the larger residuals smaller. A single
infinite residual would merely omit a single term from the denominator reducing it slightly
and increasing α slightly leaving us concerned only that there not be too many such bad
residuals. With a crazy initial solution there might well be too many bad residuals. Then
the residual might grow instead of shrinking. Seeing that we would simply reduce step
size, α← α/2, etc.

When there is model styling as well as data fitting, the gradient has a contribution from
each. Either one or both may have a hyperbolic penalty function (HPF). The distance α in
equation (6.31) is a ratio of sums over data space. Now we need to add sums over model
space. With the extra terms the result is:

α = −

∑
i ∆qi h′(qi) + ε

∑
i ∆mi h′(mi)∑

i(∆qi)2 h′′(qi) + ε
∑

i(∆mi)2 h′′(mi)
(6.34)

We are hoping the presence of some residuals out in the `1 region does not greatly
increase the number of iterations compared to the usual `2 parabolic penalty function.
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Should anyone choose a gain G so large it drives many of the residuals into the `1 region,
convergence may be slow. Experience suggests blindly starting with a model m0 might
force very many iterations, so giving some thought to the starting m0 might well be worth
while. This was steepest descent. Now for conjugate directions.

6.3.1 Newton plane search

Here we advance from steepest descent to conjugate directions as a method for using the
hyperbolic penalty function (HPF). With the original `2 steepest-descent method we found
a distance α to move in the direction ∆m = g = F∗r. With the gained hyperbolic penalty
function (HPF) this direction becomes ∆m = g = F∗G∗ h′(q).

Extending to the conjugate direction method there are two parameters, α and β, and
two vectors. One vector is the gradient vector g. The other vector is the previous step s.
These vectors may be viewed in data space or viewed in model space. We will take linear
combinations of g and s in both spaces and need notation for recognizing and distinguishing
them.

We are following the path we followed in Chapter 2, but now we have the added compli-
cation of hyperbolic penalty. In Chapter 2 the code followed directly from equation (2.80).
Similar steps here will lead us here to equation (6.43).

As before we adopt unconventional notation. Conventionally in matrix analysis lower
case letters are vectors while upper case letters are matrices. But in Fourier analysis lower
case letters become upper case upon fourier transformation. Let us handle g and s this way:
Keep using bold capitals for operators but now use ordinary italic for vectors with model
space being lower case italic and data space being upper case italic so the familiar d = Fm
becomes D = Fm.

At the kth iteration we will update the model m with gradient g and previous step s where

sk+1 = αkgk + βk sk (6.35)

and the scalars α and β are yet to be found. The corresponding change of the residual
in data space is found by multiplying through with GF. Please do not confuse the gain
operator G with vector g going to vector G in data space.

∆q = S k+1 = GFsk+1 = GF(αkgk + βk sk) (6.36)

= αkGFgk + βkGFsk (6.37)

∆q(α, β) = αkGk + βkS k (6.38)

In standard `2 optimization we had a 2× 2 matrix to solve for (α, β). We proceed here in
the same way with the hyperbolic penalty function (HPF).

So here we are, embedded in a giant multivariate regression where we have a bivariate
regression (two unknowns). From the multivarate regression we are given three vectors in
data space, Gi, S i, and the gained (statistical) residual q̄i. Our next residual will be this
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perturbation of the old one.

qi = q̄i + αGi + βS i (6.39)

Minimize the average penalty by variation of (α, β)

h̄(α, β) =
1
N

∑
i

h(q̄i + αGi + βS i) (6.40)

Let the coefficients (hi, h′i , h
′′
i ) refer to a Taylor expansion of h(r) in small values of (α, β)

about q̄i. Each residual of each data point has its own Taylor series fitting the hyperbola at
its own location. So all residuals that do not move far have a good approximation.

h̄(α, β) =
1
N

∑
i

h(q̄i) + (αGi + βS i)h′i + (αGi + βS i)2h′′i /2 (6.41)

To find both α and β set dh̄/dα = 0 and dh̄/dβ = 0:[
0
0

]
=

 dh̄
dα
dh̄
dβ

 = ∑
i

h′i

[
Gi

S i

]
+ h′′i

 ∂
∂α
∂
∂β

 (αGi + βS i)
 (αGi + βS i) (6.42)

This is a set of two equations for α and β. We are now at the stage we were back in Chapter
2 with equation (2.80) but now the sums include weights h′i and h′′i to manage the HPF.∑

i

h′′i

[(
Gi

S i

)
(Gi S i)

] 
[
α

β

]
= −

∑
i

h′i

[
Gi

S i

]
(6.43)

New here is the presence of h′ and h′′. On the right h′i is the residual soft clipped. On the left
is a familiar sum, formerly unweighted (because C′′i = 1), containing factors h′′i weakening
the effect of large residuals. As with equation (6.34), the summations in equation (6.43)
should include both data space terms and model space terms.

If you have forgotten the inverse of a 2 × 2 matrix, please refer to equation (2.100).
The only difficulties arise when the determinant vanishes which here is easy (luckily) to
understand. Generally the gradient cannot point in the same direction of the previous step
if the previous move went the proper distance. Hence the determinant does not vanish
because of ill-conditioning. It does vanish when the gradient and previous step are both
tending to zero, i.e. when the solution has been already attained. You did more iterations
than required, or data and initial model both vanish.

As with steepest descent, after updating m ← m + αg + βs and updating the residuals,
at the new residual location the values of (hi, h′i , h

′′
i ) have changed. Thus we repeat to

update α and β a second time or more. Don’t mess with s yet! After some iterations we
have finished the plane search. It’s usually cheap. Now it’s time to pay the money (run the
operator F∗G∗) to compute a new g = F∗G∗h′(q). Now is the time define a new s, how far
we moved since the old place. This is the non-linear conjugate direction method. With h(r)
being the hyperbola, I call it the HYCD method.
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6.3.2 Code for the hyperbolic fitter

The code for the hyperbolic fitter should closely follow that for cgstep from Chapter 2.
It is easy enough to include the extra weights h′ and h′′ in the sums. You will need to find
a way to input or compute the gain G. What should we call the new solver? A good name
might be hycdstep() for Hyperbolic Conjugate Direction Stepper.

6.3.3 Measuring success with the hyperbolic measure

I propose the measure of data fitting success be defined by

Fitting success = 1 − q̄ / d̄ (6.44)

The measure of success at solving the normal equations must be measured in model
space where our curious expression q̄ is not appropriate. The normal equations say that the
fitting functions are orthogonal to the “hyperbolic residual”, namely, 0 = F∗h′(q). Taking
the computational success to be measured by the degree of satisfying the normal equations
suggests we measure success by

Computational success = 1 − avg(F∗Gh′(q)) / avg(F∗Gh′(d)) (6.45)

but a good question is, “What averaging method should be used in equation (6.45)?” The
`2 norm? Unfortunately, it can be shown it does not lead to monotonic improvement with
iteration (even though the fitting residual diminishes monotonically with iteration). Thus it
is not an ideal measure of success, never-the-less, for the time being, we will be using it as
a measure of success.

6.4 MIGRATION INVERSION

Seismometers cost money so we often fail to have enough of them. This is especially true
when theory calls for the 2-dimensional earth surface to be covered with them. In reality
there might be tens of thousands on the 2-D surface, but even that is not enough. The
simpler example shown here has merely a line of 16 receivers. A scattering point in the
earth at (x0, z0) creates a spherical wave moving upward to the seismometers. The wave
bouncing from the scatterer is an impulse on the surface t2v2 = (z − z0)2 + (x − x0)2. Here
the data plane is (t, x) at z = 0 and the model plane is (z0, x0). An impulse in the model
creates a hyperbola in the data plane. Figure 6.3 shows about 8 such hyperbolas observed
at about 16 locations. Our goal is to manufacture the artificial data seen on the right side
of Figure 6.3. Notice on the sparsely sampled data the implied hyperbola tops are usually
missing.

There is some magic here in that a small data space generates a large sharply resolved
model space. The method depends critically on the model space containing many zeros.
More precisely, model space is mostly small inconsequential values. This is not the place
to examine where this assumption would be true in practice. What is important to realize
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Figure 6.3 Left: Sparse hyperbola data. Right: Reconstructed.

is this: Model space might really be large but sparsely populated (mostly inconsequential
values) but in reality we generally do not know where the small values are and where the
big values should be. This is where robust fitting can be useful. With least-squares fitting
we do not get sparse models in large model spaces without having large data spaces.

Seeing the good results motivates us to examine the theory. Let H be an operator that
copies model impulses into data hyperbolas. (Please do not confuse it with the hyperbolic
penalty function (HPF) H(q).) Depending on various details of the definition of H, its
adjoint is known in industry as downward continuation or demigration. The example here
is called migration/demigration. The fitting goals are

0 ≈2 qd = Hm − d (6.46)

0 ≈h qm = εm (6.47)

where ≈2 denotes parabolic fitting, and where ≈h denotes hyperbolic fitting. For coding ≈2

is really the same as ≈h with a large threshold.
When the solution is found, the fitting functions are orthogonal to the soft clipped the

residuals. But those residuals have the model space parts. Recall the fitting functions are
the rows in the [H∗, ε I] matrix.

0 = ∆m = H∗qd + ε h′(εm) (6.48)

The vanishing gradient ∆m is made from two parts which must be identical (but for sign).
Ordinarily we might say the final model m battles the data misfit H∗qd, but here we say the
soft clip h′(m) has thrown more of the smaller soldiers into the struggle, more accurately,
less of the burden is now borne by the greatest soldiers. In some physical situations it may
be said that “the side lobes cannot shirk the task as `2 had allowed them.”
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Ordinarily the model struggles to reduce the data misfit. Soft clipping the model brings
more of the population (parts of model space) into the task.

6.5 ESTIMATING BLOCKY INTERVAL VELOCITIES

In seismology measurements are made of the integral through depth of the squared material
velocity. This observation is called the RMS velocity VRMS. The goal is to find the velocity
as a function of depth which is called the interval velocity v = vint. We begin by presuming
that the RMS velocity is measured at a dense uniform sampling of depths. They may be
known well at some depths but are measurably poor at most depths. In practice, one would
have and would include a weighting function to allow for the variable quality of RMS
velocity with depth. By contrast, the interval velocity squared v2

int is a model space, so we
may freely take it to be regularly sampled in depth (actually vertical travel-time depth) that
for numerical purposes we have in a vector u. We take the data vector d to contain depth
times V2

RMS. The relation of model to data is simply causal integration C.
The physical expression and the algebraic expression are:

k∑
i=1

v2
i = kV2

k (6.49)

Cu = d (6.50)

Because the RMS velocities are noisy we must add a regularization. Here we choose that
to be the depth derivative Dz. In algebraic form we have what is called the Dix problem:

0 ≈h qd = Gd(Cu − d) (6.51)

0 ≈h qm = ε GmDzu (6.52)

A barrel of issues are hidden in the two gains, Gd and Gm. Required filtering is done by Dz

so Gm is simply a gain, not a filter. The gain would be such as to first bring components qm

up to a level about unity. This is the `1/`2 threshold. This might be done by dividing the
data by the value of some chosen quantile. In other words if you wanted half the gained
residuals in the `1 zone you would divide the residuals by their median. Then, in a manner
remniscent of ε, the gain was adjusted for a suitable number of blocks in the solution.
Gd is also a gain, not a filter. When the analyst has reliable external information about
data quality Gd would function like the usual weighing function. Where the data quality
has large unexpected errors the hyperbolic penalty can catch them. The analyst has three
scales to monkey with, that of Gd, Gm, and ε. What rationale for ε? I don’t know.

The input RMS velocity is in the left panel of Figure 6.4. Irregularities on this function
result from noises in the measurement process. The oscillations at late time are violent.
They may not look large, but the negative swings imply a negative v2

interval which means an
imaginary velocity! This violent behavior results from the impossibility of making mea-
surements this precise. Hyperbolic penalty aids overcoming this large error.
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Figure 6.4 Left: Input RMS velocity. Right: Output interval velocity, blocky as desired. (thanks to
Elita)

Rock velocity may vary continuously with depth, or rocks may come in fairly homoge-
neous layers. In the layered case, we say the desired model is “blocky” so its derivative
Dzu has spikes. The hyperbolic penalty function (HPF) allows those spikes while the usual
parabolic penalty function suppresses them. What we are demonstrating on the right side
of Figure 6.4 is that using the HPF enables us to obtain blocky velocity models.

6.6 DEFEATING NOISE AND SHIP TRACKS IN GALILEE

The Sea of Galilee data set exhibits a great number of the problems encountered in real
life. It’s a blessing to learn from. Only 132,044 pings give rise to its 132,044 depth mea-
surements. If this were reflection seismology we would have that many 1000 point seismo-
grams at 1000 receivers, a million times more data! Students have asked, “Why don’t we
just hand edit out the bad data points?” The answer is we need an easy warm up for real
life when there is far too much data to hand edit. In other words, we wish to think about
theories and codes that work when transported to other environments. The Galilee data set
is a marvelous practice case. There is much to learn here.

Although the Sea of Galilee is a fresh-water lake, it is below sea-level. It seems to be
connected to the Great Rift (pull-apart) valley crossing East Africa. The ultimate goal is
to produce a good map of the depth to bottom, and images useful for identifying archeo-
logical, geological, and geophysical details of the water bottom. In particular, we hope to
identify some ancient shorelines around the lake and meaningful geological features inside
the lake. The ancient shorelines might reveal early settlements of archeological interest or
old fishing ports. The pertinence of this data set to our daily geophysical applications is
four fold: (1) We often need to interpolate irregular data. (2) The data has noise bursts of
various types. (3) The data has systematic error (drift) which tends to leave data-acquisition
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Figure 6.5 Geologist view of the Sea
of Galilee. This lake is below sea level.
Here is the reason. Regional faults con-
tinuing southward into Africa are “left
lateral” (standing on either side you see
the other side moving left). Perhaps in
Figure 6.13 you see lines such as these.

hole
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ul
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t

tracks in the resulting image. (4) Results invite an extended model, but that introduces a
difficult null-space problem.

The Galilee data set was introduced in Chapter 3 and recently plotted in Figure 3.10.
Actually, that figure is a view of 2-D model space. One of the first things I learned (the
hard way) is the importance of viewing all four of the model space, the data space, and the
residuals in both spaces. Data space is often larger and more difficult to view than model
space, but in this study it was the key to understanding basic physical phenomena.

Be sure to plot data and residuals in both model space and data space. You might learn
from movies of each as iteration progresses.

The raw data (Figure 6.6), is distributed irregularly across the lake surface. It is 132,044
triples (xi, yi, zi), where xi ranges over about 12 km, where yi ranges over about 20 km, and
zi is depth in multiples of 10 cm up to about 43 meters. The 10 cm suggests a sense of the
measurement accuracy. The ship surveyed a different amount of distance every day of the
survey. Figure 6.6 displays the whole survey as one long track. On one traverse across the
lake, the depth record is U shaped. A few V shaped tracks result from deep-water vessel
turn arounds. All depth values (data points) used for building the final map are shown here.
Each point corresponds to one depth measurement inside the lake. In Figure 6.6 the long
signal is broken into 23 strips of 5718 depth measurements (23 × 5718 = 131, 514). We
have no way to know that sometimes the ship stops a little while with the data recorder
running; sometimes it shuts down overnight or longer; but mostly it progresses at some
unknown convenient speed. So the horizontal axis in data space is a measurement number
that scales in some undocumented way to distance along some unknown track.

6.6.1 Attenuation of noise bursts and glitches

Let m be an abstract vector containing as components the water depth over a 2-D spatial
mesh. Let d be an abstract vector whose successive components are depths along the vessel
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Figure 6.6 The complete Galilee data space.

tracks shown in Figure 6.6. One way to grid irregular data is to minimize the length of the
residual vector rd(m):

0 ≈ rd = Gm − d (6.53)

where G is a geography operator, the adjoint of binning or linear interpolation, the operator
that copies data from a 2-D map to a 1-D data survey track. Here rd is the data residual,
the modeled data less the observed data. Because we are defining G and not its inverse we
need not concern ourselves that bins may be empty or tracks may cross inconsistently.

Some model-space bins will be empty. For them we need an additional “model styling”
goal, i.e. regularization. For simplicity we might minimize the gradient.

0 ≈ rd = Gm − d
0 ≈ rm = ε ∇m

(6.54)

where ∇ =
(
∂
∂x ,

∂
∂y

)
and rm is the model space residual. Choosing a large scaling factor ε

will tend to smooth our entire image, not just the areas of empty bins. We would like ε to be
any number small enough that its main effect is to smooth areas of empty bins. When we
get into this further we’ll see that because of noise some smoothing across the nonempty
bins is desirable too.
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6.6.2 Preconditioning for accelerated convergence

As usual we precondition by changing variables so that the regularization operator becomes
an identity matrix. The gradient∇ in equation (6.54) has no inverse, but its spectrum −∇∗ ∇,
can be factored (−∇∗ ∇ = A∗ A) into triangular parts A and A∗ where A here is typically
the helix derivative of Chapter 4. This A is invertible by deconvolution. The quadratic
form m∗∇∗ ∇m = m∗A∗ Am suggests the new preconditioning variable p = Am. The
fitting goals in equation (6.54) thus become

0 ≈ rd = GA−1p − d
0 ≈ rp = ε p

(6.55)

with rp the residual for the new variable p. Experience shows that an iterative solution
for p converges much more rapidly than an iterative solution for m, thus showing that A
is a good choice for preconditioning. We could view the estimated final map m = A−1p,
however in practice because the depth function is so smooth, we usually prefer to view the
roughened depth p which we call “the image.”

There is no simple way of knowing beforehand the best value of ε. What we have done
here is described at equation (5.47) in Chapter 5 as “faking the epsilon,” namely, we set
ε = 0 doing about 50 iterations without it.

Figure 6.7 Several east-west cross sections of the lake bottom (m = A−1p). Top with the `2 solution.
Bottom with the hyperbolic penalty.

Figure 6.7 shows the bottom of the Sea of Galilee (m = A−1p) with `2 fitting (top)
and hyperbolic fitting (bottom). Each line represents one east-west transect, transects at
half-kilometer intervals on the north-south axis. Our new robust fitting with the hyperbolic
penalty is a nice improvement over the `2 maps. The glitches inside and outside the lake
have mostly disappeared.
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Although not visible everywhere in all the figures, topography is produced outside the
lake. Indeed, the effect of regularization is to produce synthetic topography, a natural con-
tinuation of the lake floor surface.

Figure 6.8 Estimated p with `2 norm (left) and with hyperbolic penalty (right). Pleasingly, isolated
spikes are attenuated. Some interesting features are shown by the arrows: AS points to few ancient
shores, O points to some outliers, T points boat tracks, and R points to a curious feature. Data outside
the lake asserts sporadic track location errors suggesting there may be a few such tracks inside the
lake that are not readily apparent. A stray data point outside the lake has sprayed into the response of
the inverse helix derivative.

Figure 6.8 displays p estimated by least-squares on the left, and by hyperbolic penalty
the right. Introducing the hyperbolic penalty has removed most of the isolated bursts. Some
ancient shorelines in the western and southern parts of the Sea of Galilee are now easier
to identify (shown as AS). We also start to see a valley (or fault?) in the middle of the
lake (shown as R). Data acquisition tracks are mostly north-south lines and east-west lines.
They are even more visible after the suppression of the outliers.
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6.6.3 Abandoned strategy for eliminating ship tracks

Figure 6.8 shows that vessel tracks could overwhelm fine scale details. Next we investigate
a strategy based on the idea that the inconsistency between tracks comes mainly from
different human and seasonal conditions during the data acquisition. Since we have no
records of the weather and the time of the year the data were acquired we presume that the
depth differences between different acquisition tracks must be small and relatively smooth
along the super track (track of all tracks).

The unsuccessful strategy to remove the ship tracks was to filter the residual as follows:

0 ≈ rd = d
ds (GA−1p − d)

0 ≈ rp = ε p,
(6.56)

where d
ds is the derivative along the track. The derivative removes the drift (surface eleva-

tion?) from the field data (and the modeled data). An unfortunate consequence of the track
derivative is that it creates more glitches and spiky noise at the track ends and at the bad
data points. Several students struggled with this idea with results like you see in Figure 6.9.

Figure 6.9 The result of minimizing the
derivative along the tracks.

The operator d
ds is too simple a lowcut filter. We have boosted all the high (spatial)

frequencies in the residual when all we really sought to do was to remove the very low
frequencies, almost zero frequency. Recall the low-cut filters from Chapter 2. These are
filters that would remove only low frequencies leaving higher frequencies alone. Such
filters are a positive impulse of unit area accompanied by a long negative blob, also of unit
area. The longer the blob, the narrower the low cut filter. Unfortunately, the longer the blob,
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the more nasty spikes it will catch. After low-cut filtering, the noise bursts would affect a
greater percentage of track.

We are in a dilemma. We need to low cut filter to eliminate the drift from the problem,
but we don’t dare low cut filter because it will smear spike noise out to a much larger
region. The dilemma is resolved by expanding our model space to include the drift.

When a signal of a sensible spectrum (either signal or noise) contains noise bursts, it
cannot be filtered; it must be modeled. Modeled noise can then be subtracted.

6.6.4 Understanding the residuals

Examining the discrepancy between observed data and modeled data offers us an opportu-
nity to discover what our data contains that our model does not. It is important to examine
both the residual itself r and the residual in model space G∗r. Figure 6.10 shows the fit-
ting residuals brought back into model space G∗r. We are disappointed to see so much
noise around the periphery of the lake, the most likely location of historic disturbance. We
would like to understand that. We see more noise in the northern half of the lake. That will
be easier to understand.

Figure 6.10 Fitting residuals brought
back into model space G∗r. Notice short
white horizontal streaks in the north in
the deep water.

Figures 6.11 and 6.12 show selected segments of data space. In each figure the top plot
is the input data d. Next is the estimated noise-free data GH−1p. Finally the residual rd

after a suitable number of iterations. The modeled data in Figure 6.11 shows no remaining
spikes.

Compare Figure 6.11 showing noise in the south with Figure 6.12 showing noise in the
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Figure 6.11 Roughly 10% of the complete data space. (a) Track 17 (input data in the south) in Figure
6.6. (b) The estimated noise-free data GA−1p. (c) Data residual rd.

Figure 6.12 Residuals in the north, otherwise like Figure 6.11

north. Perhaps in the north the depth sounder has insufficient power for deeper water or
for softer sediments that might be found in northern water. The northern residual (Figure
6.12) is curiously non-symmetric in polarity. This corresponds to the sparse streaks that
are white (but not black) in Figure 6.10 in deep water. For Gaussian random noise, there
will be equal energy in positive errors as in negative errors. That’s clearly not the case here.
Since the hyperbolic penalty behaves somewhat like the `1 norm, we notice that a median
can have larger variance on one side of zero than on the other. The plot shows that the
larger residuals are up (negative values). If we take the modeled data Gm to be correct and
the observed data wrong, r = Gm − d < 0 says the large measured depths d are exceeding
the real depth Gm. Depth is measured from a seismogram by measuring travel time to the
first strong return. A good explanation is this: When the outgoing signal is not strong or
the water bottom is soft, the first perceived echo return may be later than the weaker first
arrival. The instrument, not seeing the signal until later, reports the water deeper than it
really is.
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We notice the white streaks on east-west traverses only, not the north-south traverses.
Perhaps east-west traverses were done with a faster boat causing more noise.

6.6.5 Spikes in the model space!

Looking carefully at Figure 6.12 we discover a spike in the modeled data! Other track
regions not shown show many more, some much bigger. Why does the theoretical data
contain spikes? The misplaced data tracks outside the lake suggest there may be misplaced
tracks inside too. Data values on a misplaced track have a consistent systematic error not
as easily dealt with as suppressing isolated spikes. A string of bad data points on a track
can locally overwhelm a crossing good track. How can we fight back? When we see a
continuous string of high residuals we have evidence of a misplaced track. Those strings
of residuals tell us to build a weighting function that is perhaps the inverse of smoothed
residuals. This task is being left for a student exercise. Perhaps the smoothing need be only
a short window. Perhaps a suitable weighting function would be the inverse of quantity 10
cm plus the residual magnitude.

6.6.6 Dealing with acquisition tracks in the image

Having a preliminary map image of the Galilee water bottom and seeing data acquisition
tracks in it, the most obvious hypothesis is that the water surface level was not properly
corrected. The data donor assured us it was, but the tracks seem to tell us otherwise. Con-
sumption, irrigation, rain, other factors could play a role in apparent surface level fluctu-
ation during the survey, a survey that took many months, perhaps many seasons. It might
have been helpful had the measurements included day and time of day, but they did not.

There are hypotheses other than water level for tracks in the image. Perhaps the speed
or the loading of the recording boat is an issue. Perhaps accuracy of navigation is an issue.
We seek now to understand the best-fitting surface variation and to model it appropriately
in hopes of best removing survey tracks from the bottom image.

We model the water surface elevation by e(t) = e. Physical functions are smooth, both
the model map m(x, y) = m and the surface elevation e. For regularization m is roughened
with the operator A, typically a helix derivative, and e is roughened with a low-cut filter,
typically L−1 where L is leaky integration.

0 ≈m Gm + e − d (6.57)

0 ≈2 Am (6.58)

0 ≈2 L−1e (6.59)

Next precondition by transforming to rough variables. Let the bottom image be p = Am.
Define a white noise variable n so that the elevation drift is e = Ln.

We need two epsilon scale factors for the two regularizations. It matters a lot what their
ratio is between the two epsilons because it amounts to the choice of how much of the data
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Figure 6.13 LEFT: Estimated p without track suppression. RIGHT: Estimated p modeling tracks to
eliminate them.

to push into m versus e. Unfortunately the data itself seems not to tell us that. That choice
is forced upon us. For convenience we choose both epsilons ε the same thus pushing the
actual epsilon ratio into a scaling factor λ which we may regard as scaling either L or n.

0 ≈h GA−1p + λLn − d (6.60)

0 ≈2 ε p (6.61)

0 ≈2 ε n (6.62)

Structuring this as a matrix

0 ≈


GA−1 λL
ε I ·

· ε I


[

p
n

]
(6.63)

we readily recognize the gradient[
∆p
∆n

]
=

[
(GA−1)T ε I ·

λLT · ε I

] 
h′(rd)
ε p
ε n

 (6.64)
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where h′(rd) is the soft clipped data residual.
As described at the end of the preconditioning chapter, Chapter 5, we began here with

ε = 0. We soon had a pleasing image of the water bottom p without tracks shown in Figure
6.13. Hooray! Figure 6.13 shows this model enhancement leading to a track-free map.

Although we had a good looking map image in Figure 6.13 the two parameters λ and the
decay length in the leaky integration operator L could not be chosen to lead to a plausible
elevation e. This cast doubt upon the image. What was unacceptable about e is that it came
out too big, and it strongly mimicked the raw data d. This is bogus. The concept of this bad
result is shown in Figure 6.14 while we see it in the data analysis in Figure 6.15. It says the
surface water in the middle of the lake is about a meter higher than at the shoreline! The
data measures the separation of the bottom of the lake from its top. Most of the data went
into the bottom while the remainder went into the top.

Figure 6.14 For a single lake crossing
we see the problem to be overcome that
the surface elevation e falsely grows
with the depth m. Some of the data d
that should have gone into m has gone
into e. The depth image is the roughened
model p. The image p is the roughened
depth model m.

m

p

e

west east

Figure 6.15 Bogus water surface. Water surface curve (b) mimics water depth (a). The water level e
in the middle of the lake cannot possibly be a meter higher than near the shore. Depth ranges over
0-40m. The surface is mostly negative near shorelines averaging about a half meter. Alternately, the
surface is zero on shorelines and positive almost a meter in the middle of the lake.
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6.6.7 Defeating a null-space with a wise starting guess

After some years of frustration we solved the bulging-surface problem. We first fit the data
without a surface model. To do that we used the full-blown theory above, but with λ = 0.
After that we activated λ. This worked. Hooray! The theoretical basis for this technique is
explained towards the end of Chapter 5. This useful technique did not evolve from theory
but arose from the struggle with this real data!

Regularization is not the only way to manage a null space. Choosing your initial solu-
tion carefully can do it too.

6.6.8 Understanding the derived surface elevation

The water surface e was coming out far too rough for realistic water level fluctuations. One
way to make it smoother is to lengthen the lag in the leaky integration, but this aggravates
the tracks-in-the-image problem. Another way to smooth it is by replacing L with L∗ L.
The impulse response of L and of its autocorrelation L∗ L have about the same length im-
plying the same spectrum, but their spectra are very different. The decaying exponential
response in L has a sharp step onset which must have high frequency that the autocorrela-

tion does not. The amplitude spectrum of L is 1/
√
ω2

0 + ω
2 while that in L∗ L is its square.

After ω0 the square drops off much faster. Switching to L∗ L made the tracks worse, but it
had the side benefit that it changed our way of viewing e. Serendipity! Formerly we had
plotted e as on Figure 6.11 but with it being much smoother we were at last inspired to plot
it as a single line across the width of the page. It is shown in Figure 6.16.

Figure 6.16 Apparent surface elevation of the entire data set. Notice the scale. Recall measurement
nominal precision is 10 cm = 1/10 meter.

Figure 6.16 has much to tell us. Before seeing it we had imagined step functions, the
boundaries separating the epochs of soundings. Or perhaps the load in the boat being



176 Noisy images, non-Gaussian

changed or shifted. We do see step discontinuities in Figure 6.16, but the function value
between them is far from constant. Some of the blocks are ramp-like. It takes a long time
to survey a lake this size. How many days did the survey take, and how much change in
water level is reasonable? Let’s make some guesses. Depth sounders do not work well
from a speeding boat. A reasonable speed would be 8 km/hour. We see hundreds of tracks
crossing this 20 km long lake. The ramp-like blocks could correspond to correct water
depth calibration somewhere on the block, but with significant water level drift during that
surveying epoch.

Measurements came in integer multiples of 10 cm. It may seem surprising that we ob-
serve e apparently at that precision or even better. The many independent measurements
may be doing their job in canceling the ±5 cm discretization noise.

Spikes in Figure 6.16 might represent short sections of track that are mispositioned. We
are expecting students to fix that by weighting residuals inversely with their variance.

Figure 6.16 also contains short wavelengths. Short on this scale means comparable in
length to a lake crossing. Of course this is annoying. These short wavelengths may be the
annoying correlation with the geography seen earlier. Their amplitude is only about 20cm
which is not large compared with the nominal measurement accuracy of 10cm or the 40
meter depth of the lake.

Wind can move lake water from one shore to the opposite supporting altitude variations
on this scale. I do not see how to identify such a model with the available information.

6.6.9 Interpreting model-space residuals and tracks

From an archeological perspective the most interesting part of the lake would be its near
shoreline, those locations affected by human habitation. Unfortunately Figure 6.17 shows
our greatest measurement difficulties occur along the shoreline. Figure 6.17(left) shows
the data residual in model space. We imagine this being random (white) in both data space
and model space. The most striking feature is a noisy rim around the lake. I had predicted
a systematic surface error elevation error on the shoreline track. Figure 6.17(right) does
confirm that error, but the modeling now includes the surface and the depth. Even with
both models the shoreline residuals dominate the survey residuals. Perhaps the larger noise
on the shoreline is caused the mechanics of slowing, stopping, and turning the vessel. Or
maybe the shoreline noise results from irregularity in bottom vegetation.

Additionally we notice the residual is smaller in the southern half of the lake. Perhaps
that part of the survey was done with better equipment or in better environmental condi-
tions. An interesting feature of the residual in the northern half of the lake is the haze of
short white streaks in the deeper water. The explanation for these was suggested by Figure
6.12. Oddly, they mostly run east-west.

Figure 6.17(right) shows the transformation of elevation e to model space G∗e. Mostly
what we see is evidently ship tracks. In the northern half of the lake we particularly notice
what seems to be a superposition of a sparse survey with a dense one. We do not wish to
see hints of geography in this space and I do not see any. There are prominent geographic
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Figure 6.17 LEFT: Data residual brought back into model space G∗rd shows measurement incon-
sistency near the shoreline and also an interesting haze of white speckles or short horizontal lines.
RIGHT: Surface elevation e brought back into model space G∗e. Northern and southern lake halves
evidently used different equipment. Although much is clear on this fascinating figure, much is with-
out explanation. Especially the large regional elevation, white to the upper right is unexplained.

features but they should be explainable by surveying operational issues we can only guess
at.

Tracks might be explained not only by water level fluctuation but by navigation errors.
This data was recorded in the early 1990s before modern GPS navigation. The tracks out-
side the lake attest to episodic navigation errors. That being so, we must expect episodic
track misplacement within the lake. The tiny remaining short tracks in the lake image Fig-
ure 6.13 might be explainable that way. This suggests the time has come to cut off our
efforts at fully understanding the derived surface model.

A few other miscellaneous things appear to be happening. We plotted the distance be-
tween successive measurement locations. Normally this is some reasonable number of tens
of meters but it occasionally it is a kilometer or more. This may sometimes have a valid
operational explanation, but we have noticed that it is often associated with residual spikes.
That is motivation for a weighting function to vanish at such track ends. I believe there is
one place in the lake where the boat made many measurements while not moving, but I do
not recognize the implications.
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6.6.10 Lessons learned from Galilee

It is common for geophysical data to be made up additively from two or more models. For
example, two kinds of rock anisotropy imply seismic data affected by two grids, one grid of
each kind. The relationship may be nonlinear, but to first order, Taylor series will linearize
it. The model-to-data operator F = [A B] is a row. What are the general principles teaching
us how to estimate those two model images? Is their apparent correlation physical or statis-
tical, real or apparent? We can thank Galilee for delivering us this comprehensible example
of a deep, wide-ranging problem, and for teaching us that we do not fully understand it.

It took me twenty years to pull this story together. Any tricks here to help a struggling
seismologist? Reflection seismologists are buried in problems even more subtle with much
more very high quality data. Better go back, read here again to see if skills and tricks
learned in this supposedly easy study might help them.



7
Multidimensional autoregression

Occam’s razor says we should try understand the world by the simplest explanation. So,
how do we decompose a complicated thing into its essential parts? That’s far too difficult
a question, but the word “covariance” points the way. If things are found statistically con-
nected (covary), the many might be explainable by a few. For example a one-dimensional
waveform can excite a wave equation filling a 3-D space. The values in that space will
have a lot of covariance. In this chapter we take multidimensional spaces full of numbers
and answer the question, “what causal differential (difference) equation might have created
these numbers?” Our answer here, an autoregressive filter, does the job imperfectly, but it
is a big step away from complete ignorance. As the book progresses we find three kinds of
uses: (1) filling in missing data and uncontrolled parts of models, (2) preparing residuals
for data fitting, (3) providing “prior” models for preconditioning and estimation.

Recall that residuals (and preconditioning variables) should be Independent, and Iden-
tically Distributed (IID). In practice the “ID” means all residuals should have the same
variance, and the preceding “I” means likewise in Fourier space (whiteness). This is the
“I” chapter. Conceptually we might jump in and out of Fourier space, but here we learn
processes in physical space that whiten in Fourier space. In earlier chapters we transformed
from a physical space to something more like an IID space when we said, “Topography is
smooth, so let us estimate and view instead its derivative.” In this chapter we go beyond
roughening with a guessed derivative.

The branch of mathematics introduced here is young. Physicists seem to know nothing
of it, perhaps because it begins with time not being a continuous variable. About 100 years
ago people looked at market prices and wondered why they varied from day to day. To try
to make money from the market fluctuations they schemed to try to predict prices. That
is a good place to begin. The subject is known as “time-series analysis.” In this chapter
we define the autoregression filter, also known as the prediction-error filter (PEF). It
gathers statistics for us. It gathers not the autocorrelation or the spectrum directly but it
gathers them indirectly as the inverse of the amplitude spectrum of its input. Although
time-series analysis is a one dimensional study, we naturally use the helix to broaden it to
multidimensional space. The PEF leads us to the “inverse-covariance matrix” of statistical
estimation theory. Theoreticians tell us we need this before we can properly find a solution.
Here we go after it.
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7.0.11 Time domain versus frequency domain

In the simplest applications, solutions can be most easily found in the frequency domain.
When complications arise, it becomes necessary to use time and space domains, where we
may cope with boundaries, scale by material properties, convolve differential operators,
and apply statistical weighting functions and filters.

Recall Vesuvius in Chapter 2. We solved for altitude using only the phase of the data.
(The given data was in (ω0, x, y)-space.) There was a marvelously fast solving method in
the (kx, ky) Fourier space. It worked so long as we were satisfied that each data value in
(x, y) was as good as any other. But when we recognized data quality varied with location
in (x, y) in proportion to the amplitude of the signal, we needed a weighting function in
(x, y). Without it we had a limited quality solution, perhaps a good starting solution for
using weights and finite differences in (x, y).

Recall some of the “magic tricks” we did in Chapter 4 with spectral factorization, finding
the impulse response of the sun, blind deconvolution, and others. There we required a full
mesh of regularly sampled data. Here we allow in the mesh missing information somewhat
arbitrarily distributed. Being out of fourier space, in the physical domain we can gather
spectral information on small grids, irregularly shaped.

This is a general fact of science. Homogeneity in time and space enables Fourier meth-
ods. Fourier methods give insight because they may be roughly correct in real life. But
when we have space variable coefficients, either physically, as seismic velocity, or statisti-
cally, as with Vesuvius, we are back to solving problems in physical space. Seismology has
the delightful aspect that the earth is unchanging in time, so Fourier analysis is generally
applicable for physical modeling, but like the space axes, statistical qualities of data will
be variable with time so when reconstructing models from data we are thrown out of the
frequency domain.

7.1 SOURCE WAVEFORM, MULTIPLE REFLECTIONS

Deep water multiple reflection1 is a simple geometry where the fourier formulation readily
converts to the the physical domain. There are two unknown waveforms, the source wave-
form S (ω) and the ocean-floor reflection F(ω) which may include the upper mud layers.
The water-bottom primary reflection P(ω) is the convolution of the source waveform with
the water-bottom response; so P(ω) = S (ω)F(ω). The first multiple reflection M(ω) sees
the same source waveform, the ocean floor, a minus one reflection coefficient at the water
surface, and the ocean floor again. Thus the observations P(ω) and M(ω) as functions of
the physical parameters S (ω) and F(ω) are

P(ω) = S (ω) F(ω) (7.1)

M(ω) = −S (ω) F(ω)2 (7.2)

1 For this short course I am omitting here many interesting examples of multiple reflections shown in my 1992 book, PVI.
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Algebraically the solutions of equations (7.1) and (7.2) are

F(ω) = −M(ω)/P(ω) (7.3)

S (ω) = −P(ω)2/M(ω) (7.4)

These solutions can be computed in the Fourier domain by simple division. The difficulty
is that the divisors in equations (7.3) and (7.4) can be zero, or small. This difficulty can be
attacked by use of a positive number ε to stabilize it. For example, multiply equation (7.3)
on top and bottom by P(ω)∗ and add ε > 0 to the denominator. This gives

F(ω) = −
M(ω)P(ω)∗

P(ω)P(ω)∗ + ε
(7.5)

where P∗(ω) is the complex conjugate of P(ω). Although the ε stabilization seems nice, it
apparently produces a nonphysical model. For ε large or small, the time-domain response
could turn out to be of much greater duration than is physically reasonable. This should not
happen with perfect data, but in real life, data always has a limited spectral band of good
quality.

Functions that are rough in the frequency domain will be long in the time domain. This
suggests making a short function in the time domain by local smoothing in the frequency
domain. Let the notation < · · · > denote smoothing by local averaging. Thus, to specify
filters whose time duration is not unreasonably long, we can revise equation (7.5) to

F(ω) = −
< M(ω)P(ω)∗ >
< P(ω)P(ω)∗ >

(7.6)

where instead of deciding a size for ε we need to decide how much smoothing. I find that
smoothing has a simpler physical interpretation than choosing ε. The goal of finding the
filters F(ω) and S (ω) is to best model the multiple reflections so that they can be subtracted
from the data, and thus enable us to see what primary reflections have been hidden by the
multiples.

These frequency-duration difficulties do not arise in a time-domain formulation. Unlike
in the frequency domain, in the time domain it is easy and natural to limit the duration and
location of the nonzero time range of F(ω) and S (ω). First express (7.3) as

0 = P(ω)F(ω) + M(ω) (7.7)

Recall the convolution operator from Chapter 1. Express the frequency functions in
equation (7.7) as polynomials in Z = eiω∆t. The coefficient of each power of Z gives one of
the time-domain regression equations below. The column vector f contains the unknown
sea-floor filter. The column vector m contains the multiple reflection. The matrix P has
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down-shifted columns of the primary reflection.

0 ≈ r =



r1

r2

r3

r4

r5

r6

r7

r8


=



p1 0 0
p2 p1 0
p3 p2 p1

p4 p3 p2

p5 p4 p3

p6 p5 p4

0 p6 p5

0 0 p6




f1
f2
f3

 +



m1

m2

m3

m4

m5

m6

m7

m8


(7.8)

7.2 TIME-SERIES AUTOREGRESSION

Historically, the earliest application of the ideas in this chapter came in the predictions of
markets. Prediction of a signal from its past is called “autoregression”, because a signal
is regressed on itself hence “auto”. The regression below finds for us the prediction filter
( f1, f2). With it we have prediction of dt from its past dt−1 and dt−2.

0 ≈ r =


d1 d0

d2 d1

d3 d2

d4 d3

d5 d4


[

f1
f2

]
−


d2

d3

d4

d5

d6


(7.9)

(In practice, of course the system of equations would be much taller, and likely somewhat
wider.) A typical row in the matrix (7.9) says that dt+1 ≈ dt f1+dt−1 f2 hence the description
of f as a “prediction” filter. The error in prediction defines the residual. Let the residual
have opposite polarity and merge the column vector into the matrix getting

0
0
0
0
0


≈ r =


d2 d1 d0

d3 d2 d1

d4 d3 d2

d5 d4 d3

d6 d5 d4




1
− f1
− f2

 = Da (7.10)

which is a standard form for autoregressions and prediction error.
Multiple reflections are predictable. It is the unpredictable part of a signal, the predic-

tion residual, that contains the primary information. The output of the filter (1,− f1,− f2) =
(a0, a1, a2) is the unpredictable part of the input. This filter is a simple example of a
“prediction-error” (PE) filter. It is one member of a family of filters called “error filters.”

The error-filter family are filters with one coefficient constrained to be unity and various
other coefficients constrained to be zero. Otherwise, the filter coefficients are chosen to
have minimum power output. Names for various error filters follow:

(1, a1, a2, a3, · · · , an) prediction-error (PE) filter
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(1, 0, 0, a3, a4, · · · , an) gapped PE filter
(a−m, · · · , a−2, a−1, 1, a1, a2, a3, · · · , an) interpolation-error (IE) filter

We introduce a free-mask matrix K which “passes” the freely variable coefficients in
the filter and “rejects” the constrained coefficients (which in this first example is merely
the first coefficient a0 = 1).

K =


0 . .

. 1 .

. . 1

 (7.11)

To compute a simple prediction error filter a = (1, a1, a2) with the CD method, we write
(7.9) or (7.10) as

0 ≈ r =


d2 d1 d0

d3 d2 d1

d4 d3 d2

d5 d4 d3

d6 d5 d4




0 · ·

· 1 ·

· · 1




1
a1

a2

 +


d2

d3

d4

d5

d6


(7.12)

Let us move from this specific fitting goal to the general case. Let D be the matrix in
equation 7.10. (Notice the similarity of the free-mask matrix K in this filter estimation
application with the free-mask matrix J in missing data goal (3.3).) Rewriting equation
7.12 the fitting goal is

0 ≈ Da (7.13)

0 ≈ D(I −K +K)a (7.14)

0 ≈ DKa + D(I −K)a (7.15)

0 ≈ DKa + Da0 (7.16)

0 ≈ DKa + y (7.17)

0 ≈ r = DKa + r0 (7.18)

which means we initialize the residual with r0 = y. and then iterate with

∆a←− K∗D∗ r (7.19)

∆r←− DK ∆a (7.20)

7.3 PREDICTION-ERROR FILTER OUTPUT IS WHITE

In Chapter 5 we learned that least squares residuals should be IID (Independent, Identically
Distributed) which in practical terms means in both Fourier space and physical space they
should have a uniform variance. Further, not only should residuals have the IID property,
but we should choose a preconditioning transformation so that our unknowns have the same
IID nature. For example echos get weaker in time. Multipying by some constant function
of time such as t or t2 will tend to uniformize (flatten) the variance with time. We should
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also transform to flatten them in Fourier space. Prediction-error filters (PEFs) accomplish
that. Next we see why and how.

Residuals and preconditioned models should be white. PEFs can do it.

The relationship between spectrum and PEF

Knowledge of an autocorrelation function is equivalent to knowledge of a spectrum. The
two are simply related by Fourier transform. A spectrum or an autocorrelation function
encapsulates an important characteristic of a signal or an image. Generally the spectrum
changes slowly from place to place although it could change rapidly. Of all the assumptions
we could make to fill empty bins, one that people usually find easiest to agree with is that
the spectrum should be the same in the empty-bin regions as where bins are filled. In
practice we deal with neither the spectrum nor its autocorrelation but with a third object.
This third object is the Prediction Error Filter (PEF), the filter in equation (7.10).

Take equation (7.10) for r and multiply it by the adjoint r∗ getting a quadratic form for
r · r. The matrix of the quadratic form contains the autocorrelation of the original data dt,
not on the data dt itself. Solving gives the PEF. Changing the polarity of the data or time
reversing it leaves the autocorrelation unchanged, so it leaves the PEF unchanged. Thus
knowledge of the PEF is equivalent to knowledge of the autocorrelation or the spectrum.

7.3.1 Why 1-D PEFs have white output

The basic idea of least-squares fitting is that the residual is orthogonal to each of the fitting
functions. Applied to the prediction error filter (PEF) this idea means that the output of
the PEF is orthogonal to lagged inputs. The orthogonality applies only for lags in the
past, because prediction knows only the past while it aims to the future. What we soon
see here is different, namely, that the output is uncorrelated with itself (as opposed to the
input) for lags in both directions; hence the output spectrum is white. This has many, many
applications with examples coming up soon. (Surprisingly the output of an interpolation-
error filter is usually non-white.)

Let d be a vector whose components contain a time function. Let Znd represent shifting
the components to delay the signal in d by n samples. The definition of a prediction-error
filter (PEF) is that it minimizes ||r|| by adjusting filter coefficients aτ. The PEF output is:

r = d + a1Z1d + a2Z2d + a3Z3d + · · · (7.21)

We set out to choose the best aτ by setting to zero the derivative of (r · r) by aτ. After the
best aτ are chosen, the residual is perpendicular to each of the fitting functions:

0 =
d
daτ

(r · r) (7.22)

0 = r ·
dr
daτ
= r · Zτd for τ > 0. (7.23)
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Given that 0 = r · Zτd we examine 0 = r · Zτr. Using equation (7.21) we have for any
autocorrelation lag k > 0,

r · Zkr = r · (Zkd + a1Zk+1d + a2Zk+2d + ...)
= r · Zkd + a1r · Zk+1d + a2r · Zk+2d + ...
= 0 + a10 + a20 + ...

= 0 .

Since the autocorrelation is symmetric r ·Z−kr is also zero for k < 0, so the autocorrelation
of r is an impulse. In other words, the spectrum of the time function rt is white. Thus d and
a have mutually inverse spectra.

Since the output of a PEF is white, the PEF itself has a spectrum inverse to its input.

An important application of the PEF is in missing data interpolation. We’ll see examples
later in this chapter. My third book, PVI, has many examples in one dimension with both
synthetic data and field data including the gap parameter. Here we next extend these ideas
to two (or more) dimensions.

In practice the degree of whiteness is limited by the number of lags we take in the PEF.
This will not be infinity so the autocorrelation will be non-zero for the lags we have omit-
ted. In most applications long-lag correlations tend to be small. This because predictions
tend to degrade with time lag. There are exceptions, however. To predict unemployment
next month, it helps a lot to know the unemployment this month. On the other hand, be-
cause of seasonal effects, the unemployment from a year before next month (11 months
back) might provide even better prediction. But mostly, older data has diminishing ability
to enhance prediction.

Finite-difference equations resemble PEFs, and they use only a short range of lags, for
example, a wave equation containing only the three lags intrinsic to ∂2/∂t2. So, short PEFs
are often quite analogous to differential equations, hence very powerful, short lags enabling
prediction over long intervals.

PEF output tends to whiteness

The most important property of a prediction-error filter or PEF is that its output tends
to a white spectrum (to be proven here). No matter what the input to this filter, its output
tends to whiteness as the number of the coefficients n → ∞ tends to infinity. Thus, the
PE filter adapts itself to the input by absorbing all its color. This has important statistical
implications and important geophysical implications.

Undoing convolution in nature

Prediction-error filtering is called “blind deconvolution”. In the exploration industry it is
simply called “deconvolution”. This word goes back to very basic models and concepts. In
this model one envisions a random white-spectrum excitation function x existing in nature,
and this excitation function is somehow filtered by unknown natural processes, with a
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filter operator B producing an output y in nature that becomes the input y to our computer
programs. This is sketched in Figure 7.1. Then we design a prediction-error filter A on

Figure 7.1 Flow of information from
nature, to observation, into computer. (y
is data d.)

x y r = x

Nature Computer

B
?

A

y, which yields a white-spectrum residual r. Because r and x theoretically have the same
spectrum, the tantalizing prospect is that maybe r equals x, meaning that the PEF A has
deconvolved the unknown convolution B.

Causal with causal inverse

Theoretically, a PEF is a causal filter with a causal inverse. This suggests that deconvolution
of natural processes with a PEF might get the correct phase spectrum as well as the correct
amplitude spectrum. Naturally, the PEF could not give the correct phase to an “all-pass”
filter. That is a filter with a phase shift but a constant amplitude spectrum. (Migration
operators are in this category.)

Theoretically we should be able to use a PEF in either convolution or polynomial di-
vision. There are some dangers though, mainly connected with dealing with data in small
windows. Truncation phenomena might give us PEF estimates that are causal, but whose
inverse is not, so they cannot be used in polynomial division. This is a lengthy topic in the
classic literature. This old, fascinating subject is examined in my older books, FGDP and
PVI.

Spectral estimation

The PEF’s output being white leads to an important consequence: To specify a spectrum,
we can give the spectrum (of an input) itself, give its autocorrelation, or give its PEF co-
efficients. Each is transformable to the other two. A classic PEF estimation technique is
named for Norman Levinson found in an appendix of a classic test by Norbert Wiener.
Those methods assume the autocorrelation is given. Starting instead from a truncated sig-
nal series is another classic method by John Parker Burg. These are described in consider-
able detail in my web based book FGDP. Having the PEF and its FT, the signal spectrum
is simply the inverse the PEF’s spectrum.

Short windows

The power of a PE filter is that a short filter can often extinguish, and thereby represent,
the information in a long resonant filter. If the input to the PE filter is a sinusoid, it is
exactly predictable by a three-term recurrence relation, and all the color is absorbed by
a three-term PE filter (see exercises). Burg’s method supercedes Levinson’s in short data
windows. Burg’s method also ensures a causal inverse, something we will not ensure here.
His method should be reviewed in light of the helix.
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Weathered layer resonance

That the output spectrum of a PE filter is white is also useful geophysically. Imagine the
reverberation of the soil layer, highly variable from place to place, as the resonance between
the surface and shallow more-consolidated soil layers varies rapidly with surface location
because of geologically recent fluvial activity. The spectral color of this erratic variation
on surface-recorded seismograms is compensated by a PE filter. Usually we do not want
PE-filtered seismograms to be white, but once they all have the same spectrum, it is easy
to postfilter them to any desired spectrum.

7.4 2-D FILTERS

Convolution in two dimensions is just like convolution in one dimension except that con-
volution is done on two axes. The input and output data are planes of numbers and the filter
is also a plane. A two-dimensional filter is a small plane of numbers that is convolved over
a big data plane of numbers.

Suppose the data set is a collection of seismograms uniformly sampled in space. In other
words, the data is numbers in a (t, x)-plane. For example, the following filter destroys any
wavefront aligned along the direction of a line containing both the “+1” and the “−1”.

−1 ·

· ·

· 1
(7.24)

The next filter destroys a wave with a slope in the opposite direction:

· 1
−1 ·

(7.25)

To convolve the above two filters, we can reverse either one (on both axes) and correlate
them, so that you can get

· −1 ·

1 · ·

· · 1
· −1 ·

(7.26)

which destroys waves of both slopes.
A two-dimensional filter that can be a dip-rejection filter like (7.24) or (7.25) is

a ·

b ·

c 1
d ·

e ·

(7.27)

where the coefficients (a, b, c, d, e) are to be estimated by least squares in order to minimize
the power out of the filter. (In the filter table, the time axis runs vertically.)
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Fitting the filter to two neighboring traces that are identical but for a time shift, we see
that the filter coefficients (a, b, c, d, e) should turn out to be something like (−1, 0, 0, 0, 0)
or (0, 0,−.5,−.5, 0), depending on the dip (stepout) of the data. But if the two channels are
not fully coherent, we expect to see something like (−.9, 0, 0, 0, 0) or (0, 0,−.4,−.4, 0). To
find filters such as (7.26), we adjust coefficients to minimize the power out of filter shapes,
as in

v a ·

w b ·

x c 1
y d ·

z e ·

(7.28)

With 1-dimensional filters, we think mainly of power spectra, and with 2-dimensional
filters we can think of temporal spectra and spatial spectra. What is new, however, is that in
two dimensions we can think of dip spectra (which is when a 2-dimensional spectrum has
a particularly common form, namely when energy organizes on radial lines in the (ω, kx)-
plane). As a short (three-term) 1-dimensional filter can devour a sinusoid, we have seen
that simple 2-dimensional filters can devour a small number of dips.

7.4.1 Why 2-D PEFs have white output

A well-known property (see FGDP or PVI) of a 1-D PEF is that its energy clusters imme-
diately after the impulse at zero delay time. Applying this idea to the helix in Figure 4.2
shows us that we can consider a 2-D PEF to be a small halfplane like 4.9 with an impulse
along a side. These shapes are what we see here in Figure 7.2.

Figure 7.2 A 2-D whitening filter tem-
plate, and itself lagged. At output loca-
tions “A” and “B,” the filter coefficient is
constrained to be “1”. When the semicir-
cles are viewed as having infinite radius,
the B filter is contained in the A filter.
Because the output at A is orthogonal to
all its inputs, which include all inputs of
B, the output at A is orthogonal to the
output of B.

Figure 7.2 shows the input plane with a 2-D filter on top of it at two possible locations.
The filter shape is a semidisk, which you should imagine being of infinitely large radius.
Notice that semidisk A includes all the points in B. The output of disk A will be shown
to be orthogonal to the output of disk B. Conventional least squares theory says that the
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coefficients of the filter are designed so that the output of the filter is orthogonal to each
of the inputs to that filter (except for the input under the “1,” because any nonzero signal
cannot be orthogonal to itself). Recall that if a given signal is orthogonal to each in a given
group of signals, then the given signal is orthogonal to all linear combinations within that
group. The output at B is a linear combination of members of its input group, which is
included in the input group of A, which are already orthogonal to A. Therefore the output
at B is orthogonal to the output at A. In summary,

residual ⊥ fitting function
output at A ⊥ each input to A
output at A ⊥ each input to B and the output of B
output at A ⊥ linear combination of all parts of B
output at A ⊥ output at B

The essential meaning is that a particular lag of the output autocorrelation function van-
ishes.

Study Figure 7.2 to see for what lags all the elements of the B filter are wholly contained
in the A filter. These are the lags where we have shown the output autocorrelation to be
vanishing. Notice another set of lags where we have proven nothing (where B is moved
to the right of A). Autocorrelations are centrosymmetric, which means that the value at
any lag is the same as the value at the negative of that lag, even in 2-D and 3-D where the
lag is a vector quantity. Above we have shown that a halfplane of autocorrelation values
vanishes. By the centrosymmetry, the other half must vanish too. Thus the autocorrelation
of the PEF output is an impulse function, so its 2-D spectrum is white.

The helix tells us why the proper filter form is not a square with the “1” on the corner.
Before I discovered the helix, I understood it another way (that I learned from John P.
Burg): For a spectrum to be white, all nonzero autocorrelation lags must be zero-valued.
If the filter were a quarter-plane, then the symmetry of autocorrelations would only give
us vanishing in another quarter, so there would be two remaining quarter-planes where the
autocorrelation was not zero.

Fundamentally, the white-output theorem requires a one-dimensional ordering to the
values in a plane or volume. The filter must contain a halfplane of values so that symmetry
gives the other half.

You will notice some nonuniqueness. We could embed the helix with a 90◦ rotation in the
original physical application. Besides the difference in side boundaries, the 2-D PEF would
have a different orientation. Both PEFs should have an output that tends to whiteness as
the filter is enlarged. It seems that we could design whitening autoregression filters for 45◦

rotations also, and we could also design them for hexagonal coordinate systems. In some
physical applications, you might find the nonuniqueness unsettling. Does it mean the “final
solution” is nonunique? Usually not, or not seriously so. Recall even in one dimension, the
time reverse of a PEF has the same spectrum as the original PEF. When a PEF is used for
regularizing a fitting application, it is worth noticing that the quadratic form minimized is
the PEF times its adjoint so the phase drops out. Likewise, a missing data restoration also
amounts to minimizing a quadratic form so the phase again drops out.
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7.5 Basic blind deconvolution

Here are the basic definitions of blind deconvolution: If a model mt (with FT M) is made
of random numbers and convolved with a “source waveform” (having FT) F−1 it creates
data D. From data D you find the model M by M = FD. Trouble is, you typically do not
know F and need to estimate (guess) it hence the word “blind.”

Suppose we have many observations or many channels of D so we label them D j. We
can define a model M j as

M j =
D j√∑
j D∗D

(7.29)

so blind deconvolution removes the average spectrum.
Sometimes we have only a single signal D but it is quite long. Because the signal is

long, the magnitude of its Fourier transform is rough, so we smooth it over frequency, and
denote it thus:

M =
D

√
� D∗D �

(7.30)

Smoothing the spectrum makes the time function shorter. Indeed, the amount of smoothing
may be chosen by the amount of shortness wanted.

The above preliminary models are the most primative forms of deconvolved data. They
deal only with the amplitude spectrum. Most deconvolutions involve also the phase. The
examples we’ll show next do include the phase. That’s sometimes significant, sometimes
not. Averaging occurs because the PEF is smaller than the data.

m = d ∗ PEF (7.31)

7.5.1 Examples of modeling and deconvolving with a 2-D PEF

Here we examine elementary signal-processing applications of 2-D prediction-error filters
(PEFs) on both everyday 2-D textures and on seismic data. Some of these textures are
easily modeled with prediction-error filters (PEFs) while others are not. All figures used
the same 10 × 10 filter shape. No attempt was made to optimize filter size or shape or any
other parameters.

Results in Figures 7.3-7.9 are shown with various familiar textures2 on the left as train-
ing data sets. From these training data sets, a prediction-error filter (PEF) is estimated using
module pef. The center frame is simulated data made by deconvolving (polynomial divi-
sion) random numbers by the estimated PEF. The right frame is the more familiar process,
convolving the estimated PEF on the training data set. Theoretically, the right frame tends
towards a white spectrum.

Since a PEF tends to the inverse of the spectrum of its input, results similar to these could
likely be found using Fourier transforms, smoothing spectra, etc. We used PEFs because

2 I thank Morgan Brown for finding these textures.
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Figure 7.3 Synthetic granite matches the training image quite well. The prediction error (PE) is large
at grain boundaries so it almost seems to outline the grains.

Figure 7.4 Synthetic wood grain has too little white. This is because of the nonsymmetric brightness
histogram of natural wood. Again, the PEF output looks random as expected.

of their flexibility. The filters can be any shape. They can dodge around missing data,
or we can use them to estimate missing data. PEFs with a helix have periodic boundary
assumptions on all axes but one, while FTs have periodic boundaries on all axes. The
PEF’s are designed only internal to known data, not off edges so they are readily adaptable

Figure 7.5 A banker’s suit (left). A student’s suit (center). My suit (right). The prediction error is
large where the weave changes direction.
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Figure 7.6 Basket weave. The simulated data fails to segregate the two dips into a checkerboard
pattern. The PEF output looks structured perhaps because the filter is too small.

Figure 7.7 Brick. Synthetic brick edges are everywhere and do not enclose blocks containing a fixed
color. PEF output highlights the mortar.

small data samples and to nonstationarity. Thinking of these textures as seismic time slices,
the textures could easily be required to pass thru specific values at well locations.

Figure 7.8 Ridges. A spectacular failure of the stationarity assumption. All dips are present but in
different locations. Never-the-less, the ridges have been sharpened by the deconvolution.
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Figure 7.9 Gulf of Mexico seismic section, modeled, and deconvolved. Do you see any drilling
prospects in the simulated data? In the deconvolution, the strong horizontal layering is suppressed
giving a better view of the hyperbolas. The decon filter has the same 10×10 size used on the everyday
textures.

7.5.2 Seismic field data examples

Figures 7.10-7.12 are based on exploration seismic data from the Gulf of Mexico deep
water. A ship carries an air gun and tows a streamer with some hundreds of geophones.
First we look at a single pop of the gun. We use all the hydrophone signals to create a
single 1-D PEF for the time axis. This changes the average temporal frequency spectrum
as shown in Figure 7.10. Signals from 60 Hz to 120 Hz are boosted substantially. The raw

Figure 7.10 ω spectrum of a shot gather of Figure 7.11 before and after 1-D decon with a 30 point
filter.
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data has evidently been prepared with strong filtering against signals below about 8 Hz.
The PEF attempts to recover these signals, mostly unsuccessfully, but it does boost some
energy near the 8 Hz cutoff. Choosing a longer filter would flatten the spectrum further.
The big question is, “Has the PEF improved the appearance of the data?”

The data itself from the single pop, both before and after PE-filtering is shown in Fig-
ure 7.11. For reasons of aesthetics of human perception I have chosen to display a mirror
image of the PEF’ed data. To see a blink movie of superposition of before-and-after images
you need the electronic book (which technology does not enable me to deliver in 2014).
We notice that signals of high temporal frequencies indeed have the expected hyperbolic
behavior in space. Thus, these high-frequency signals are wavefields, not mere random
noise.

Given that all visual (or audio) displays have a bounded range of amplitudes, increasing
the frequency content (bandwidth) means that we will need to turn down the amplification
so we do not wish to increase the bandwidth unless we are adding signal.

Increasing the spectral bandwidth always requires us to diminish the gain.

The same ideas but with a two-dimensional PEF are in Figure 7.12 (the same data but
with more of it squeezed onto the page.) After the PEF, we tend to see equal energy in dips
in all directions. We have strongly enhanced the “backscattered” energy, those events that
arrive later at shorter distances.

We have been thinking of the PEF as a tool for shaping the spectrum of a display. But
does it have a physical meaning? What might it be? Referring back to the beginning of
the chapter we are inclined to regard the PEF as the convolution of the source waveform
with some kind of water-bottom response. In Figure 7.12 we used many different shot-
receiver separations. Since each different separation has a different response (due to differ-
ing moveouts) the water bottom reverberation might average out to be roughly an impulse.
Figure 7.13 is a different story. Here for each shot location, the distance to the receiver is
constant. Designing a single channel PEF we can expect the PEF to contain both the shot
waveform and the water bottom layers because both are nearly identical in all the shots. We
would rather have a PEF that represents only the shot waveform (and perhaps a radiation
pattern).

Let us consider how we might work to push the water-bottom reverberation out of the
PEF. This data is recorded in water 600 meters deep. A consequence is that the sea bottom
is made of fine-grained sediments that settled very slowly and rather similarly from place
to place. In shallow water the situation is different. The sands near estuaries are always
shifting. Sedimentary layers thicken and thin. They are said to “on-lap and off-lap.” Here
I do notice where the water bottom is sloped the layers do thin a little. To push the water
bottom layers out of the PEF our idea is to base its calculation not on the raw data, but on
the spatial prediction error of the raw data. On a perfectly layered earth a perfect spatial
prediction error filter would zero all traces but the first one. Since a 2-D PEF includes
spatial prediction as well as temporal prediction, we can expect it to contain much less of
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Figure 7.11 Raw data with its mirror. Mirror had 1-D PEF applied, 30 point filter.
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Figure 7.12 A 2-D filter (here 20 × 5) brings out the backscattered energy.
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Figure 7.13 Raw data, near-trace section (top). Filtered with a two-channel PEF (bottom). The movie
has other shaped filters.
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the sea-floor layers than the 1-D PEF. If you have access to the electronic book, you can
blink the figure back and forth with various filter shapes.

7.6 PEF ESTIMATION WITH MISSING DATA

If we are not careful, our calculation of the PEF could have the pitfall that it would try to
use the missing data to find the PEF, and hence it would get the wrong PEF. To avoid this
pitfall, imagine a PEF finder that uses weighted least squares where the weighting function
vanishes on those fitting equations that involve missing data. The weighting would be unity
elsewhere. Instead of weighting bad results by zero, we simply will not compute them.
The residual there will be initialized to zero and never changed. Likewise for the adjoint,
these components of the residual will never contribute to a gradient. So now we need a
convolution program that produces no outputs where missing inputs would spoil it.

Recall there are two ways of writing convolution, equation (1.4) when we are interested
in finding the filter inputs, and equation (1.5) when we are interested in finding the filter
itself. We have already coded equation (1.4), operator helicon. That operator was useful
in missing data applications. Now we want to find a prediction-error filter so we need the
other case, equation (1.5), and we need to ignore the outputs that will be broken because
of missing inputs. The operator module hconest does the job.

helix convolution.lop

module h c o n e s t { # masked h e l i x c o n v o l u t i o n , a d j o i n t i s t h e f i l t e r .
use h e l i x

r e a l , d imens ion ( : ) , p o i n t e r : : x
t y p e ( f i l t e r ) : : aa

#% _ i n i t ( x , aa )
#% _lop ( a , y )

i n t e g e r i a , ix , i y
do i a = 1 , s i z e ( a ) {

do i y = 1 + aa%l a g ( i a ) , s i z e ( y ) { i f ( aa%mis ( i y ) ) c y c l e
i x = i y − aa%l a g ( i a )

i f ( a d j ) a ( i a ) += y ( i y ) ∗ x ( i x )
e l s e y ( i y ) += a ( i a ) ∗ x ( i x )

}
}

}

We are seeking a prediction error filter (1, a1, a2) but some of the data is missing. The
data is denoted y or yi above and xi below. Because some of the xi are missing, some of
the regression equations in (7.32) are worthless. When we figure out which are broken, we
will put zero weights on those equations.
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0 ≈ r =WXa =



w1 . . . . . . .

. w2 . . . . . .

. . w3 . . . . .

. . . w4 . . . .

. . . . w5 . . .

. . . . . w6 . .

. . . . . . w7 .

. . . . . . . w8





x1 0 0
x2 x1 0
x3 x2 x1

x4 x3 x2

x5 x4 x3

x6 x5 x4

0 x6 x5

0 0 x6




1
a1

a2



(7.32)
Suppose that x2 and x3 were missing or known bad. That would spoil the 2nd, 3rd, 4th,

and 5th fitting equations in (7.32). In principle, we want w2, w3, w4 and w5 to be zero. In
practice, we simply want those components of r to be zero.

What algorithm will enable us to identify the regression equations that have become
defective, now that x2 and x3 are missing? Take filter coefficients (a0, a1, a2, . . .) to be all
ones. Let dfree be a vector like x but containing 1’s for the missing (or “freely adjustable”)
data values and 0’s for the known data values. Recall our very first definition of filtering
showed we can put the filter in a vector and the data in a matrix or vice versa. Thus Xa
above gives the same result as Ax below.



r1

r2

r3

r4

r5

r6

r7

r8


=



0
1
2
2
1
0
0
0


=



1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1





0
1
1
0
0
0


= Adfree (7.33)

The numeric value of each mi tells us how many of its inputs are missing. Where none are
missing, we want unit weights wi = 1. Where any are missing, we want zero weights wi =

0. The desired residual under partially missing inputs is computed by module misinput.

mark bad regression equations.r90
module m i s i n p u t { # f i n d a mask of m i s s i n g f i l t e r i n p u t s

use h e l i c o n
c o n t a i n s

s u b r o u t i n e f ind_mask ( known , aa ) {
l o g i c a l , i n t e n t ( i n ) : : known ( : )
t y p e ( f i l t e r ) : : aa
r e a l , d imens ion ( s i z e ( known ) ) : : r r , d f r e
i n t e g e r : : s t a t
where ( known ) d f r e = 0 .
e l s e w h e r e d f r e = 1 .
c a l l h e l i c o n _ i n i t ( aa )
aa%f l t = 1 .
s t a t = h e l i c o n _ l o p ( . f a l s e . , . f a l s e . , d f r e , r r )
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aa%f l t = 0 .
where ( r r > 0 . ) aa%mis = . t r u e .
}

}

7.6.1 Internal boundaries to multidimensional convolution

Sometimes we deal with small patches of data. In order that boundary phenomena not
dominate the calculation intended in the central region, we need to take care that input data
is not assumed to be zero beyond the interval that the data is given.

The two little triangular patches of zeros in the convolution matrix in equation (7.32)
describe end conditions where it is assumed that the data yt vanishes before t = 1 and after
t = 6. Alternately we might not wish to make that assumption. Thus the triangles filled
with zeros could be regarded as missing data. In this one-dimensional example, it is easy
to see that the filter, say yy%mis() should be set to .TRUE. at the ends so no output would
ever be computed there. We would like to find a general multidimensional algorithm to
correctly specify yy%mis() around the multidimensional boundaries. This proceeds like
the missing data algorithm, i.e. we apply a filter of all ones to a data space template that is
taken all zeros except ones at the locations of missing data, in this case y0, y−1 and y7, y8.
This amounts to surrounding the original data set with some missing data. We need padding
the size of the filter on all sides. The padded region would be filled with ones (designating
missing inputs). Where the convolution output is nonzero, there yy%mis() is set to .TRUE.
denoting an output with missing inputs.

The two-dimensional case is a little more cluttered than the 1-D case but the principle
is about the same. Figure 7.14 shows a larger input domain, a 5 × 3 filter, and a smaller
output domain. There are two things to notice. First, sliding the filter everywhere inside the

Figure 7.14 Domain of inputs and out-
puts of a two-dimensional filter like a
PEF.

Input

Output

outer box, we get outputs (under the 1 location) only in the inner box. Second, (the adjoint
idea) crosscorrelating the inner and outer boxes gives us the 3 × 5 patch of information
we use to build the filter coefficients. We need to be careful not to assume that signals
vanish outside the region where they are defined. A chapter, possibly not included with
this version of the book (for reasons of clutter) breaks data spaces into overlapping patches,
separately analyze the patches, and put everything back together. This is needed when the
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crosscorrelation changes with time. That is handled as constant in short time windows.
There we must be particularly careful that zero signal values not be presumed outside of
the small volumes; otherwise the many edges and faces of the many small volumes can
overwhelm the interior that we want to study.

In practice, the input and output are allocated equal memory, but the output residual is
initialized to zero everywhere and then not computed except where shown in figure 7.14.
Below is module bound to build a selector for filter outputs that should never be examined
or even computed (because they need input data from outside the given data space). Inputs
are a filter aa and the size of its cube na = (na(1),na(2),...). Also input are two cube
dimensions, that of the data last used by the filter nold and that of the filter’s next intended
use nd. (nold and nd are often the same). Module bound begins by defining a bigger data
space with room for a filter surrounding the original data space nd on all sides. It does this
by the line nb=nd+2*na. Then we allocate two data spaces xx and yy of the bigger size nb
and pack many ones in a frame of width na around the outside of xx. The filter aa is also
filled with ones. The filter aa must be regridded for the bigger nb data space (regridding
merely changes the lag values of the ones). Now we filter the input xx with aa getting yy.
Wherever the output is nonzero, we have an output that has been affected by the boundary.
Such an output should not be computed. Thus we allocate the logical mask aa%mis (a part
of the helix filter definition in module helix and wherever we see a nonzero value of yy
in the output, we designate the output as depending on missing inputs by setting aa%mis
to .true..

out of bounds dependency.r90
module bound { # mark h e l i x f i l t e r o u t p u t s where i n p u t i s o f f d a t a .
use c a r t e s i a n
use h e l i c o n
use r e g r i d
c o n t a i n s

s u b r o u t i n e boundn ( nold , nd , na , aa ) {
i n t e g e r , d imens ion ( : ) , i n t e n t ( i n ) : : nold , nd , na # ( ndim )
t y p e ( f i l t e r ) : : aa
i n t e g e r , d imens ion ( s i z e ( nd ) ) : : nb , i i
r e a l , d imens ion ( : ) , a l l o c a t a b l e : : xx , yy
i n t e g e r : : iy , my , ib , mb , s t a t
nb = nd + 2∗ na ; mb = p r o d u c t ( nb ) # nb i s a b i g g e r s p a c e t o pad i n t o .
a l l o c a t e ( xx ( mb ) , yy ( mb ) ) # two l a r g e spaces , e q u a l s i z e
xx = 0 . # z e r o s
do i b = 1 , mb { # s u r r o u n d t h e z e r o s wi th many ones

c a l l l i n e 2 c a r t ( nb , ib , i i ) # i i ( i b )
i f ( any ( i i <= na . o r . i i > nb−na ) ) xx ( i b ) = 1 .
}

c a l l h e l i c o n _ i n i t ( aa ) # g i v e aa p o i n t e r t o h e l i c o n . l o p
c a l l r e g r i d n ( nold , nb , aa ) ; aa%f l t = 1 . # p u t a l l 1 ’ s i n f i l t e r
s t a t = h e l i c o n _ l o p ( . f a l s e . , . f a l s e . , xx , yy ) # a p p l y f i l t e r
c a l l r e g r i d n ( nb , nd , aa ) ; aa%f l t = 0 . # remake f i l t e r f o r o r i g d a t a .
my = p r o d u c t ( nd )
a l l o c a t e ( aa%mis ( my ) ) # a t t a c h m i s s i n g d e s i g n a t i o n t o y _ f i l t e r
do i y = 1 , my { # map from unpadded t o padded s p a c e

c a l l l i n e 2 c a r t ( nd , iy , i i )
c a l l c a r t 2 l i n e ( nb , i i +na , i b ) # i b ( i y )
aa%mis ( i y ) = ( yy ( i b ) > 0 . ) # t r u e where i n p u t s m i s s i n g
}

d e a l l o c a t e ( xx , yy )
}
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}

In reality one would set up the boundary conditions with module bound before identify-
ing locations of missing data with module misinput. Both modules are based on the same
concept, but the boundaries are more cluttered and confusing which is why we examined
them later.

7.6.2 Finding the prediction-error filter

The first stage of the least-squares estimation is computing the prediction-error filter.
The second stage will be using it to find the missing data. The input data space contains a
mixture of known data values and missing unknown ones. For the first stage of finding the
filter, we generally have many more fitting equations than we need so we can proceed by
ignoring the fitting equations that involve missing data values. We ignore them everywhere
that the missing inputs hit the filter.

The codes here do not address the difficulty that maybe too much data is missing so
that all weights are zero. To add stabilization we could supplement the data volume with
a “training dataset” or by a “prior filter”. With things as they are, if there is not enough
data to specify a prediction-error filter, you will get a zero filter, or you might encounter
the error exit from cgstep().

estimate PEF on a helix.r90
module p e f { # Find p r e d i c t i o n − e r r o r f i l t e r ( h e l i x magic )

use h c o n e s t
use cgs tep_mod
use solver_smp_mod

c o n t a i n s
s u b r o u t i n e f i n d _ p e f ( dd , aa , n i t e r ) {

i n t e g e r , i n t e n t ( i n ) : : n i t e r # number o f i t e r a t i o n s
t y p e ( f i l t e r ) : : aa # f i l t e r
r e a l , d imens ion ( : ) , p o i n t e r : : dd # i n p u t d a t a
c a l l h c o n e s t _ i n i t ( dd , aa )
c a l l s o l v e r _ s m p (m=aa%f l t , d=−dd , Fop=h c o n e s t _ l o p , s t e p p e r=c g s t e p , &

n i t e r=n i t e r , m0=aa%f l t )
c a l l c g s t e p _ c l o s e ( )
}

}

7.7 TWO-STAGE LINEAR LEAST SQUARES

In Chapter 3 and Chapter 5 we filled empty bins by minimizing the energy output from the
filtered mesh. In each case there was arbitrariness in the choice of the filter. Here we find
and use the optimum filter, the PEF.

The first stage is that of the previous section, finding the optimal PEF while carefully
avoiding using any regression equations that involve boundaries or missing data. For the
second stage, we take the PEF as known and find values for the empty bins so that the
power out of the prediction-error filter is minimized. To do this we find missing data with
module mis2().
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This two-stage method avoids the nonlinear problem we would otherwise face if we
included the fitting equations containing both free data values and free filter values. Pre-
sumably, after two stages of linear least squares we are close enough to the final solution
that we could switch over to the full nonlinear setup described near the end of this chapter.

The synthetic data in Figure 7.15 is a superposition of two plane waves of different
directions, each with a random (but low-passed) waveform. After punching a hole in the
data, we find that the lost data is pleasingly restored, though a bit weak near the side
boundary. This imperfection could result from the side-boundary behavior of the operator
or from an insufficient number of missing-data iterations.

Figure 7.15 Original data (left), with a zeroed hole, restored, residual selector (right).

The residual selector in Figure 7.15 shows where the filter output has valid inputs. From
it you can deduce the size and shape of the filter, namely that it matches up with Figure
7.14. The ellipsoidal hole in the residual selector is larger than that in the data because we
lose regression equations not only at the hole, but where any part of the filter overlaps the
hole.

The results in Figure 7.15 are essentially perfect representing the fact that that synthetic
example fits the conceptual model perfectly. Before we look at the many examples in Fig-
ures 7.16-7.19 we examine another gap-filling strategy.

7.7.1 Adding noise (Geostat)

In chapter 3 we restored missing data by adopting the philosopy of minimizing the energy
in filtered output. In this chapter we learned about an optimum filter for this task, the
prediction-error filter (PEF). Let us name this method the “minimum noise” method of
finding missing data.

A practical application with the minimum-noise method is evident in a large empty hole
such as in Figures 7.16- 7.17. In such a void the interpolated data diminishes greatly. Thus
we have not totally succeeded in the goal of “hiding our data acquisition footprint” which
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we would like to do if we are trying to make pictures of the earth and not pictures of our
data acquisition footprint.

What we will do next is useful in some applications but not in others. Misunderstood or
misused it is rightly controversial. We are going to fill the empty holes with something that
looks like the original data but really isn’t. I will distinguish the words “synthetic data”
(that derived from a physical model) from “simulated data” (that manufactured from a
statistical model). We will fill the empty holes with simulated data like what you see in
the center panels of Figures 7.3-7.9. We will add just enough of that “wall paper noise” to
keep the variance constant as we move into the void.

Given some data d, we use it in a filter operator D, and as described with equation (7.32)
we build a weighting function W that throws out the broken regression equations (ones
that involve missing inputs). Then we find a PEF a by using this regression.

0 ≈ r = WDa (7.34)

Because of the way we defined W, the “broken” components of r vanish. We need to
know the variance σ of the nonzero terms. It can be expressed mathematically in a couple
different ways. Let 1 be a vector filled with ones and let r2 be a vector containing the
squares of the components of r.

σ =

√√
1
N

N∑
i

r2
i =

√
1′Wr2

1′W1
(7.35)

Let us go to a random number generator and get a noise vector n filled with random num-
bers of variance σ. We’ll call this the “added random noise”. Now we solve this new
regression for the data space d (both known and missing)

0 ≈ r = Ad − n (7.36)

keeping in mind that known data is constrained (as detailed in chapter 3).
To understand why this works, consider first the training image, a region of known data.

Although we might think that the data defines the white noise residual by r = Ad, we
can also imagine that the white noise determines the data by d = A−1r. Then consider a
region of wholly missing data. This data is determined by d = A−1n. Since we want the
data variance to be the same in known and unknown locations, naturally we require the
variance of n to match that of r.

A very minor issue remains. Regression equations may have all of their required input
data, some of it, or none of it. Should the n vector add noise to every regression equation?
First, if a regression equation has all its input data that means there are no free variables
so it doesn’t matter if we add noise to that regression equation because the constraints will
overcome that noise. I don’t know if I should worry about how many inputs are missing for
each regression equation.

It is fun making all this interesting “wall paper” noticing where it is successful and where
it isn’t. We cannot help but notice that it seems to work better with the genuine geophysical



7.7 TWO-STAGE LINEAR LEAST SQUARES 205

data than it does with many of the highly structured patterns. Geophysical data is expensive
to acquire. Regrettably, we have uncovered a technology that makes counterfeiting much
easier.

Examples are in Figures 7.16-7.19. In the electronic book, the right-side panel of each
figure is a movie, each panel being derived from different random numbers. Unfortunately,
in 2014 I am not able to deliver the electronic book on the internet.

Figure 7.16 The herringbone texture is a patchwork of two textures. We notice that data missing
from the hole tends to fill with the texture at the edge of the hole. The spine of the herring fish,
however, is not modeled at all.

Figure 7.17 The brick texture has a mortar part (both vertical and horizontal joins) and a brick surface
part. These three parts enter the empty area but do not end where they should.

The seismic data in Figure 7.19 illustrates a fundamental principle: In the restored hole
(center) we do not see the same spectrum as we do on the other panels. This is because the
hole is filled, not with all frequencies (or all slopes) but with those that are most predictable.
The filled hole is devoid of the unpredictable noise that is a part of all real data.

Figure 7.20 is an interesting seismic image showing ancient river channels now deeply
buried. Such river channels are often filled with sand, hence are good petroleum prospects.
Prediction error methodology fails to simulate these channels. We can give the reason that
the channels are not statistically stationary. The methodology also fails to extrapolate them
very far from a known region into a hidden region.
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Figure 7.18 The theoretical model is a poor fit to the ridge data since the prediction must try to
match ridges of all possible orientations. This data requires a broader theory which incorporates the
possibility of nonstationarity (space variable slope). This is likely impossible.

Figure 7.19 Filling the missing seismic data. The imaging process known as “migration” would
suffer diffraction artifacts in the gapped data that it would not suffer on the restored data.

7.7.2 Inversions with geostat

In geophysical estimation (inversion) we use model styling (regularization) to handle the
portion of the model that is not determined by the data. This results in the addition of
minimal noise. Alternately, like in Geostatistics, we could make an assumption of statistical
stationarity and add much more noise so the signal variance in poorly determined regions
matches that in well determined regions. Here is how to do this. Given the usual data fitting
and model styling goals

0 ≈ Lm − d (7.37)
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Figure 7.20 Upper left shows an interesting seismic image with ancient river channels now deeply
buried. In the upper right a portion of the image is removed. Lower left attempts to fill the gap using
a prediction-error filter continuing channels into the gap. Data are poorly continued. This image may
be thought of as the mean of a random variable. Lower right fills the gap by the “geostat” technique
adding noise of an appropriate variance and covariance while matching the boundary conditions. The
synthetic data added there shows no interesting channels, though it might replicate some channel
trends from the fitting region. Neither methodology can cope with the nonstationarity.

0 ≈ Am (7.38)

We introduce a sample of random noise n and fit instead these regressions

0 ≈ Lm − d (7.39)

0 ≈ Am − n (7.40)
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Of course you get a different solution for each different realization of the random noise.
You also need to be a little careful to use noise n of the appropriate variance. Bob Clapp
developed this idea at SEP and also applied it to interval velocity estimation, the example
of Figures 5.3-5.5.

Figure 7.21 The left 12 panels are the inputs. The right 12 panels are outputs.

7.7.3 Infill of 3-D seismic data from a quarry blast

Finding missing data (filling empty bins) requires use of a filter. Because of the helix, the
codes work in spaces of all dimensions.

An open question is how many conjugate-direction iterations are needed in missing-data
programs. When estimating filters, I set the iteration count niter at the number of free
filter parameters. Theoretically, this gives me the exact solution but sometimes I run double
the number of iterations to be sure. The missing-data estimation, however is a completely
different story. The number of free parameters in the missing-data estimation, could be
very large. This often implies impractically long compute times for the exact solution. In
practice I experiment carefully with niter and hope for the best. I find that where gaps
are small, they fill in quickly. Where the gaps are large, they don’t, and more iterations are
required. Where the gaps are large is where we should experiment with preconditioning.

Figure 7.21 shows an example of replacing missing data by values predicted from a 3-D
PEF. The data was recorded at Stanford University with a 13 × 13 array of independent
recorders. The figure shows 12 of the 13 lines each of length 13. Our main goal was to
measure the ambient night-time noise. By morning about half the recorders had dead bat-
teries but the other half recorded a wave from a quarry blast. The raw data was distracting
to look at because of the many missing traces so I interpolated it with a small 3-D filter.
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That filter was a PEF. It may seem strange that an empty panel is filled by interpolation.
That information came from the panels on either side of the empty panel.

7.8 SEABEAM: FILLING THE EMPTY BINS WITH A PEF

In chapter 5 empty bins in an image of the ocean bottom were filled using the laplacian
operator. It is shown in Figure 5.10.

The problem with the Laplacian operator as an interpolator is that it smears information
uniformly in all directions. We see we need an anisotropic interpolation oriented along
the regional trends. What we need is a PEF in place of the Laplacian. To get it, we apply
module pef on page 202. After binning the data and finding this PEF, we do a second stage
of linear-least-squares optimization as we did for Figure 7.15, and we obtain the pleasing
result in Figure 7.22.

Figure 7.22 Depth of the ocean (Figure 5.10) as filled with a laplacian (left) and with a PEF (right).

7.8.1 The bane of PEF estimation

This is the place where I would like to pat myself on the back for having “solved” the
problem of missing data. Actually, an important practical problem remains. The problem
arises when there is too much missing data. Then all the regression equations disappear.
The nonlinear methods are particularly bad because if they don’t have a good enough
starting location, they can and do go crazy. My only suggestion is to begin with a linear
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PEF estimator. Shrink the PEF and coarsen the mesh in model space until you do have
enough equations. Starting from there, hopefully you can refine this crude solution without
dropping into a local minimum.

The bane of PEF estimation is too much missing data.

7.9 MADAGASCAR: merging bidirectional views

Gravity of mountains on the ocean bottom pulls water towards them raising sea level above
them. Kilometer high topography on the sea floor creates 10cm topography on the sea floor
that can be dug out from the many stronger oceanographic effects.

A satellite points a radar at the ground and receives echoes we investigate here. These
echoes are recorded only over the ocean. The echo tells the distance from the orbit to
the ocean surface. After various corrections are made for earth and orbit ellipticities the
residual shows tides, wind stress on the surface, and surprisingly a signal proportional to
the depth of the water.

The raw data investigated here3 had a strong north-south tilt which I4 removed at the
outset. Figure 7.23 gives our first view of altimetry data (ocean height) from southeast
of the island of Madagascar. About all we can see is satellite tracks. The satellite flies a

Figure 7.23 Sea height under satellite tracks. The island of Madagascar is in the empty area at
(46◦,−22◦). Left is the adjoint L∗d. Right is the adjoint normalized by the bin count, diag(L∗1)−1L∗d.
You might notice a few huge, bad data values. Overall, the topographic function is too smooth, sug-
gesting we need a roughener.

circular orbit, effectively a polar orbit, south to north, then north to south. Earth at the
center of the circle rotates east to west. To us the sun seems to rotate east to west as
does the circular orbit. Consequently, when the satellite moves northward it is measuring

3 I wish to thank David T. Sandwell http://topex.ucsd.edu/ for providing me with this subset of satellite altimetry data,
commonly known as Topex-Posidon data. Readers may also enjoy oceanographic observation on internet video.

4 The calculations here were all done for us by Jesse Lomask.
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altitude along a line running SE→NW. When it moves southward we get measurements
along a NE→SW line. This data is from the cold war era. At that time dense data above
the −30◦ parallel was secret although sparse data was available. (The restriction had to do
with precision guidance of missiles. Would the missile hit the silo? or miss it by enough
to save the retaliation missile? Knowledge of regional gravity in the northern hemisphere
was essential.)

Here are some definitions: Let components of d be the data, altitude measured along a
satellite track. The model space is h, altitude on portion of the earth surface, that surface
flattened to an (x, y)-plane. Let L denote the 2-D linear interpolation operator from the

plane to a track. Let H be the helix derivative, a filter with response
√

k2
x + k2

y . Except
where otherwise noted, the roughened image p is the preconditioned variable p = Hh. The
derivative along a track in data space is d

dt . A weighting function that vanishes when any
filter hits a track end or a bad data point is W.

Figure 7.24 All the data d and the missing data markers.

Figure 7.24 shows the entire data space, over a half million data points (actually 537974).
Altitude is measured along many tracks across the image. In Figure 7.24 the tracks are
placed end-to-end, so it is one long vector (displayed in about 50 signal rows). A vector of
equal length is the missing data marker vector. This vector is filled with zeros everywhere
except where data is missing or known bad or known to be at the ends of the tracks. The
long tracks are the ones that are sparse in the north.

Figure 7.25 brings this information into model space. Applying the adjoint of the linear
interpolation operator L∗ to the data d gave our first image L∗d in model space in Fig-
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Figure 7.25 The roughened (helix
derivative H), normalized adjoint
diag(L∗1)−1L∗d. Some topography is
perceptible through a maze of tracks.

ure 7.23. The track noise was so large that roughening it made it worse (not shown). A
more inviting image arose when I normalized the image before roughening it. Put a vector
of all ones 1 into the adjoint of the linear interpolation operator L∗. What comes out L∗1 is
roughly the number of data points landing in each pixel in model space. More precisely, it
is the sum of the linear interpolation weights. This then, if it is not zero, is used as a divisor.
The division accounts for several tracks contributing to one pixel. In matrix formalism this
image is diag(L∗1)−1L∗d. In Figure 7.25 this image is roughened with the helix derivative
H.

Figure 7.26 With a simple roughening derivative in data space, model space shows two nice topo-
graphic images. Let n denote ascending tracks. Let s denote descending tracks. Left is L∗ d

dt n. Right
is L∗ d

dt s.

There is a simple way here to make a nice image—roughen along data tracks. This
is done in Figure 7.26. The result is two attractive images, one for each track direction.
Unfortunately, there is no simple relationship between the two images. We cannot simply
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add them because the shadows go in different directions. Notice also that each image has
noticeable tracks that we would like to suppress further.

A geological side note: The strongest line, the line that marches along the image from
southwest to northeast is a sea-floor spreading axis. Magma emerges along this line as a
source growing plates that are spreading apart. Here the spreading is in the north-south
direction. The many vertical lines in the image are called “transform faults”.

Fortunately, we know how to merge the data. The basic trick is to form the track deriva-
tive not on the data (which would falsify it) but on the residual which (in Fourier space) can
be understood as choosing a different weighting function for the statistics. A track deriva-
tive on the residual is actually two track derivatives, one on the observed data, the other
on the modeled data. Both data sets are changed in the same way. Figure 7.27 shows the
result. The altitude function remains too smooth for nice viewing by variable brightness,

Figure 7.27 All data merged into a track-free image (hooray!) by applying the track derivative, not to
the data, but to the residual. Left is h estimated by 0 ≈W d

dt (Lh−d). Right is the roughened altitude,
p = Hh.

but roughening it with H makes an attractive image showing, in the south, no visible tracks.
The north is another story. We would like the sparse northern tracks to contribute to our

viewing pleasure. We would like them to contribute to a northern image of the earth, not
to an image of the data acquisition footprint. This begins to happen in Figure 7.28. The
process of fitting data by choosing an altitude function h would normally include some
regularization (model styling), such as 0 ≈ ∇h. Instead we adopt the usual trick of changing
to preconditioning variables, in this case h = H−1p. As we iterate with the variable p we
watch the images of h and p and quit either when we are tired, or more hopefully, when
we are best satisfied with the image. This subjective choice is rather like choosing the ε
that is the balance between data fitting goals and model styling goals. Chapter 5 explains
the logic. The result in Figure 7.28 is pleasing. We have begun building topography in
the north that continues in a consistent way with what is in the south. Unfortunately, this
topography does fade out rather quickly as we get off the data acquisition tracks.

If we have reason to suspect that the geological style north of the 30th parallel matches
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Figure 7.28 Using the track derivative in residual space and helix preconditioning in model space we
start building topography in the north. Left is h = H−1p where p is estimated by 0 ≈W d

dt (LH−1p−d)
for only 10 iterations. Right is p = Hh.

that south of it (the stationarity assumption) we can compute a PEF on the south side
and use it for interpolation on the north side. This is done in Figure 7.29. The final image

Figure 7.29 Given a PEF A estimated on the densely defined southern part of the model, p was
estimated by 0 ≈ W d

dt (LA−1p − d) for 50 iterations. Left is h = A−1p. Right is p = Hh. This final
image contrasts delightfully with earlier ones.

contrasts delightfully from earlier ones. Our fractured ridge continues nicely into the north.
Unfortunately, we have imprinted the fractured ridge texture all over the northern space,
but that’s the price we must pay for relying on the stationarity assumption.

The fitting residuals are shown in Figure 7.30. The physical altitude residuals tend to be
rectangles, each the duration of a track. While the satellite is flying over the backside of
the earth the ocean surface changes altitude because of tides and the depressed centers of
moving eddies. The fitting residuals (right side) are very fuzzy. They appear to be “white,”
though with ten thousand points crammed onto a line a couple inches long, we cannot be
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Figure 7.30 The residual at fifty thousand of the half million (537,974) data points in Figure 7.29.
Left is physical residual LA−1p − d. Right is fitting residual W d

dt (LA−1p − d).

certain. We could inspect this further. If the residuals turn out to be significantly non-white,
we might do better to change d

dt to a PEF along the track.

7.10 MORE IDEAS AND EXAMPLES

7.10.1 Imposing prior knowledge of symmetry

Reversing a signal in time does not change its autocorrelation. In the analysis of stationary
time series, it is well known (FGDP) that the filter for predicting forward in time should
be the same as that for “predicting” backward in time (except for time reversal). When the
data samples are short, however, a different filter may be found for predicting forward than
for backward. Rather than average the two filters directly, the better procedure is to find
the filter that minimizes the sum of power in two residuals. One is a filtering of the original
signal, and the other is a filtering of a time-reversed signal, as in equation (7.41), where
the top half of the equations represent prediction-error predicting forward in time and the
second half is prediction backward.

r1

r2

r3

r4

r5

r6

r7

r8


=



y3 y2 y1

y4 y3 y2

y5 y4 y3

y6 y5 y4
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y2 y3 y4

y3 y4 y5

y4 y5 y6




1
a1

a2

 (7.41)

To get the bottom rows from the top rows, we simply reverse the order of all the compo-
nents within each row. That reverses the input time function. (Reversing the order within
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a column would reverse the output time function.) Instead of the matrix being diagonals
tipping 45◦ to the right, they tip to the left. We could make this matrix from our old familiar
convolution matrix and a time-reversal matrix

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


It is interesting to notice how time-reversal symmetry applies to Figure 7.15. First of

all, with time going both forward and backward the residual space gets twice as big. The
time-reversal part gives a selector for Figure 7.15 with a gap along the right edge instead
of the left edge. Thus, we have acquired a few new regression equations.

Some of my research codes include these symmetries, but I excluded them here. Nowhere
did I see that the reversal symmetry made noticeable difference in results, but in coding, it
makes a noticeable clutter by expanding the residual to a two-component residual array.

Where a data sample grows exponentially towards the boundary, I expect that extrapo-
lated data would diverge too. You can force it to go to zero (or any specified value) at some
distance from the body of the known data. To do so, surround the body of data by missing
data and surround that by specification of “enough” zeros. “Enough” is defined by the filter
length.

7.10.2 Hexagonal coordinates

In a two-dimensional plane it seems that the one-sidedness of the PEF could point in any
direction. Since we usually have a rectangular mesh, however, we can only do the calcula-
tions along the axes so we have only two possibilities, the helix can wrap around the 1-axis,
or it can wrap around the 2-axis.

Suppose you acquire data on a hexagonal mesh as below
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .

and some of the data values are missing. How can we apply the methods of this chapter?
The solution is to append the given data by more missing data shown by the commas below.

. . . . . . . . . . . . . . . . , , , , , ,
. . . . . . . . . . . . . . . . , , , , , ,
, . . . . . . . . . . . . . . . . , , , , ,
, . . . . . . ._._._._._._. . . . , , , , ,
, , . ._._._._/_/ . . . . / . . . . , , , ,
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, , . / . . . . . . . . . / . . . . , , , ,
, , , / . . . . . . . . . / . . . . . , , ,
, , , /_._._._._._._._._._/ . . . . . , , ,
, , , , . . . . . . . . . . . . . . . . , ,
, , , , . . . . . . . . . . . . . . . . , ,
, , , , , . . . . . . . . . . . . . . . . ,
, , , , , . . . . . . . . . . . . . . . . ,
, , , , , , . . . . . . . . . . . . . . . .

Now we have a familiar two-dimensional coordinate system in which we can find missing
values, as well as perform signal and noise separations as described in a later chapter.

7.10.3 Interpolations with PEF do not depend on direction of time

Recall the missing-data figures beginning with Figure 3.1. There the filters were taken as
known, and the only unknowns were the missing data. Now, instead of having a predeter-
mined filter, we will solve for the filter along with the missing data. The principle we will
use is that the output power is minimized while the filter is constrained to have one nonzero
coefficient (else all the coefficients would go to zero). We will look first at some results and
then see how they were found.

Figure 7.31 Top is known data. Middle
includes the interpolated values. Bottom
is the filter with the leftmost point con-
strained to be unity and other points cho-
sen to minimize output power.

In Figure 7.31 the filter is constrained to be of the form (1, a1, a2). The result is pleasing
in that the interpolated traces have the same general character as the given values. The
filter came out slightly different from the (1, 0,−1) that I guessed and tried in Figure 3.5.
Curiously, constraining the filter to be of the form (a−2, a−1, 1) in Figure 7.32 yields the
same interpolated missing data as in Figure 7.31. I understand that the sum squared of the
coefficients of A(Z)P(Z) is the same as that of A(1/Z)P(Z), but I do not see why that would
imply the same interpolated data; never the less, it seems to.

7.10.4 Objections to interpolation error

In any data interpolation or extrapolation, we want the extended data to behave like the
original data. And, in regions where there is no observed data, the extrapolated data should
drop away in a fashion consistent with its spectrum determined from the known region.

My basic idea is that the spectrum of the missing data should match that of the known



218 Multidimensional autoregression

Figure 7.32 The filter here had its right-
most point constrained to be unity—i.e.,
this filtering amounts to backward pre-
diction. The interpolated data seems to
be identical to that of forward predic-
tion.

data. This is is the idea that the spectrum should be unchanging from a known region
to an unknown region. A technical word to express the idea of spectra not changing is
“stationary.” This happens with the PEF (one-sided filter) because its spectrum tends to
the inverse of that of the known data while that of the unknown data tends to the inverse of
that of the PEF. Thus the spectrum of the missing data tends to the “inverse of the inverse”
of the spectrum of the known. The PEF enables us to fill in the missing area with the
spectral shape of the known area. (In regions far away or unpredictable, the spectral shape
may be the same, but the energy drops to zero. As we saw in figure 7.16 non predictable
signal such as white noise may be in the training data without being extended into the
missing region.)

On the other hand, the interpolation-error filter, a filter like (a−2, a−1, 1, a1, a2), fills
with the wrong spectrum. To confirm this. I prepared synthetic data consisting of a frag-
ment of a damped exponential, and off to one side of it an impulse function. Most of the
energy is in the damped exponential. Figure 7.33 shows that the spectrum and the extended
data are about what we would expect. From the extrapolated data, it is impossible to see
where the given data ends. For comparison, I prepared Figure 7.34. It is the same as Fig-

Figure 7.33 Top is synthetic data with
missing portions. Middle includes the
interpolated values. Bottom is the filter,
a prediction-error filter which may look
symmetric but is not quite.

ure 7.33, except that the filter is constrained in the middle. Notice that the extended data
does not have the spectrum of the given data—the wavelength is much shorter. The bound-
ary between real data and extended data is not nearly as well hidden as in Figure 7.33.
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Figure 7.34 Top is the same syn-
thetic data. Middle includes the inter-
polated values. Bottom is the filter, an
interpolation-error filter.

7.10.5 Hermeneutics

In seismology the data is usually better than the theory. Data misfit alerts us to oppor-
tunity. The earth knows something we have not yet learned.

Hermeneutics is the study of the methodological principles of interpretation. Histori-
cally, it refers to bible study. Never-the-less, it seems entirely appropriate for Geophysical
Estimation. If Albert’s book is “Inverse Problem Theory” and mine is “Inverse Problem
Practice”, and if the difference between theory and practice is smaller in theory than it is
in practice, then there are two fundamental questions:

1. In theory, what is the difference between theory and practice? In theory, the difference
is data error.

2. In practice, what is the difference between theory and practice? One suggestion is that
the discrepancy is entirely due to inadequate modeling. It is well known that geophysi-
cal data is highly repeatable. The problem is that the modeling neglects far too much.

Here is a perspective drawn from analysis of the human genome: “The problem is that it
is possible to use empirical data to calibrate a model that generates simulated data similar
to the empirical data. The point of using such a calibrated model is to be able to show how
strange certain regions are if they don’t fit the simulated distribution, which is based on
the empirical distribution.” In other words, “inversion” is just the process of calibrating a
model. To learn something new we track down the failures of such models.

7.11 NONSTATIONARY OPERATORS

Nonstationary data is that with spectra changing in time or space. Nonstationary data usu-
ally calls for nonstationary operators. We need those to get a white residual.

My past work did not meet my standards for this book, but now I think I know what
I should have done. This omission disappoints me because nonstationary data is so very
prevalent.
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7.11.1 Time-variable 1-D filter

My first go at nonstationarity was a time variable deconvolution operator. Unfortunately
at the present state of computer hardware the method is not suitable for multidimensional
data. This method did work well in one dimension. It is labeled “Unfinished” at my web
site. The method is simple. Every point on the signal has its own filter. Since each data point
has a multipoint filter the PEF design regression is severely underdetermined. A workable
regularization is to force the filters to change slowly. I minimized their gradient.

7.11.2 Patching

My second go at nonstationarity was patching. A big block of data is chopped into over-
lapping little blocks. The adjoint operation merges the little blocks back into a big block.
The inverse operator is easily found by passing a big plane full of ones 1s thru the operator
and back. This gives a measure of overlap, i.e. finds a bin count for a divisor to convert the
adjoint to an inverse. Weighting functions of space may also be introduced and the inverse
likewise calculated. Patching would appear to be well suited to modern parallel computer
architectures.

Patches need not be equal in size. They need not be rectangular. Reflection seismologists
immediately recognize the need for wedge-shaped patches in the space of time and source-
receiver offset.

This method does work, but there are drawbacks. A big drawback is the many parameters
required to specify patch sizes and overlaps. When PEF’s are designed in blocks, then care
must be taken to use internal filtering and attend to the fact that output lengths are shorter
than input lengths. You live in fear that patch boundaries may be visible in your output.
The many parameters increase the likelihood of miscommunication between the coder and
the user. The parameters also require effort and experience to optimize (tune).

7.11.3 Store the filter on a coarser mesh

The first idea is to keep the filter constant over a range of values in time and space. Such
a filter would be easily stored on a coarser mesh, so the memory devoted to filters could
be significantly less than the data. But this idea evokes fear that we will see the blocky
boundaries in outputs.

Robert “Bob” Clapp (who has exercised nonstationary filtering in large scale environ-
ments) suggests we should linearly interpolate filters from the coarser mesh. It can become
costly, but economics are hard to figure in this age of rapidly changing computer architec-
tures. Whether and how the coarse-mesh-filter idea is integrated with the helix transform
is a topic which to my knowledge has not yet been attacked.
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Industrial seismology sampler

Figure 8.1 A 2-D seismic survey line. Left half is layers. Right half is a salt dome. Salt flows up-
wards, dragging hence bending upwards the adjacent layers. There are no reflections inside the salt.
In the salt are only artefacts of data processing.

Industrial seismology is a big consumer of technologies developed in this book. This
book steers away from seismology because of its complexity (and because I have written
other books devoted to seismology). Figure 8.1 is a traditional single survey line of the
kind that dominated the industry in the 1960s..

This book is merely a “warm up” to today’s industry. In earlier chapters you saw tiny
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data sets manageable in a small desktop computer. Industrial seismology is done both on
land and at sea. These examples are marine. Receivers measure hydrophone voltage in a
five dimensional data space, two surface coordinates (xs, ys) for each source pop, two more
(xr, yr) for each receiver, and the echo delay time t. It has the 3-D model space of our world
(x, y, z), though on the cube here we do not see z, but t, the vertical seismic travel time.

Figure 8.2 At t =1.387s (about 1.4km depth): The upper right circular corner is a salt dome. River
meanders from about a million years ago. River meanders are a common sight in 3-D reflection seis-
mic images. Rivers typically migrate significant distances in the 7000 years between our resolution
slices. Some depth ranges contain no rivers. Such correspond to eras when these layers were being
laid down lay beneath the sea.

Illustrations here may look like data, but they are slices from model space, On figure 8.1
the alternating voltages in the seismic microphone suggest black-white physical layering
in the earth. While this is surely indicative, higher frequency filtration would yield more
layers. Keep this in mind as you examine Figure 8.2, a horizontal slice inside the earth at a
constant depth (travel-time depth t = 1.387sec). Local outline shapes are truly meaningful
here while black/white polarities hardly so. Whether a river is white in a black background,
or black in a white background is an accidental function of overall travel time and spectrum.
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What is significant is the rings surrounding the dome. These are a consequence of the
upward bending layers you saw in figure 8.1.

Figure 8.3 At t=0.888s: The (x, y) plane shown here is grabbed from a volume of slices separated by
6ms, about 18 feet. Slice to slice represents about 7,000 years of sedimentary deposition in the Gulf
of Mexico. Top to bottom is about a million years (about the age of the human species). Think of the
creatures in all those rivers, their ancient worlds. Awesome, isn’t it?

Seismic waves here are a little faster than 2 km/sec, but they must go both down into the
earth and up again, so the bottom of the time axis is a little more than 2 km deep. A ship
sails from west to east creating an x-axis, 22 kilofeet long, a little under 5 miles. Where the
vertical axis is not north-south it is travel time. Typically that axis might run to 5 sec. Here
for space limitations, it runs less than 2s. All the planes you see in this chapter come from
one 292 × 451 × 551 cube of 72 megapixels, a subset of a larger volume of model space.

You may be seeing paper or images of what’s on paper, but what you see is merely two-
dimensional slices thru the 3-D model space. I can plunge into these volumes, panning and
zooming. Thanks to my colleague Bob Clapp and others like him after some years we may
escape the constraints of PDF files and deliver such experiences to readers outside our lab.

The upper right corner of the constant depth slices shows a circular region. This is salt.
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Figure 8.4 At t=1.830s, a rarely seen image: Embedded in this map view at (x, y) =(6-13, 14-16)
are many drainage tributaries (a dendritic pattern) to a central canyon on a lower slice (which is not
shown). An artist might see it as a tree root, feeders going off to the lower left. The fault in Figure 8.8
is here again seen emerging southward from the salt-dome at x=14.

Salt, like ice, seems brittle, but under pressure it flows like a liquid. Before the past million
years ago before the sediments of this cube were laid down there was a salt lake here that
eventually dried and was buried beneath the sand, shale, and carbonates that became this
cube. Salt is lighter than rock, and so eventually it erupted like a pimple on the face of the
earth, a pimple two miles wide. No oil in here, but the bent up layers aside it seen in Figure
8.1 are excellent prospects. Salt flow is a dominant feature in the Gulf of Mexico.

This data cube (actually model space) is about 20 years old. It came from Chevron via
David Lumley to James Rickett. It is textbook quality 3-D data from the Gulf of Mexico.
It would have taken the survey company about a month to acquire, and it would cost the
oil company (group maybe) about ten million dollars.

A ship with an air gun towed a 7km long cable with a thousand hydrophones. Today
there would be several gun boats. The recording ship would trail about a dozen streamers
separated about 150 meters. World-wide there are about 50 marine survey teams working
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Figure 8.5 At t=1.938s: To the east of the fault noted already in Figure 8.4 is a broken up layer with
a “wormy” appearance. I do not know what it is. Curiously it is found only on one side of the fault.

continuously. The half dozen largest seismic survey companies together sell about ten bil-
lion dollars of surveys per year to oil companies, private and national. Data is also recorded
on land with more varied equipment types.
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Figure 8.6 At t=1.014s: A full-page slash upon the earth of strikingly mathematical perfection, that
of a hyperbola. Increasing the slice depth I found it shifted southward, persisting only about 6 of these
18 foot slices, roughly 120’ top to bottom. I interpret this as a land slump. Sediment accumulates on
the water bottom increasing its weight until suddenly with an earthquake it slides down toward
deeper water. Seeing a hyperbola in a solid material was startling to us seismic data analysts. We
see many hyperbolas on the time axis, but never on a space axis. Our first thought was, “This must
be a data processing artifact.” Now we feel we have eliminated that possibility. Something about
the presumed stress to earthquake process could make this shape. I first suggested to a petroleum
geologist it might be a beach. He said beaches move rapidly in geologic time as land and water levels
rise and fall. He suggested an area covered in parallel lines. I believe he was correct, but the example
we found was sufficiently imperfect that I’m not showing it.
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Figure 8.7 At t=1.578s: A speckled area about 6 kilofeet square is centered about (4., 6.). I interpret
this as karst, limestone in its varied forms, very rugged. Some circular dots might be sink holes.
At increasing travel-time depths, this area drifted towards the southeast, the drift being evidence of
changing sea level.
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Figure 8.8 Under about x = 14 kilofeet is a prominent near-vertical fault in this 2-D line. Faults
are more common than river meanders, especially prolific in 2-D seismic display. This data cube is
unusual in that it shows only this one prominent fault. Fascinating detail easily apparent on the time
slices are unintelligible on the 2-D (x, t) lines simply showing as mere irregularities on the layers,
seeming merely noise. Back in the 1960s, when this was the only kind of data we had, we might see
many faults per mile, but never imagined the wealth of geologic detail you have seen here on the
time slices.
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