Chapter 7

Multidimensional autoregression

4o

Occam’s razor says we should trypunderstand the world by the simplest explanation. So,
how do we decompose a complicated thing into its essential parts? That’s far too difficult
a question, but the word “covariance” points the way. If things are found statistically
connected (covary), the many might be explainable by a few. For example a ¢#€-dimensio al
waveform can excite a wave equation filling a 3-D space. The values in that space vae
a lot of covariance. In this chapLeWe take multidimensional spaces full of numbers and
answer the question, “what causal diltforcntiai (difference) equation might have created these
numbers?” Our answer here, an autoregressive filter, does the job imperfectly, but it is a
big step away from complete ignorance. As the book progressegawe find three kinds of uses:
(1) filling in missing data and uncontrolled parts of models, (2) preparing residuals for data
ﬁttingjk(S) praviding “prior” models for preconditioning and estimation.

Recall that residuals (and preconditioning variables) should be Independent, and Iden-
tically Distributed (IID). In practicgathe “ID” means all residuals should have the
variance, and the preceding “I” meafis likewise in Fourier space (whiteness). Thisgis th
“I” chapter. Conceptuallyawe might jump in and out of Fourier space, but hergawe learn
processes in physical space’that whiten in Fourier space. In earlier chapterghwe transformed
from a physical space to something more like an IID space when we said,”“Topography is
smooth, so let us estimate and view instead its derivative.” In this chapte‘r,&re go beyond
roughening with a guessed derivative. ?

The branch of mathematics introduced here is young. Physicists seem to know nothing
of it, perhaps because it begins with time not being a continuous variable. w 100 years
ag ople looked at market prices and wondered why they varied from day to day. To try
to make money from the market fluctuationgMhey schemed to try to predict pricesAFat”

is a good place to begin. The subject is knowh as “time-series analysis.” In this éapter A

we define the autoregression filter, also known as the prediction-error filter (PEF).
It gathers statistics for us. It gathers not the autocorrelation or the spectrum directlygbut
it gathers @ ndirectly, as, the inverse of the amplitude spectrum of its input. Although
time-series analysis is a-* imensional study, we naturally use the helix to broaden it to
multidimensional space. The PEF leads us to the “inverse-covariance matrix” of statistical
estimation theory. Theoreticians tell us we need(thisybefore we can properly find a solution.
Here we go after it.
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178 CHAPTER 7. MULTIDIMENSIONAL AUTOREGRESSION

7.0.11 Time domain versus frequency domain

In the simplest applications, solutions can be most easily found in the frequency domain.
When complications arise, it becomes necessary to use time and space domains, where we
may cope with boundaries, scale by material properties, convolve differential operators, and
apply statistical weighting functions and filters.

Recall Vesuvius in Chapter 2. We solved for altitude using only the phase of the data.
(The given data was in wo,m,ySspace.) There was a marvelously fast solving method in
the (kg, ky) Fourier space. It worked so long as we were satisfied that each data value in
(z,y) was as good as any other. Butywhen we recognized data quality varied with location
in (z,y) in proportion to the amplitide of the signal, we needed a weighting function in
(z,y). Without gpwe had a limited quality solution, perhaps a good starting solution for
using weights an finite differences in (z,y).

Recall some of the “magic tricks” we did in Chapter 4 with spectral factorization, finding
the impulse response of the sun, blind deconvolution, and others. Thergawe required a full
mesh of regularly sampled data. Hergawe allow in the mesh missing information somewhat
arbitrarily distributed. Being out of &urier space, in the physical domainawe can gather
spectral information on small grids, irregularly shaped. }

Fourier methods give insightAbecause may be roughly correct in real life. Buawhen we

have space variable coefficierits, eitherphysically, as seismic velocity, or statistically, as with

Vesuvius, we are back to solving problems in physical space. Seismology has the delightful

aspect that the@rth is unchanging in time, so Fourier analysis is general!é applicable for

physical modeling, but like the space axes, statistical qualities of data variable with

tim“f)éO when reconstructing models from data»_we are thrown out of the frequency domain.
; )

his)is a general fact of science. Homoieneity in time and space enables Fourier methods.

7.1 SOURCE WAVEFORM, MULTIPLE REFLEC:I'IONS
]

Deep water multiple reflection! is a simple geometry whese the fourier formulation readily
converts to the the physical domain. There are two unknown waveforms, the source wave-
form S(w) and the ocean-floor reflection F(wWhich may include the uppegmud layers.
The water-bottom primary reflection P(w) is the convolution of the source waveform with
the water-bottom response; so P(w) = S(w)F(w). The first multiple reflection M (w) sees
the same source waveform, the ocean floor, a minus one reflection coefficient at the water
surface, and the ocean floor again. Thu?ﬂie observations P(w) and M (w) as functions of
the physical parameters S(w) and F(w) dr

Plw) = S(w)F(w) (7.1)
Mw) = —Sw)F(w)? (7.2)
Algebraicall%the solutions of %quations (7.1) and (7.2) are &
) Flw) = -M(w)/Pw) (7.3)
Sw) = —Pw)?/MWw) (7.4)

! For this short courseﬁam omitting here many interesting examples of multiple reflections shown in my

1992 book, PVT? ) .
. (o (VI L Aadves
Pt \,,,}\[wm dnvloion (_ w A
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These solutions can be computed in the Fourier domain by simple division. The difficulty
is that the divisors in gquations (7.3) and (7.4) can be zero, or small. This difficulty can be
attacked by use of a pSsitive number ¢ to stabilize it. For example, multiply gquation (7.3)
on top and bottom by P(w)* /?Lnd add ¢ > 0 to the denominator. This give@

_ M(w)P(w)*
U I P T i

where P*(w) is the complex conjugate of P(w). Although the e stabilization seems nice, it
apparently produces a nonphysical model. For ¢ large or small, the time-domain response
could turn out to be of much greater duration than is physically reasonable. hould
not happen with perfect data, but in real life, data always has a limited spectral band of

good quality. o
Functions that are rough in the frequency domain wilt-be long in the time domainAPHis

suggests making a short function in the time domain by local smoothing in the frequency

domain. Let the notation < --- > denote smoothing by local averaging. Thus, to specify

filters time duration is not unreasonably long, we can revise equation (7.5) to@

. < M(w)P(w)* >
el = meg P(w)P(w)* > ri6)

where instead of deciding a size for ¢pwe need to decide how much smoothing. I find that
smoothing has a simpler physical interpretation than choosing ¢. The goal of finding the
filters F'(w) and S(w) is to best model the multiple reflections so tha%l eytan be subtracted
from the data, and thus enable us to see what primary reflections have been hidden by the
multiples.

These frequency-duration difficulties do not arise in a time-domain formulation. Unlike
in the frequency domain, in the time domairyq',t is easy and natural to limit the duration
and location of the nonzero time range of F(w‘) and S(w). First express (7.3) ds@

\s)-’-" 5o = PW)FW)+ M) (7.7)

Recall the convolution operator from Chapter 1. Express the frequency functions in
(7.7) as polynomials in Z = e, The coefficient of each power of Z gives one
ime-domain regression equations " The column vector f contains the unknown
sea~floor filter. The column vector m contains the multiple reflection. The matrix P has
down-shifted columns of the primary reflection.

[ W [pr O 0] [ my ]
T2 p2 m 0 my
B T3 - P3 D2 30_1 f ms3

6w op T4 _ | Pa P3 P2 s | o | T (7.8)

5 Ps P4 P3 f3 ms
76 Pe P5 P4 me
T7 0 ps ps my

\_ T8 | | 0 0 ps | | mg |
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7.2 TIME-SERIES AUTOREGRESSION OK

Historically, the earliest appli€ation of the ideas in this chapter came in the predictions of
i al from its past is called “autoregressio%because a signal
M egression nds for us the prediction filter

di do da
d2 d1 f dS
ds do [ fl} ~ | g (7.9)
dy ds 2 ds
ds dy dg

(In practice, of course the system of equations would be much taller, and likely somewhat
wider.) A typical row in the matrix (7.9) says that di1 = di f1+di—1 fphencgghe description
of f as a “prediction” filter. The error in prediction defines the residual. the residual
have opposite polarity and merge the column vector into the matrix gettin@ »

0 dy di do

0 dys doy dy 1

0 ~ r = dy ds do —f1 = Da (7.10)
0 ds dq ds —fa

0 de ds dy

which is a standard form for autoregressions and prediction error.

Multiple reflections are predictable. It is the unpredictable part of a signal, the pre-
diction residual, that contains the primary information. The output of the filter (1, — f1, — f2)
(ag,a1,az) is the unpredictable part of the input. This filter is a simple example of a
“prediction-error” (PE) F.lltézg It is one member of a family of filters called “error filters.”

The error-filter fa-milfare filters with one coefficient constrained to be unity and various
other coefficients constrained to be zero. Otherwise, the filter coefficients are chosen to have
minimum power output. Names for various error filters follow:

(1,a1,az2,as, -, an) prediction-error (PE) filter
(1) 0,0,a3,a4,- -, an) é&ppod PE filter
(@esipys ™0 05y By Ly O 0503 = ) interpolation-error (IE) filter

Ao

We introduce a free-mask matrix K whieh “passes” the freely variable coefficients in
the filter and “rejects” the constrained coefficients (which in this first example is merely the
first coefficient ap = 1).

B o= |. 1. (7.11)

To compute a simple prediction error filter a = (1, a, ay) with the CD method, we write



pash

7.3. PREDICTION-ERROR FILTER OUTPUT IS WHITE 181

(7.9) or (7.10) a@

dy dyi do da
d;; dg d1 o - - 1 dS
0 = r 3 ¢ dy dg do -1 ay + d4 (7.12)
ds dgvds | ag ds
dﬁ ds d4 d6

Let us move from this specific fitting goal to the general case. Let D be the matrix in
equation 7.10. (Notice the similarity of the free-mask matrix K in this filter estimation
application with the free-mask matrix J in missing data goal Eg) Fewriting gquation
7.1%’r.he fitting goal is =

)

0 ~ Da (7.13)
0 = DI-K+K)a (7.14)
0 =~ DKa+D(I-K)a (7.15)
0 ~ DKa+Day (7.16)
0 =~ DKa-+y (7.17)
0 = r DKa +rg (7.18)

which means we initialize the residual with ro = y. and then iterate wit@

Aa «— K*'D*r (7.19)
Ar «— DK Aa (7.20)

7.3 PREDICTION-ERROR FILTER OUTPUT IS WHITE

In Chapter 5pwve learned that least squares residuals should be IID ; i
Bﬁtﬁb&ﬁg‘ﬁﬁbich in practical terms means in both Fourier space and physical spacgAhe

should have d uniform variance. Further, not only should residuals have the IID proﬁerty,
but we should choose a preconditioning transformation so that our unknowns have the same
IID nature. For examplybechos et weaker in time. Multipying by some constant function
of timepsuch as ¢ or ¢2 tenﬁo uniformize (flatten) the variance with time. We should
also trahsform to flattén @ in Fourier SPacA icti '

thate Nextawe see why and how. / M@ aclo

Residuals and preconditioned models should be white. PEFs can do it.

The relationship between spectrum and PEF

Knowledge of an autocorrelation function is equivalent to knowledge of a spectrum. The
two are simply related by Fourier transform. A spectrum or an autocorrelation function
encapsulates an important characteristic of a signal or an image. Generally{the spectrum
changes slowly from place to place although it could change rapidly. Of all tHe assumptions
we could make to fill empty bins, one that people usually find easiest to agree with is that

PEFEs.
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the spectrum should be the same in the empty-bin regions asgwhere bins are filled. In

practice/we deal with neither the spectrum nor its autocorrelation but with a third object.
This thi'd object is the Prediction Error Filter (PEF), the filter in gquation (7.10).
-

Take gguation (7.10) for r)@nd multiply it by the adjoint r* getting a quadratic form for
r-r. Theé matrix of the quadrdtic form contains the autocorrelation of the original data d;,
not on ata d; itoell Solving gives the PEF. Changing the polarity of the data or time
reversing it leaves the autocorrelation unchanged, so it leaves the PEF unchanged. Thus /L
knowledge of the PEF is equivalent to knowledge of the autocorrelation or the spectrum. P

7.3.1 Why 1-D PEFs have white output W 7%
The basic idea of least-squares fitting is that the residual is orthogerial to each of the fitting
functions. Applied to the Weﬁm—ﬂ?ﬂ:’EF—ﬁﬂﬁs j he output
of the PEF is orthogonal to lagged inputs. The orthogonality applies only for lags in
the past, because prediction knows only, the past while”it aims to the futuse. What we
soon see here is differet@amely, the output.4§ uncorrelated witj‘fas opposed
to the input) for lags in~both directions; e output spectrum is white. has
many, many applications with examplgs coming up soon. (Surprisingly;ﬂqe output of an

interpolation-error filter is uspally nonfwhite.)
Let d be a vector wﬂg components contain a time function. Let Z™d represent shifting

the components to delay the signal in d by n samples. The definition of a predictiorerror*
ﬁl-%l“EF Is that it minimizes ||r|| by adjusting filter coefficients a,. The PEF output is:

r=d+aZ2'd+aZ?d+azZ°d+ - (7.21)

We set out to choose the best a, by setting to zero the derivative of (r - r) by a,. After the
best a, are chosen, the residual is perpendicular to each of the fitting functions:

d
P = . 7.22
0 = L () (7.22)
dr
0 = r. =r-Z"d for 7 > 0. (7.23)
da,

Given that 0 = r - Zfdﬁi;e examine 0 = r - Z'r. Using gguation (7.21Ne have for any
autocorrelation lag k > 0, ‘ < N .

r-ZFr = r-(ZFd+ a1 ZFd + a2 + )
= r-Z""d—i—alr-Zk+1d+a2r-Zk+2d+...

= 0+4a10+az0+... /)"
= 0y
W_W“a W

Stk the autocorrelation is symmetrigr - Z ~ky is also zero for k <
of r is an impulse. In other words, tHe spectrum of the time functién r; is white. Thui d
and a have mutually inverse spectra. )

gitree the output of a PEF is white, thefPEF iﬁs?f has a spectrum inverse to its input.

(b
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We\éexamples

An important application of the PEF is in missing data interpelatign
later in this chapter. My third book, BVI, has many examples in© with both
synthetic data and field datgAincluding the gap parameter. He13qve next extend these ideas

to two i i
(or r‘ngre) dimensions! S )
In pr;(ctic egree of whiteness is limited by the number of lags we take in the PEF.
@ #l not nﬁnity@o the autocorrelation w non-zero fox, the lags we have omitted.
T most applicationsalphg-lag correlations tend to be smallA®Phid because predictions tend

to degrade with timé lag. There are exceptions, however./I‘o predict unemployment next
month, it helps a lot to know the unemployment this month. On the other hand, because of
seasonal effects, the unemployment from a year before next month (11 months back) might
provide even better prediction. But mostly, older data has diminishing ability to enhance
prediction. E a ’

© Finite-difference equations resemble PEFs, and use only a short range of lagh
example, a wave equation containing only the three lags intrinsic to 82/9t*. Sg short
are often quite analogous to differential equations, hence very powerful, shorf lags enabling

prediction over long intervals. am

The most important property of a/prediction-error filter or PEF is dm?i-’:s output
tends to a white spectrum (to Be proven here). No matter what the input to this filter,
its output tends to whiteness «ad the number of the coefficients n — oo tends to infinity.
Thus, the PE filter adapts+ o the input by absorbing all its color. has important
statistical implications and iportant geophysical implications.

PEF output tends to whiteness MW

Undoing convolution in nature

Prediction-error filtering is called “blind deconvolutiob.qln the exploration indust%t is

simply called “deconvolutiom This word goes back to very basic models and concept’s. In

this mod%ene envisions a random white-spectrum excitation function x existing in nature,

and this excitation function is somehow filtered by unknown natural processes, with a filter

operator B @ducing an output y in nature that becomes the input y to our computer
hi

programs. is sketched in Figure 7.1. Thewe design a prediction-error filter A on
7
?
Figure 7.1: Flow of information x y r=x
from nature, to observation, into -~ B - A -
computer. (y is data d.) |VIEW

mda/. systems <— Nature —> <— Computer ——>

y, which yields a white-spectrum residual r. Because r and x theoretically have the same
spectrum, the tantalizing prospect is that maybe r equals x, meaning the PEF A has
deconvolved the unknown convolution B.
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Causal with causal inverWL. W

Theoretically, a PEFis a causal filter with a causal inversp/‘?hf! suggests that deconvolution
of natural processes with a PEF might get the correct phe{se spectrum as well as the correct
amplitude spgctrum. Naturally, the PEF could not give the correct phase to an “all-pass”
filter<Phatdis a filter with a phase shift but a constant amplitude spectrum. (Migration
operzgcors are in this category.) '

Theoreticallydwe should be able to use a PEF in either convolution or polynomial di-
vision. There aré some dangers though, mainly connected with dealing with data in small
windows. Truncation phenomena might give us PEF estimates that are causal, but whose
inverse is not, so they cannot be used in polynomial division. @is a lengthy topic in the
classic literature. This old, fascinating subject is examined in my older books, FGDP and

PVI.

Spectral estimatio ‘! G f
Qa

The PEFg‘Z)qut eing white leads to an important consequence: To specify a spectrum,
we can)give thelSpectrum (of an input) i give its autocorrelation, or give its PEF
coefficients. Each is transformable to the other two. A classic PEF estimation technique
is named for Norman Levinson found in an appendix of a classic test by Norbert Wiener.
Those methods assume the autocorrelation is given. Starting instead from a truncated sign
series is another ;iassic method by John Parker Burg. Theseare described i iderable
detail in my welj based book FGDP. Having the PEF and™i e signal spectrum is

simply the inverse the PEF g spectrum.
s )}_‘ Médf

Short windows

s
the information in a long resonant filter. If the input to the PM-TS a sinﬁsoid, it is
exactly predictable by a three-term recurrence relation, and all the color is absorbed by
a three-term P[?l (see exercises). Burg’s method supercedes Levinson’s in short data
windows. Burg’s method also ensures a causal inverse, something we 211 not ensure here.
His method should be reviewed in light of the helix.

Weathered layer resonance

That the output spectrum of a PE #iléer is white is also useful geophysically. Imagine the
reverberation of the soil layer, highly variable from place to place, as the resonance between
the surface and shallow more-consolidated soil layers varies rapidly with surface location
because of geologically recent fluvial activity. The spectr or of this erratic variation
on surface-recorded seismograms is (j)mpensated by a P . Usuallyrwe do not want

PE-filtered seismograms to be whitf} but once they all hage the same sp(?ctrurn, it is easy
to postﬁlten‘ to any desired spectrum.

c
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7.4 2-D FILTERS

Convolution in two dimensions is just like convolution in one dimensio%&xcept that convo-
lution is done on twayaxes. The input and output data are planes of numbergéand the filter
is also a plane. A fwe-dimensional filter is a small plane of numbers € convolved over
a big data plane of numbers. ﬁ:zﬂ

Suppose the data set is a collection of seismograms uniformly sampfed in space. In other
words, the data is numbers in a (¢, z)-plane. For example, the following filter destroys any
wavefront aligned along the direction of a line containing both the “+1” and the “—1”.

-1
- (7.24)
1

The next filter destroys a wave with a slope in the opposite direction:

1

M” 3 (7.25)

To_convolve the abGve two filters, we can reverse either one (on both axes) and correlate
so that you can ge

(7.26)

which destroys waves of both slbpes.

A #we-dimensional filter that can be a dip-rejection filter like (7.24) or (7.25) i@

(7.27)

o 0 o9
—

L

where the coefficients (a, b, ¢, d, e) are to be estimated by least squares Mdj’t: minimize

the power out of the filter. (In the filter table, the time axis runs \Qétieca%_ly.)
Fitting the filter to two neighboring traces that are identical,btrt*for a time shift, we see

the filter coefficients (a, b, ¢, d, €) should: turn out to be something like (—1,0,0,0,0) or
(0,0, —.5, —.5,0), depending on the dip (stepout) of the data. Butpif the two channels are
not fully coherent, we expect to see something like (—.9,0,0,0,0) br (0,0,—.4,—.4,0). To
find ‘50ewuch as (7.26), we adjust coefficients to minimize the power out of filter shapes,
as irf*

)

(7.28)

nNe 8 8
@ A0 o
—
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With 1-dimehsional filters, we think mainly of power spectrégmd with 2-dimensional
ﬁltergﬁwe can think of temporal spectra and spatial s%eﬁra. What is new, however, is that
in two! dimensions we can think of dip spectra (whd when a 2-dimensional spectrum has
a particulayly common forn{?)namelyAwhen energy organizes on radial lines in the (w, kz)-

plane). a short (three-term) l-dimensional filter can devour a sinusoid, we have seen
that simple 2-dimensional filters can devour a small number of dips.

7.4.1 Why 2-D PEFs have white output

A well-known property (see FGDP or layj) of a 1-D PEF is that its energy clusters imme-

diately after the impulse at zero delay time. Applying this idea to the helix in Figure 4.2
shows us that we can consider a 2-D PEF to be a small halfplane lik ith an impulse

along a side. These shapes are what we see :x?in Figure 7.2. O W ? N

having infinite radius, the B filter is

Figure 7.2: A _2:D whitening filter
template, anagged. At out-
put locations “A” and “B,” the filter
coefficient is constrained to be “m
When the semicircles are viewed as B )’—

contained in the A filter. Because

the output at A is orthogonal to all A

its inputs, which include all inputs
of B, the output at A is orthogo-

nal to the output of B. ! w&
1mda/ . whiteprugfl

Figure 7.2 shows the input plane with a 2-D filter on topﬂf—i?;t two possible locations.

The filter shape is a semidisk, which you should imagine being of inﬁnitelyW
own

Notice that semidisk A includes all the points in B. The output of disk A wi

to be orthogonal to the output of disk B. Conventional least squares theory says that the
coefficients of the filter are designed so that the output of the filter is orthogonal to each
of the inputs to that filter (except for the input under the “1,” because any nonzero signal
cannot be orthogonal t). Recall that if a given signal is orthogonal to each in a given
group of signals, then the given signal is orthogonal to all linear combinations within that
group. The output at B is a linear combination of members of its input group, which is
included in the input group of A i already orthogonal to A. Therefore the output
at B is orthogonal to the output at A. In summary,

residual L fitting function

output at A L each input to A

output at A L each input to B and the output of B
output at A L linear combination of all parts of B
output at A L output at B

The essential meaning is that a particular lag of the output autocorrelation function
vanishes.

1S
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Study Figure 7.2 to see for what lags allfhe eléments of the B filter are wholly contained
in the A filter. These are the lags we Pave shown the output autocorrelation to be
vanishing. Notice another set of lags e have proven nothing (where B is moved to i
the right of A). Autocorrelations are centrosymmetric, which means that the value at any L %"(
Ix.lag is the same as the value at the negative of that lag, even in 2-D and 3-D w-here‘f,'ﬁ(
) 5 a vector quantity. Zbeve we have shown that %m}a of autocorrelation values
vanishes. By the centrosymmetry, the other half mug}\ s . Thugghe autocorrelation
of the PEF output is an impulse function, so its 2-D spectrum is white!

The helix tells us why the proper filter form is not a square with the “1” on the corner.
Before I discovered the helix, T understood it another way (that I learned from John P.
Burg): For a spectrum to be white, all nonzero autocorrelation lags must be zero-valued.
If the filter were a quarter-plz;e, then the symmetry of autocorrelations would only give

us vanishing in another quartér})seythere would be two remaining quarter-planes vdaﬂtthe " g .
autocorrelation was not zero. M\"{ Lo~

Fundamentally, the white-output theorem requires a pne-dimensional ordering to the
values in a plane or volume. The filter must contain a halfplane of values so that symmetry
gives the other half.

You otice some nonuniqueness. We could embed the helix with a 90° rotation in the
original physical application. Besides the difference in side boundaries, the 2-D PEF would
have a different orientation. Both PEFs shot » an output that tends to whiteness as
the filter is enlarged. It seems that we couldsdesign whitening autoregression filters for 45°
rotations , and we could also design/fhenf for hexagonal coordinate systems. In some
physical applications, you might find the nonuniqueness unsettling. Does it mean the “final
solution” is nonunique? Usually not, or not seriously so. Recall even in one dimension, the
time reverse of a PEF has the same spectrum as the original PEF. When a PEF is used for
regularizing a fitting application, it is worth noticing that the quadratic form minimized is
the PEF times its adjoin}wo the phase drops out. Likewise, a missing data restoration also
amounts to minimizing a,’quadratic forly\so the phase again drops out.

/

7.5 Basic blind deconvolution

Here are the basic definitions of blind deconvolution: If a model m; (with FT M) is made
of random numbers and convolved with a “source waveform” (having FT) F ~Lut creates
data D. From data 9\;/011 find the model M by M = F'D. Trouble is, you typically do not

know F and need to dstimate (guess) %h.enee t%e word “blind.” {
Suppose we have many bsérvationls'or many channels of Do we label them D;. We
can define a model M;
D 2

3
/T D*D

s0 blind deconvolution removes the average spectrum.

M; (7.29)

Sometimespwe have only a single signal Dabut it is quite long. Because the signal is
long, the magn]tude of its Fourier transform ig rough, so we smooth it over frequency, and
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denote it thus:

‘ D
= —_— (7.30)
V&€ D*D »
Smoothing the spectrum makes the time function shorter. Indeed, the amount of smoothiné
may be chosen by the amount of shortness wanted.
[Xe,
The preliminary models are the most primative forms econvolved data. @
deal only with the amplitude spectrum. Most deconvolu.t'?ns involve,also/ the phase. e
/

examples we'Wshow next de/include the phase. That’s'sometimes significant, sometimes
not. Averaging occurs because the PEF is smaller than the data.

m = d * PEF (7.31)

7.5.1 Examples of modeling and deconvolving with a 2-D PEF

F o

Hereiwe examine elementary signal-processing applications of 2-D predietion=errer-filters

){PE'Pasj’ on both everyday 2-D textures andjon seismic data. Some of these textures are
-eITOr

easily modeled with predicti § Estfw/hile others are not. All figures used
the same 10 x 10 filter shape. No attempt was madg to optimize filter sizg o shapegor any
other parameters. )

Results in Figures T.Qﬁ are shown with various familiar textunes® on the left as training
data sets.. From these training data sets, a predietion-error-filker-( PEF) is estimated using
module pef. The center frame is simulated data made by deconvolving (polynomial division)
random numbers by the estimated PEF. The right frame is the more familiar process,
convolving the estimated PEF on the training data set. Theoretically, the right frame tends
towardg a white spectrum.

Trmiming Trmage Hynthesized Trmaoge T~ PRF

Figure 7.3: Synthetic granite matches the training image quite well. The prediction error
(PE) is large at grain boundaries so it almost seems to outline the grains. VIEW

mda/. granite
£
Sinee a PEF tends to the inverse of the spectrum of its input, results similar to these
could likely be found using Fourier transforms, smoothing spectra, etc. We used PEFs
because of their flexibility. The filters can be any shape. @ can dodge around missing

? 1 thank Morgan Brown for finding these textures.
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Training Image Synthesized Image TL * PEF

Figure 7.9: Gulf of Mexico seismic section, modeled, and deconvolved. Do you see any
drilling prospects in the simulated data? In the deconvolution, the strong horizontal layering
is suppressed giving a better view of the hyperbolas. The decon filter has the same 10 x 10

size used on the everyday textures. |VIEW |mda/ : WGstaﬁ

data, or we can use to estimate missing data. PEFs with a helix have periodic
boundargfnﬁptions on all axes but one, while FTs have periodic boundaries on all axes.
The PEE? are designed only internal to known data, not off edges so @re readily
adaptable small data samples and to nonstationarity. Thinking of thede textdTes as seismic
time slices, the textures could easily be required to pass th@speciﬁc values at well locations.

Tnugi

7.5.2 Seismic field data examples

NNASUKD

Figures 7.10%2’){;1113 based on exploration seismic data from the Gulf of Mexico deep water.
A ship carries an air gun and tows a streamer with some hundreds of geophones. Firstawe
look at a single pop of the guny Weuse all the hydrophone signals to create a singled—D
PEF for the time axis/\‘Phis chafngés the average temporal frequency spectrum as shown
in Figure 7.10. Signalsj from 60 Hz to 120 Hz are boosted substantially. The raw

has evidently been prepared with strong filtering against signals below @ z. The
PEF attempts to recover these signals, mostly unsuccessfully, but it does boost some energy
near the 87\%2 cutoff. Choosing a longer filter would flatten the spectrum further. The big
question is, “Has the PEF improved the appearance of the data?”

The data(itselg) from the single pop, both before and after PE-filtering is shown in
Figure 7.11. For reaso L@\aesthetics of human perceptionsl have chosen to display a
mirror image of the @"ed data. To see a blink movie of s)uperposition of before-and-

(- Wm

ap me%%
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Figure 7.10: w spectrum of a shot gather of Figure 7.11 before and after 1-D decon with a
30 point filter. |VIEW Imda/ . antoinedeconﬂ

after image‘f,’&you need the electronic book (which technology does not enable me to deliver
in 2014). We notice that signals of high temporal frequencies indeed have the expected
hyperbolic behavior in space. Thus, these high-frequency signals are wavefields, not mere
random noise.

Given that all visual (or audio) displays have a Wed range of amplitudes, increasing
the frequency content (bandwidth) means that we witfneed to turn down the ampliﬁ(:ﬁttiog,ﬂV
so we do not wish to increase the bandwidtl}\gnless we are adding signal. r.

)

7

Increasing the spectral bandwidth always requires us to diminish the gain.
o~
The same ideas but with a two-dimensional PEF are in Figure 7.12 (the same data but
with more of it squeezed onto the page.) After the PEF, we tend to see equal energy in
dips in all directions. We have strongly enhanced the “backscattered” energy, those events
that arrive later at shorter distances.

We have been thinking of the PEF as a tool for shaping the spectrum of a display. But
does it have a physical meaning? What might it be? Referring back to the beginning of
the chaptep\we are inclined to regard the PEF as the convolution of the source wavefor
with some &ind of watgy-bottom rgsponse. In Figure 7.12xwe used many differ?d\ﬁ/
receiver separations. §n§e eac ﬁemnt separation has a different response (due-todiffering
moveoutsY\the waterottom reverberation might average out to be roughly an impulse.
Figure 7.18 is a different story. Here for each shot location, the distance to the receiver is
constant. Designing a singlq@hannel PEE/we can expect the PEF to contain both the shot
waveform and the wa.telﬁ\)ottom layerybec&use both are nearly identical in all the shots. We
would rather have a PEF that represe}lts only the shot waveform (and perhaps a radiation

pattern).

Let us consider how we might work to push the water-bottom reverberation out of the
PEF. This data is recorded in water 60(_neters deep. A consequence is that the sea bottom
is made of fine-grained sediments that settled very slowly and rather similarly from place
to place. In shallow waterpthe situation is different. The sands near estuaries are always
shifting. Sedimentary layers thicken and thin.are said to “on-lap and off-lap.” Here/)\_

C bucged
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Iﬂylotice where the water bottom is slopedrthe layers QJ hin a little. To push the wa.tel /\
bottom layers out of the PEFzour idea is to belse its calculation not on the raw data@gdlt on
the spatial prediction error of the raw data. On a perfectly layeled..rth a perfect spatial
prediction error filter would zero all traces but the first one. Si a 2-D PEF includes
spatial prediction as well as temporal prediction, we can expect it t0 contain much less of
the sea-floor layers than the 1-D PEF. If you have access to the electronic book, you can
blink the figure back and forth with various filter shapes.

MQ’W/JL WW

7.6 PEF ESTIMATION WITH MISSING DATA
W/L—

If we are not careful, our calculation of the PEF could have the pitfall that-i

use the missing data to find the PEH; pnd it would get the wrodg PEF. To ELVOld)[hlS

pitfall, imagine a PEF finder that uses weighted least squares w. the weighting function

vanishes on those fitting equations that involve missing data. The weighting would be unity ~—~ ? sl L'n
elsewhere. Instead of weighting bad results by zero, we simply{gwit not compute @ é/
The residual there m-l-l-’-vi initialized to zero and never changed. Likewise for the adjoint, A

these components of the residual wilk hever contribute to a gradient. Soanow we need a

convolution program that produces no outputs whmﬁmissing inputs would spoil it.

Recall there are two ways of writing convolutig /quatlon (1.4) when we are interested a/(/?la

in finding the filter inputs, and gquation (1.5) when We are interested in finding the/filter cf
We have already coded equatlon (1.4), operator hellcon That operator was useful

in missing data applications. N’ow we want to find a =6TTO r/80 we need the

other case, equation (1.5), and we need to ignore the outputs that wi Jbroken because

of missing inputs. The operator module hconest does the job.

Pe (peE

&,

helix convolution.lop

module hconest { # masked helix convolution, adjoint is the filter.
use helix
real , dimension (:), pointer :: X
type( filter) ;: aa
#% _init( x, aa)
#6 -lop( a, ¥y)

integer ia, ix, iy
do ia = 1, size( a) {
do iy = 1 + aa%lag( ia), size( y) { if( aa%mis( iy)) cycle
ix = iy — aa%lag( ia)
if( adj) a( ia) += y( iy) = x( ix)
else y( iy) += a( ia) * x( ix)

PEF
We are seeking a prediction-error-fitter (1, al,ag)/@ut some of the data is missing. The
data is denoted y or 1; above and z; below. Becausé some of the z; are missing, some of
the regression equations in (7.32) are worthless. When we figure out which are broken, we

il put zero weights on those equations. A
3 Ohs
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My, . 0« s o2 3 o= o3 J(m 0 B
wy . . . . . . xz9 a1 O
w3 . . . . . T3 T I 1
0~ r=WXa= % 4T g
¢ 5 5 ¢ ws . c . s T4 T3 &
We H : Tg Ty T4 &
wy . 0 x x5
: . wWs 0 0 =zs
) 2 ’ 732
wV (7.32)

Suppose that z and z3 were missing or known\bad. That would spoil the 2nd, 3rd, 4th,
and 5th fitting equations in (7.32). In principle, we want wa, ws, wy /\E_md ws to be zero. In
practice, we simply want those components of r to be zero. )

What algorithm will enablgius to identify thejregression equations that have become
defective, now that xp and x3 are missing? Take filter coefficients (ap,ay,as,...) to be all
ones. Let diee be agector like x but containing 1% for the missing (or “freely adJustable”)
data values and s for the known data values. Recall our very first definition of filtering
showed we can put the filter in a vector and the data in a matrix or vice versa. Thus Xa

above gives the same result as Ax belgy( W‘% O )
plav UU-LLQ, ohown wm d

(0] (100 0 0 0]
ro 7 110000/ [0]
- 9 111000 1
T4 2 011100 1
- = 1 - 001110 0 = Adge (7.33)
- 0 000111 0
- 0 0000T11]| L[0]
s | o | (00000 1)

The numeric value of each m; tells us how many of its inputs are missing. Where
none are missing, we want unit weights w; = 1. Where any are missing, we want zero
weights w; = 0. The desired residual under partially missing inputs is computed by module
misinput.

mark bad regression equations.r90

module misinput { # find a mask of missing filter inputs
use helicon ‘
contains
subroutine find_.mask( known, aa) {
logical , intent( in) i+ known (:)
type( fllte:) :: aa
real , dimension( size (known)) :: rr, dfre
integer i1 stat
where( known) dfre = 0.
elsewhere dfre = 1.
call helicon.init( aa)
aa%flt = 1.

stat = helicon_lop( .false., .false., dfre, rr)

W

o

=

a5t rephe

Spacs
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aa%flt = 0.
where ( rr > 0.)

}

aa%mis = .true.

7.6.1 Internal boundaries to multidimensional convolution

L
Sometimes/\we deal with small patches of data. Ia-erder thaﬁ}{)oundary phenomenaanot
dominate the calculation intended in the central region, we need to take care that input
data is not assumed to be zero beyond the interval that the data is given.

The two little trianguwl‘{@ om the convolution matrix in equation (7.32)
describe end conditions w it is assumed that the data y; vanishes before t = 1 and after
t = 6. Alternatelyswe might not wish to make that aggumption. Thusathe triangles filled
with zeros could bd regarded as missing data. In this enié-dimensional example, it is easy to
see that the filter, say yy%mis () should be set to . TRUE. at the endswso no output would ever
be computed there. We would like to find a general multidimensional algorithm to correctly

specify yy%mis () around the multidimensional boundaries. proceeds like the missing
data algorithm, i.e. Awe apply a filter of all @ 0 a data-spae plate that is taken

all zeros except ones) at the locations of missing data, in this case yo,y-1 and y7,ys.
dding

amounts to surrounding the original data set with some missing data. We need pa

the size of the filter on all sides. The padded region would be filled with ones (designating
missing inputs). Where the convolution output is nonzero, thewﬂ?y%mis() is set to . TRUE.
denoting an output with missing inputs.

2
p MJ"%T he $we-dimensional case is a little more cluttered than the 1-D casg(but the principle is
the same. Figure 7.14 shows a larger input domain, a 5 x 3 filter, and a smaller output
domain. There are two things to notice. First, sliding the filter everywhere inside the outer

a/fffl()

- Input-----

Figure 7.14: Domain of inputs and
outputs of a two-dimensional

Output

filter like a PEF.  [VIEW §
|mda/. rabdomainl
1 e

O\N].

box, we get outputs (under the [l location) only in the inner box. Second, (the adjoint idea)
crosscorrelating the inner and outer boxes gives us the 3 x 5 patch of information we use to
build the filter coefficients. We need to be careful not to assume that signals vanish outside
the region where they—u;éeﬁned. A chapter, possibly not included with this version of the

book (for reasons of clutter) breaks data spaces into overlapping patches, separately analyz9€

the patches, and puff everything back together. @ is needed when the crosscorrelation
changes with time. {l is handled as constant in shortgime windows. Thergawe must be
particularly careful that zero signal values not be presumed outside;Z the sn{all volumes;
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(;t;i?yiswhe many edges and faces of the many small volumes can overwhelm the interior

we Want to study.

In practice, the input and output are allocated equal memory, but the output residual
is initialized to zero everywhere and then not computed except where shown in figure 7.14.
Belew is module bound to build a selector for filter outputs that should never be examined
or even computed (beca.use@leed input data from outside the given data space). Inputs
are a filter aa and the size of its cube na = (na(1),na(2),...). Also input are two cube
dimensions, that of the data last used by the filter nold and that of the filter’s next intended
use nd. (nold and nd are often the samd).] Module bound begins by defining a bigger data
space with room for a filter surrounding the original data space nd on all sides. It does this
e allocate two data spaces xx and yy of the bigger size nb
and pack many pnes)in a frante of width na around the outside of xx. The filter aa is also
filled with fne e filter aa must be regridded for the bigger nb data space (regridding

merely changes the lag values of the @. Nowawe filter the ingut xx with aa getting yy.

by the line nb=nd+2*na. The

Wherever the output is nonzero, we have an outp’ut

affected by the boundary.

Such an output should not be computed. Thus e allocate the logical mask aa’mis (a part
of the helix filter definition in module helix and wherever we see a nonzero value of yy in
the output, we designate the output as depending on missing inputs by setting aa%mis to

.Etrue..

out of bounds dependency.r90

module bound { # mark helix filter

use cartesian
use helicon
use regrid
contains

subroutine boundn ( nold, nd, na, aa) {

integer , dimension( :),
type( filter)
integer , dimension( siz
real , dimension( :),
integer
nb = nd + 2xna; mb =
allocate ( xx( mb), yy(
¥k = 0.
do ib = 1, mb {
call line2cart( nb,
if( any( ii <= na

call helicon_init( aa)
call regridn( nold, nb,

stat = helicon.lop( .false.,

call regridn( nb, nd,
my = product( nd)
allocate ( aa%mis( my))
do iy = 1, my {
call lineZcart( nd,
call cart2line( nb,
aa%mis( iy) =

deallocate ( xx, yy)

}

intent ( in)

e( nd))
allocatable

product ( nb)
mb))

ib, ii)

aa); aa%kflt
.false., x
aa); aa%flt

iy, ii )

ii+na, ib )

outputs where input is off data.

nold, nd, na # (ndim)
aa

& nby di
tOXX, YV

iy, my, ib, mb, stat
# nb is a bigger space to pad into.
# two large spaces, equal size
# Zeros
# surround the zeros with many ones

# ii( ib)

,or. ii > nb-na)) xx( ib) = 1.

# give aa pointer to helicon.lop
1. # put all 1’s in filter
X, YY) # apply filter
0. # remake filter for orig data.

# attach missing designation to y_filter
# map from unpadded to padded space

# ib( iy)

( yy( ib) > 0.) # true where inputs missing
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In realityaone would set up the boundary conditions with module bound before identify-
ing locations’of missing data with module misinput. Both modules are based on the same
congept, but the boundaries are more cluttered and confusing/@rhich is why we examined

@ater.

)

7.6.2 Finding the prediction-error-filter f . ( %ﬂz(,\

The first stage of the least-squares estimation is computing the predietion=error filter. CW
The second stage will-be ising it to find the missing data. The input data space contains a
mixture of known data values and missing unknown ones. For the first stage of finding the
67 ¢ [=R¥er, we generally have many more fitting equations than we needsso we can proceed by
ignoring the fitting equations that involve missing data values. We ignore@ everywhere

he missing inputs hit the filter. O
The codes here do not address the difficulty that m_a%too much data is missing/so ) %\Q’

that all weights are zero. To add stabilizati‘f)?fwe could supplement the data volume with
a “training dataset” or by a “prior filtef’/ i{h things as é"are, if there is not enough
data to specify a icti ; r, you YV get a zero filte

rqor you might encounter
the error exit from cgstep(). P(c{: w‘_‘ %

estimate PEF on a helix.r90

module pef { # Find prediction—error filter (helix magic)
use hconest
use cgstep.mod
use solver_smp.-mod

contains
subroutine find_pef( dd, aa, niter) {
integer , intent( in) :: niter # number of iterations
type( filter) i1 aa # filter
real , dimension (:), pointer :: dd # input data

call hconest_init( dd, aa)

call solver_smp (m=aa%flt , d=—dd, Fop=hconest.lop, stepper=cgstep, &
niter=niter , mO=aa%flt)

call cgstep-close()

}

7.7 TWO-STAGE LINEAR LEAST SQUARES

In Chapter 3 and Chapter 5/\we filled empty bins by minimizing the energy output from the
filtered mesh. In each casothere was arbitrariness in the choice of the filter. Herewe find
and use the optimum filter) the PEF.

The first stage is that of the previous section, finding the optimal PEF while carefully
avoiding using any regression equations that involve boundaries or missing data. For the
second stage, we take the PEF as known and find values for the empty bins so that the
power out of the icti is minimized. To d@?{e find missing data with
module mis2(). P;_ E )

This two-stage method avoids the nonlinear problem we would otherwise face if we
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included the fitting equations containing both free data values and free filter values. Pre-
sumably, after two stages of linear least squares we are close enough to the final solution
that we could switch over to the full nonlinear sethp described near the end of this chapter.

The synthetic data in Figure 7.15 is a superposition of two plane waves of different
directions, each with a random (but low-passed) waveform. After punching a hole in the
data, we find the lost data is pleasingly restored, though a bit weak near the side
boundary. This imperfection could\fesult from the side-boundary behavior of the operator
or from an insufficient number of missing-data iterations.

original gapped restored selector

Figure 7.15: Original data (left), with a zeroed hole, restored, residual selector (right).

mda/. hole90

The residual selector in Figure 7.15 shows where the filter ogtput has valid inputs. From
itryou can deduce the size and shape of the filt amelyathat it matches up with Figure
ﬁtl. The ellipsoidal hole in the residual selector 15 larger than that in the datasbecause we
lose regression equations not only at the hole, but where any part of the filter bverlaps the
hole.

The results in Figure 7.15 are essentially perfect representing the fact that th@synthetic
example fits the conceptual model perfectly. Before we look at the many examples in Figures

7.16(‘&1%\\!6 examine another gap-filling strategy.

7.7.1 Adding noise (Geostat)

In chapter 3’\we res\?ﬁed missing data by adopting the philosopy of minimizing the energy
in flltered output. fn this chapteywe learned about an optimum filter for this task, the

p-rech(nen-emeL.ﬁltes-éPEF):‘“tet Us name this method the “minimum noise” method of
finding missing data. Wg&g

A practical applicatigrrwith the minimum-noise method is evident in a large empty hole A

such as in Figures 7.1657.17. In such a void/vhe interpolated data diminishes greatly. Thu
we have not totally succeeded in the goal of')“hiding our data acquisition footprin}{’whic
we would like to do if we are trying to make pictures of thea@a{th and not pictures of our
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et

What we \‘ﬂﬂm next is useful in some applicafions but not in others. Misunderstood
or misused it is rightly controversial. We are gging to fill the empty holes with something
that looks like the original data but really isn’f. I w-Hpéistinguish the words “synthetic
data” ( derived from a physical, model) from “simulated data” (Manufactured
from a statistical model). We wﬂ%

the center panels of Figures 7.37.9. We wilt-5dd just enough of that “wall paper
noise” to keep the variance constant ?Zj e move into the void,

Given some data d, we use it in a filter %perator D, and as described with &quation

e

(7.32) we build a weighting function W that throws out the broken regression @aﬁions

data acquisition footprint.

(ones that involve missing inputs). Theg/'lwe find a PEF a by using this regressio
0 ~ r = WDa (7.34)

Because of the way we defined W, the “broken” components of r vanish. We need to know
the variance ¢ of the nonzero terms. It can be expressed mathematically in a couple different
ways. Let 1 be a vector filled with ones)\and let r? be a vector containing the squares of the
components of r. )

1 5 [1'Wr2
a = -N" Z: e = W (735)

Let us go to a randoni number generator and get a noise vector n filled with random numbers
of variance . We'{J call this the “added random noisg}’ NowAvye solve this new regression
for the data space d (both known and missing)@ )

0 ~ r = Ad -n (7.36)

keeping in mind that known data is constrained (as detailed in ghapter 3).
rd

To understand why orks, consider first the training image, a region of known data.
Although we might think that the data defines the white noise residual by r = Ad, we can

also imagine the white noise determines the data by d = A~ 'r. Thel}m.onsider a region
of wholly missing data. This data is determined by d = A~ln. Si we want the data
variance to be the same in known and unknown locatio aturallwe equire the variance

of n to match that of r. ) M
A very minor issue remains. Regression equations may have all &?:hemut

data, some of it, or none of it. Should the n vector add noise to every regression equation?

11 the empty holes with simulated data like.what. you, W e 7';9

First, if a a%%ssion equation has all its input datey\that means there are no free variable%amx/{,

oit doesaMatter if we add noise to that regressioln equatiopabecause the constraints w:g
overcome that noise. I dondt know if I should worry about how)many inputs are missing f
each regression equation. “\ &

It is fun rdaking all this interesting “wall paper? noticing where it is successful and
where it isp’¥. We cannot help but notice that it seéms to work better with the genuine
geophysical data than it does with many of the highly structured patterns. Geophysical
data is expensive to acquire. Regrettably, we have uncovered a technology that makes
counterfeiting much easier.
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Examples are in Figures 7.1647.19. In the electronic book, the right-side panel of each
figure is a movie, each panel being derived from different random numbers. Unfortunately,
in 2014];[ am not able to deliver the electronic book on the internet.
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Figure 7.16: The herringbone texture is a patchwork of two textures. We notice that data
missing from the hole tends to fill with the texture at the edge of the hole. The spine of

the herring fish, however, is not modeled at all. |VIEW |mda/ . herr—hole-ﬁ11r|
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Figure 7.17: The brick texture has a mortar part (both vertical and horizontal joins) and
a brick surface part. These three parts enter the empty area but do not end where they

should. [VIEW] [mda/. brick-hole-fillr|

The seismic data in Figure 7.19 illustrates a fundamental principle: In.the restored hole
(centeré/we do not see the same spectrum as we do on the other panels. |
hole is ?1ed, not with all frequencies (or all slopes) but with those the £& most predictable.

The filled hole is devoid of the unpredictable noise that is a patml data.

Figure 7.20 is an interesting seismic image showing anz&'ent river channels now deeply
buried. Such river channels are often filled with sand, are good petroleum prospects.
Prediction error methodology fails to simulate these channels. We can give the reason that 2~
the channels are not statistically stationary. The methodology also fails to extrapolate@
very far from a known region into a hidden region.

7.7.2 Inversions with geostat

In geophysical estimation (inversion)ywe use model styling (regularization) to handle the
portion of the model tf/m‘.?fs not dete,,rmined by the data‘/\lhi@ results in the addition of

) wheok
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minimal noise. Alternately, like in Geostatistics, we could make an assumption of statistical
stationarity and add much more noise so the signal variance in_pegrly determined regions
matches that in well’determined regions. Here is how to do Given the usual data
fitting and model styling goal

0 ~ Lm-d (7.37)
0 ~ Am (7.38)
We introduce a sample of random noise n and fit instead these mgressions@
~ Lm-d (7.39)
0 ~ Am-—n (7.40)

Of coursepyou get a different solution for each different realization of the random noise.
You also need to be a little careful to use noise n of the appropriate variance. Bob Clapp
developed this idea at SEP and also applied it to interval velocity estimation, the example

of Figures 53%5&/ M
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Figure 7.21: The left 12 panels are the inputs. The right 12 panels are outputs. |VIEW
lgda/ . passﬁllQOJ

7.7.3 Infill of 3-D seismic data from a quarry blast

Finding missing data (filling empty bins) requires use of a filter. Because of the helix, the
codes work in spaces of all dimensions.

An open question is how many conjugate-direction iterations are needed in missing-data
programs. When estimating filters, I set the iteration count niter at the number of free
filter parameters. Theoretically,(this gives me the exact solution buﬁometimes I run double
the number of iterations to be sure. The missing-data estimation; owevexf\is a completely
different story. The number of free parameters in the missing-data estin{atim}fzuld be
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very large/;‘]lb.i! often implies impractically long compute times for the exact solution. In
practiceal experiment carefully with niter and hope for the best./I find that where gaps
|

are small, ﬁll in quickly. Where the gaps are large, don’t, and more iterations are
required. Where the gaps are larg?\i_S‘wﬂerz)we should eXxpeériment with preconditioning.

Figure 7.21 shows an example of replacing missing data by values predicted from a 3-D
PEF. The data was recorded at Stanford University with a 13 x 13 array of independent

recorders. The figure shows 12 of the 13 lines eac length 13. Our main goal was to mea- e
sure the ambient night-time noise. By mornin a a atteries f]] Kt mete 6@
butpthe other half recorded a wave from a qua}ry last. The raw data was distracting to

look'at because of the many missing traces’so I interpolated it with a small 3-D filter. That
filter was a PEF. It may seem strange that an empty panel is filled by interpolation. That
information came from the panels on either side of the empty panel.

7.8 SEABEAM: FILLING THE EMPTY BINS WITH A PEF

In ;}hapter 5/‘§mpty bins in an image of the ocean bottom were filled using the'l;a,placian
operator{\ is shown in Figure 5.10. | 4

The problem with the Laplacian opérator as an interpolator is that it smears information
uniformly in all directions. We seeﬁd an anisotropic interpolation oriented along the
regional trends. What we need is a PEF in place of the Laplacian. To get it, we apply
module pef on page 200. After binning the data and finding this PEF, we do a second stage
of linear-least-squares optimization as we did for Figure 7.15, and we obtain the pleasing
result in Figure 7.22,
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Figure 7.22: Depth of the ocean (Figure 5.10) as filled with a laplacian (left) and with a

PEF (ight)
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1~
st
7.8.1 The bane of PEF estimation

Thié is the place where I would like to pat myself on the back for having “solved” the
problem of missing data. Actually, an important practical problem remains. The problem
arises when there is too much missing data. Thepaall the regression €quations disappear.
The nonlinear methods are particularly bad/\beca/hse if they dop*f have a good enough
starting location, they can and do go crazy. My only suggestion is to begin with a linear
PEF estimator. Shrink the PER-and coarsen the mesh in model space until you do have
enough equations. Starting frorn“;here, hopefullwou can refine this crude solution without
dropping into a local minimum. )

The bane of PEF estimation is too much missing data.

7.9 MADAGASCAR: ryerging bidirectional views
e

Gravity of mounBains on the ocean bottom pulls water towarq@raisina/éa level above
@ Kilometerﬁhigh topography on the sea floor creates 10;111 topography on the sea floor
that can be dug out from the many stronger occanographic effects.

A satellite points a radar at the ground and receives echoes we investigate here. These
echoes are recorded only over the ocean. The echo tells the distance from the orbit to
the ocean surface. After various corrections are made forth and orbit ellipticitiesAthe
residual shows tides, wind stress on the surfacef and ‘urprisingly/r\a signal proportional to
the depth of the water. '% ) S 9% 4

The raw data investigated here® had a strong north-south tilt whaelL I* removed at the
outset. Figure 7.23 gives our first view of altimetry data (ocean height) from southeast
of the island of Madagascar. About all we can see is satellite tracks. The satellite flies a
circular orbit, effectively a polar orbit, south to north, then north to south. Earth at the
center of the circle rotates east to west. To uspthe sun seems to rotate east to west as
does the circular orbit. Consequently, when the datellite moves northward it is measuring
altitude along a line running SE-NW. When it moves southward e get measurements
along a NE—SW line. This data is from the gold war era. At that tgme ense data above
the —30° parallel was secret although sparse data was available. (The restriction had to do
with precision guidance of missiles. Would the missile hit the silo? or miss it by enough to
save the retaliation missile? Knowledge of regional gravity in the northern hemisphere was
essential.)

Here are some definitions: Let components of d be the data, altitude measured along a
satellite track. The model space is h, altitude on portion of thelgarth surface, that surface
flattened to an (z,%y)-plane. Let L denote the 2-D linear interpolation operator from the

plane to a track. Let H be the helix derivative, a filter with response K2+ kﬁ Except
where otherwise noted, the roughened image p is the preconditioned variable p = Hh. The

3 1 wish to thank David T. Sandwell http://topex.ucsd.edu/ for providing me with this subset of satellite
altimetry data, commonly known as Topex-Posidon data. Readers may also enjoy oceanographic observation
on internet video.

4 The calculations here were all done for us by Jesse Lomask.
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Figure 7.23: Sea height under satellite tracks. The island of Madagascar is in the empty area
at (46°,—22°). Left is the adjoint L*d. Right is the adjoint normalized by the bin count,
diag(L*1)"'L*d. You might notice a few huge, bad data values. Overall, the topographic

function is too smooth, suggesting we need a roughener. |[VIEW| |mda/. jessel
W v

derivative along a track in data space is %. weighting function that vanishes when any
filter hits a track end or a bad data pointAis 0_,[0 P ALK “,,\a;f'gé.}/

Figure 7.24 shows the entire data space, over a halfmillion datagoints (actually 537974).
Altitude is measured along many tracks across the image. I Figure 7.24the tracks are
placed end-to-end, so it is one long vector (displayed in bouit>50 signal row’s). A vector of
equal length is the missing data marker vector. This vector is filled with zeros everywhere
except where data is missing or known bad or known to be at the ends of the tracks. The
long tracks are the ones that are sparse in the north.

P

Figure 7.25 brings this information into model space. Applying the adjoint of the linear
interpolation operator L* to the data d gave our first image L*d in model space in Fig-
ure 7.23. The track noise was so large that roughening it made it worse (not shown). A
more inviting image arose when I normalized the image before roughening it. Put a vector
of all ones 1 into the adjoint of the linear interpolation operator L*. What comes out L*1 is
roughly the number of data points landing in each, pixql injmodel space. More precisely, it is
the sum of the linear interpolation weightsfj\Ws not zero, is used as a divisor.
The division accounts for several tracks contributing to one pixel. In matrix f01’malisn}¢his
image is diag(L*1)"!L*d. In Figure 7.25/¢his image is roughened with the helix derivative
H. )

There is a simple way here to make a nice image—roughen along data tracks /A Fhis=
is done in Figure 7.26. The result is two attractive images, one for each track direction.
Unfortunately, there is no simple relationship between the two images. We cannot simply
add hecause the shadows go in different directions. Notice also that each image has
noticeable tracks that we would like to suppress further.

A geological side note: The strongest line, the line that marches along the image from
southwest to northeast is a sea-floor spreading axis. Magma emerges along this line as a
source growing plates that are spreading apart. Her?\the spreading is in the north-south

A
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Figure 7.26: With a simple roughening derivative in data space, model space shows two
nice topographic images. Let n denote ascending tracks. Let s denote descending tracks.

Left is L*%n. Right is L*%s. VIEW| |mda/. jesse3

direction. The many vertical lines in the image are called “transform fa,ultg%\

Fortunately, we know how to merge the data. The basic trick is to form the track
derivative not on the data (which would falsify it) but on the residualawhich (in Fourier
space) can be understood as choosing a different weighting function for the statistics. A
track derivative on the residual is actually two track derivatives, one on the observed data,
the other on the modeled data. Both data sets are changed in the same way. Figure 7.27
shows the result. The altitude function remains too smooth for nice viewing by variable

a0 a8 o2 64 LYY

Figure 7.27: All data merged into a track-free image (hooray!) by applying the track
derivative, not to the data, but to the residual. Left is h estimated by 0 =~ W%(Lh —d).

Right is the roughened altitude, p = Hh. |[VIEW| |mda/. jessel0

brightness, but roughening it with H makes an attractive image showing, in the south, no
visible tracks.

The north is another story. We would like the sparse northern tracks to contribute to
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our viewing pleasure. We would like them to contrit;i%a northern image of thth,
not to an image of the data acquisition footprintAFhié begins to happen in Figure 7.28.

Figure 7.28: Using the track derivative in residual space and helix precondxtlomng in model
space we start building topography in the north. Left is h = H!p where p is estimated

by 0 & W dt(LH_ p — d) for only 10 iterations. Right is p = Hh. [VIEW mda/. Jesse8|

The process of fitting data by choosing an altitude function h would normally include some
regularization (model styling), such as 0 = Vh. Instea e adopt the usual trick of changing
to preconditioning variables, in this case h = H™!p. As we iterate with the variable p/we
watch the images of h and p and quit either when we are tirear more hopefully, when
we are best satisfied with the 1mage This subjective ch01ce is-father like choosing the €
that is the balance between dataﬁttmg goals and model ZStyling goals. Chapter 5 explains
the logic. The result in Figure 7 28 is pleasing. We have begun building topography in
the north that continues in a consistent way with what is in the south. Unfortunately, this
topography does fade out rather quickly as we get off the data acquisition tracks.

If we have reason to suspect that the geological style north of the 30th parallel matches
that south of it (the stationarity assumption)/‘we can compute a PEF on the south side
and use it for interpolation on the north side. ThisAs done in Figure 7.29. The final image
contrasts delightfully from earlier ones. Our fractured ridge continues nicely into the north.
Unfortunately, we have imprinted the fractured ridge texture all over the northern space,

u ’3 the price we must pay for relying on the stationarity assumption.

The fitting residuals are shown in Figure 7.30. The physical altitude residuals tend to
be rectangles, each the duration of a track. While the satellite is flying over the backside
of the@artl}*bhe ocean surface changes altitude because of tides and tessed centers
of moving eddies. The fitting residuals (right side) are very fuzzy. a.ppear to be
“white,” though with 01nts crammed onto a line a coupte”inches long, we

ot be certain. We could inspdct this further If the residuals turn out to be significantly
hite, we might do better to change to a PEF along the track.

\
0,00
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7.10 MORE IDEAS AND EXAMPLES

Reversing a signal in time does no ge its autocorrelation. In the analysis of stationary
time series, it is well known ) that the filter for predicting forward in time should
be the same as that for “predicting” backward in time (except for time reversal). When
the data samples are short, however, a different filter may be found for predicting forward
than for backward. Rather than average the two filters directly, the better procedure is to
find the filter that minimizes the sum of power in two residuals. One is a filtering of the
original signal, and the other is a filtering of a time-reversed signal, as in equation (7.41),
where the top half of the equations represent prediction-error predicting ?orward in time/L

7.10.1 Imposing prior knowledge of symmetry M W

and the second half is prediction backward. /
[ 71 ] [z y2 n |
T2 Ya Yz 2
T3 Ys Ya Y3 1
T4 _ Y6 Y5 Y4 a1 (7.41)
5 Y1 Y2 U3 a
76 Y2 Y3 Ya
7 Ys Y4 Ys
L 78 | L Y4 Ys Y6 |

To get the bottom rows from the top rows, we simply reverse the order of all the components
within each row. That reverses the input time function. (Reversing the order within a
column would reverse the output time function.) Instead of the matrix being diagonals
tipping 45° to the right, theyytip to the left. We could make this matrix from our old
familiar convolution matrixand a time-reversal matrix(jj

00 01
0010
0100
1000

It is interesting to notice how time-reversal symmetry applies to Figure 7.15. First of
all, with time going both forward and backwardithe residual space gets twice as big. The
time-reversal part gives a selector for Figure 7.15 with a gap along the right edge instead
of the left edge. Thus, we have acquired a few new regression equations.

o
Some of my research codes include these symmetries, but I excludedhere. Nowhere
did I see that the reversal symmetry made|fioticeable difference in results, but in coding, it
makes a noticeable clutter by expanding the residual to a two-component residual array.

Where a data sample grows exponentially toward%e boundary, I expect that extrap-
olated data would diverge too. You can force it to go to zero (or any specified value) at
some distance from the body of the known data. To do so, surround the body of data by
missing datafand surround ¢hat/by specification of “enough” zeros. “Enough” is defined by
the filter length.
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7.10.2 Hexagonal CCEredinates

In a two—dimeng::%ane/\\it seems that the one-sidedness of the PEF could point in
any direction. we usually have a rectangular mesh, however, we can only do the
calculatijons along the axes so we have only two possibilities, the helix can wrap around the
l-a.xisogr—gi: can wrap around the 2-axis. w 5@

Suppose you acquire data on a hexagonal mesh as

and some of the data values are missing. How can we apply the methods of this chapter?
The solution is to append the given data by more missing data shown by the commas betow~

................ mﬁfm.
RS )

NowAwe have a familiar two-dimensional coordinate system in which we can find missing
valueg, as well as perform signal and noise separations as described in a later chapter.

7.10.3 Interpolations with PEF do not depend on direction of time

Recall the missing-data figures beginning with Figure 3.1. Therezhe filters were taken as
known, and the only unknowns were the missing data. Now, instgad of having a predeter-
mined filter, we MMVP, for the filter along with the missing data. The principle we willl_—
use is that tléﬁLoutput power is minimized while the filter is constrained to have one nonzero
coefficient (plse all the coefficients would do to zero). We willlook first at some results anda_
thex};see how @were found. ?* /

In Figure 7.31xthe filter is constrained to be of the form (1, a1, az). The result is pleasing
in that the interpklated traces have the same general character as the given values. The
filter came out slightly different from the (1,0, —1) that I guessed and tried in Figure 3.5.
Curiously, constraining the filter to be of the form (a_z,a-1,1) in Figure 7.32 yields the
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given T T
Figure 7.31: Top is known data.
Middle includes the interpolated val- > »
ues. Bottom is the filter with j T
t
the leftmost point constrained to be T e 0 ® T T T T * T LI,
unity and other points chosen to

minimize output power. VIEW ﬁlterT

same interpolated missing data as in Figure 7.31. I understand bl-%le sum squared of
the coefficients of A(Z)P(Z) is the same as that of A(1/Z)P(Z), but I do not see why that
would imply the same interpolated data; never the less, it seems to

Ado po.

w1 1]
Figure 7.32: The filter here had
its rightmost point constrained to be

unity—i.e., this filtering amounts to — T T T
backward prediction. The interpo- B o?? T T T T b4 T ®®
lated data seems to be identical to

that of forward prediction. |VIEW FTEER T
|mda/ . backward590| l ®

7.10.4 Objections to interpolation error

In any data interpolation or extrapolation, we want the extended data to behave like the
original data. And, in regions where there is no observed data, the extrapolated data should
drop away in a f&smgnsistent with its spectrum determined from the known region.

Myill)hafsijﬁea is that the spectrum of the missing data should match that of the known
dataA_Fhis’is is the idea that the spectrum should be unchanging from a known region
to a,n] unknown region. A technical word to express the idea of spectra not changing is
“stationary.” @i?happens with the PEF (one-sided filter)sbecause its spectrum tends
to the inverse of that of the known data while that of the tinknown data tends to the
inverse of that of the PEF. Thugithe spectrum of the missing data tends to the “inverse
of the inverse” of the spectrum of the known. The PEF enables us to fill in the missing
area with the spectral shape of the known area. (In regions far away or unpredictable, the
spectral shape may be the same, but the energy drops to zero. As we saw in figure 7.16 ncm:l
predictable signal/huch as white noise may be in the training data without Being extended

into the missing région.)

fills with the wrong spectrum. To confirm(thiga I prepared synthetic data consisting of

On the other hand, the interpolation- Ior filter, a filter like (a-g,a-1,1,a1,a2),
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a fragment of a damped exponentia‘da%ljoff to one side of it an impulse function. Most
of the energy is in the damped exponential. Figure 7.33 shows ‘ﬁ%e spectrum and
the extended data are about what we would expect. From the extrapolated data, it is
impossible to see where the given data ends. For comparison, I prepared Figure 7.34. It

given ‘
[ L‘ll
interp I Hl I l ] i

ﬁlterH

Figure 7.33: Top is synthetic data
with missing portions. Middle in-
cludes the interpolated values. Bot-
tom is the filter, a prediction-error
filter which may look symmetric but

is not quite. |VIEW]| |mda/. exp90

is the same as Figure 7.33, except that the filter is constrained in the middle. Notice t-l“r;—)
the extended data does not have the spectrum of the given data—the wavelength is much
shorter. The boundary between real data and extended data is not nearly as well hidden

as in Figure 7@ 34 7

given
Figure 7.34: Top is the same syn-
thetic data. Middle includes the in- interp l |
terpolated values. Bottom is the __..,mri Il M"’mﬁ‘vﬁ"l
filter, an interpolation-error filter. ]1"]'
VIEW | Imda/ . center90
filter |

7.10.5 Hermeneutics

In seismologysthe data is usually better than the theory. Data misfit alerts us to
opportunity. '}hrth knows something we have not yet learned.

Hermeneutics s the study of the methodological principles of interpretation. Histori-
cally, it refers to@ible study. Ne&e\—/tll?a—less, it seems ent:&eﬁ'/ appropriate for Geophysical
Estimation, If Albert’s book is &Inverse Problem Theory” and mine is @Inverse Problem
Practice¥, and if the difference between theory and practice is smaller in theory than it is

in practice, themythere are two fundamental questions:
AL

)

,

Sl
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1. In theory, what is the difference between theory and practice? In theory, the difference

is data error. MCW 0,6

2. -I;;yctice, what is the difference betw theory and practice? One suggestion is
the discrepancy is entirely {lue to*inadequate modeling. It is well known that
geophysical data is highly repeatable. The problem is /ti?* the modeling neglects far

too much.
&

Here is a perspective drawn from analysis ofthe human genome: “The problem is that it
is possible to use empirical data to calibrate4 model that generates simulated data similar
to the empirical data. The point of using sfich a calibrated model is to be able to show how
strange certain regions are if they donl¥ fit the simulated distribution, which is based on
the empirical distribution.” In other words, “inversion” is just the process of calibrating a
model. To learn something newswe track down the failures of such models.

)
7.11 NONSTATIONARY OPERATORS

Nonstationary data is that with spectra changing in time or space. Nonstationary data
usually calls for nonstationary operators. We need those to get our residual white.

My past work did not meet my standards for this boo@but nowr] think I know what
I should have done. This omission disappoints me/\because nonstati&nary data is so very
prevalent. )

7.11.1 Time-variable 1-D filter ‘0 (

My first go at nonstationarity was a time-variable prediction-errorfittet. Unfortunatelytat
the present state of computer hardwarg-the method is not suitable for multidimensiénal
data., This method did work well in one ‘dimension. Figure 7.35 shows synthetic data with
time variable deconvolution. (Details are in the document labeled “Unfinished” a my web
site.gL o

o . : : Belocar_
The method is simple. Every point on the signal has its own filter.” Sinee each data
point has a multipoint filter the PEF-design regression is severely underdetermined, but a
workable regularization is forcing filters to change slowly. I minimized radient.

As we hope for deconvolution, events are compressed. The compression is fairly good,
even though each event has a different spectrum. What is especially pleasing is that satis-
factory resultsﬂg,re obtained in truly small numbers of iterations (MIKthree). The example
is for two fre?\ﬁlter coefficients (1, a1, ag) per output point.

Dip spectra are commonly time and space variable. In multidimensional spacesawe
mostly struggle for data memory. Needing a filter array for each data point is abhorrefit.

Pemoy

7.11.2 Patching

My second go at nonstationarity was patching. A big block of data is chopped into over-
lapping little blocks. The adjoint operation merges the little blocks back into a big block.

RpproX lmasz‘w/%

othoct,

%C”U?J
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Figure 7.35: Time variable deconvolution with two free filter coefficients and a gap of 6.

| mda/. tvdecon90 |

The inverrator is easily found by passing a big plane full of ones(thrujthe operator

and back. gives a measure of overlap, i.efinds a bin count for a divisor to convert the
adjoint to aiTInverse. Weighting functions of s‘})ace may also be introduced/and the inverse
likewise calculated. Patching would appear to be well suited to modern pirallel computer
architectures. m

Patches need not be equal in size/}\’Pheyu-need/not bé(;a,ngular. Reflection seismologists

immediately recognize the need for wedge-shaped patches in the space of time and source-
receiver offset.

This method does work, but there are drawbacks. A big drawback is the many parame-
ters required to specify patch sizes and overlaps. When PEF's are designed in blocks, then
care must be taken to use internal filtering and attend to the fact that output lengths are
shorter than input lengths. You live in fear that patch boundaries may be visible in your
output. The many parameters increase the likelihood of miscommunication between the
coder and the user. The many parameters also require effort and experience to optimize
(tune).

7.11.3 Store the filter on a coarser mesh

The first coarse-mesh-filter idea is to keep the filter constant over a range of values in time
and space. Such a filter would be easily stored on a coarser mesh, so the memory devoted
to filters could be significantly less than the data. Butcthis idea evokes fear that we will see
the blocky boundaries in outputs. ) 2}}

c
Bob Clapp (who has exercised nonstationary filtering in larg%scale environments) sug-
gests we should linearly interpolate filters from the coarser mesh. It can become costly,
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but econofnics are hard to figure in this age of rapidly changing computer architectures.
Whether\aind how the coarse-mesh-filter idea is integrated with the helix transform is a topic
twhich to my knowledge has not yet been attacked. The challenge for the analyst/coder is
to produce filters interpolated from a grid in an environment that can be widely shared
among many applications and with many people.

7.12 IRREGULARLY SPACED SIGNALS CALL FOR SPARSE MA-
TRICES

We have accomplished muchfkusing operators (function pairs) instead of matrices (data
structures). But/kseismological data suggests a need for representing operators as sparse
matrices. Often,qgre move data from irregular meshes to regular ones. We want the regular
mesh for data v)lewing, rfe%ltering, and Fourier transformation. When we have data
signals instead of simply data valuesawe could use the same program at each point in time.
Bug'eparse matrices might be vastly’faster. Mathematically, think of a large collection of
1eas@—squa,res regressions (N time points)/keach with the same time-independent operator
F*F. )

F*F [mlmgmg v e mN] ~ [blbgbs R le (7.42)

Instead of iterating the same operator at each time, efficiency might be gained by approxi-
mating (F*F)~!. How big is F? Data here has these size@

Galilee 132,044
Seabeam 368,945
Madagascar 507,961
Vesuvius 490,000 M

Model sizes are typically larger because of zero padding/\These are toy problems solvable
in a few minutes using operators. Each would be an awesome big matrix, but if represented
sparsely, special techniques become applicable.?

A sparse matrix Fj; is a list of /3’ columns and K rows. Each row contains (matrix
element, 7 value, j value). Observe how we multiply a sparse matrix times a vector, say
d=Fmor d; = Ej F%,jmj.

do k=1,K
data(i(k)) += matrix(k) * model(j(k))

Now review: Let m(z;,y;) be unknown scalar values on a regular 2-D grid packed into
a model vector m. Among these scalar model values are data values dj packed into a data
vector d. The linear interpolation operator L creates synthetic data by Lm = dmodeled-
We have real data djand seek the model m. We minimize ||d — dmodeled|| by least squares.
Additionally, sinee the model mesh is den ¢thaving many more points than the data space,
we need a regulatization operator we’}ﬁéﬂ) A. It might be gradient, laplacian, or a 2-D

5 1 thank Michaal Saunders for explaining to me. He suggests the technique known as sparse QR
and recommends a program by Tim Davis. http://www.cise.ufl.edu/research/sparse/SPQR/

J\@QM
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filter we call amdthm*ﬁkﬁ-(fEF%r ﬁndmg e have two goals, a data fitting

goal 0 ~ Lm — d and a regularization goal (model styhnggoal) 0~ Am.

0 ~ Lm-d
0 ~ ¢ Am (7.43)
To see the regression (7.42)awe need b = L*d and F
/T
L
F = [ 5 ] (7.44)

A singular_contribution of this book is multidimensional PEFs. Unlike gradient and
Laplacian they are easily invertible offering solution by preconditioner p where m = A~ !p.
In the simplest casg. A ™! would be leaky integration, trivially implemented with recursion.
Recursion allow%téa?sy solution to these huge problems. In the QR algorlthr&_recursmn
appears as the triangular matrix R. )

Well my friends, we have come a long way; we have made much progress; but I have
become old. I can help a while longer, but from here on, it is for you to carry the ball.



Chapter 8

Future work

In wrapping up this boolshl.found myself with a collection of clever but inadequately finished
projects. I also found two'major directions I wish to have run. Firston nonstationary data A
because it is so very prevalent. Second, while we have covered linevenly spaced data,
unevenly spaced signals invite new techniques. Here lies the trail ahead.

8.1 NONSTATIONARY OPERATORS

Nonstationary data is that with spectra changing in time or space. Nonstationary data
usually calls for nonstationary operators. We need those to accelerate solutions and to
transform residuals to whiteness (IID).

8.1.1 Time-variable 1-D filter

PeF

My first go at nonstationarity was a time-variable predietien-errer-filter. Unfortunatelysat

the present state of computer hardwargathe method is not suitable for multidimensichal oMLy y,
data. This method did work well in one dimension. Figure 8.1 shows synthetic data with .

time variable deconvolution. (Details are in the document labeled “Unfinished” at my we @J

site.) ool ~ Tloelo e

Capg 2
The method is simple. Every point on the signal has its own filter. Sinee ea&da‘ca

point has a multipoint filtep:the PEF-design regression is severely underdetermined; but a

workable regularization is fol-cing filters to change slowly. I minimized their'gradient.

As we hope for deconvolution, events are compressed. The compression is fairly good,
even though each event has a different spectrum. What is especially pleasing is that satis-
factory results are obtained in truly small numbers of iterations (about three). The example
is for two fre?:ﬁlter coefficients (1, a1, as) per output point. CU)Q/)WLDK‘ ‘m

Dip spectra are commonly time and space variable. In multidimensional spacesjwe
mostly struggle for machine memory. Needing a filter array for each data point is abhorrént.
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Figure 8.1: Time variable deconvolution with two free filter coefficients and a gap of 6.
|mda/ ; tvdecon90|

8.1.2 Patching

My second go at nonstationarity was patching. A big block of data is chopped into ove
lapping little blocks. The adjoint operation merges the little blocks back into a big blgck.
The inverse patching operator is easily found by passing a big plane full of ones the
operator and back. Qgives a measure of overlap, i.e{/‘ﬁnds a bin count for a divisor to
convert the adjoint t6-an inverse. Weighting functions of space may also be introducegand
the inverse likewise calculated. Patching would appear to be well suited to modern pa%allel
computer architectures.

Patches need not be equal in sizepFheyneed not bé rectangular. Reflection seismologists
immediately recognize the need for {vedge—sha,ped patches in the space of time and source-
receiver offset.

This method does work, but there are drawbacks. A big p(tigﬁback is the many parame-
ters required to specify patch sizes and overlaps. When PEs are designed in blocks, then
care must be taken to use internal filtering and attend to the fact that output lengths are
shorter than input lengths. You live in fear that patch boundaries may be visible in your
output. The many parameters increase the likelihood of miscommunication between the
coder and the user. The many parameters also require effort and experience to optimize
(tune).

8.1.3 Store the filter on a coarser mesh

The first coarse-mesh-filter idea is to keep the filter constant over a range of values intime
and space. Such a filter would be easily stored on a coarser mesh, so the memory devoted
to filters could be significantly less than the data. Bu}«\t_his idea evokes fear that we z see

)
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the blocky boundaries in outputs.
o
Bob Clapp (who has exercised nonstationary filtering in largg@ca.le environments) sug-

gests we should linearly interpolate filters from the coarser mesh. It can become costly,

economics are hard to figure in this age of rapidly changing computer architectures.

6\ Whet nd how the coarse-mesh-filter idea is integrated with the helix transform is a topic
whieh to my knowledge has not yet been attacked. The challenge for the analyst/coder is

to produce filters interpolated from a grid in an environment that can be widely shared

among many applications and with many people.

¥ hrugutindy
\% 8.2 \/SCAT RED GNALS CALL FOR SPARSE MATRICES

SN

) AN We have accomplished much%lsing operators (function pairs) instead of matrices

structures). We soon here see that scattered seismic data suggests a need for switching from
operators to sparse matrices. Oftery\we move scattered data toa regular mesh. We want the
regular mesh for data viewing, ﬂltel)ing, correlation, and Fourier transformation. When

we have data signals instead of simply data valueg\it seems we must repeatedly use the same
iterative program at each point in time. Buptspa se matrices might be vastly faster. To see

why, represent a large collection of Ieast—sque;res regressions (N time points)/@ach with the
same time-independent operator F*F. )

F*F [mlmgmg -3 mN] ~ [b1b2b3 L bN] (81)

Instead of iterating the same operator at each time, efficiency might be gained by approxi-
mating (F*F)~!. How big is F? Data here has these size@

Galilee 132,044
Seabeam 368,945
Madagascar 507,961
Vesuvius 490,000 W\/

Model sizes are typically larger because of zero padding/\These are toy problems solvable
in a few minutes using operators. Industrial settings have comparable numbers of signals
as we had values. Luckilysindustrial and academic settings also have signal clusters in
much smaller numbers, say hundreds to a few thousands. I asked Michael Saunders for an
approach using operators. He suggested instead we consider sparse matrices, in particular
a technique known as sparse QR.!

Think of a sparse matrix Fj; as a list of 3 columns and K rows. Each row contains
(matrix element, ¢ value, j value). Observe how to multiply a sparse matrix times a vector,
say d = Fmor d; = }_; Fi jm;.

do k=1,K
data(i(k)) += matrix(k) * model(j(k))

! Michael Saunders recommends http://www.cise.ufl.edu/research/sparse/SPQR/ a sparse QR method
and code by Tim Davis.
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Here follows a review to connect gquation(&l) more explicitly to this book: Let m(x;, ;)
be unknown scalar values on a regular 2-D grid packed into a model vector m. Among these
scalar model values are data values dj packed into a data vector d. The linear interpolation
operator L creates synthetic data by Lm = dpodeled- We have real data dsand seek the

model m. We minimize ||d — dinodeled || by least squares. Additionally, sw.ersi_‘_ MW

is dense¢having many more points than the data space, we need a regularization operator

W cal{ A. It might be gradient,’kxplacian, or a 2-D filter we call a prediction-errerfilterJ_

mPEFfFor finding e have two goals, a data fitting goal 0 =& Lm—d and a regularization
goal (model styling g(ga,l) 0~ Am.

Lm-—-d (8.2)

0
0 e Am

QQ

To see the regression (8.1)/@(3 need b = L*d and F

)
Fo- [ = } (8.3)

contribution of this book is multidimensional PEFs. Unlike gradient and

A singula
Laplaciare easily invertible offering solution by preconditioner p where m = A~!p.
In the sim'}p est ca —1 would be leaky integration, trivially implemented with recursion.

Recursion allow$, easy solution to these huge problems. In the QR algorithrr}@ecursion

)

| appears as the triangular matrix R.

Well my friends, we have come a long way. We have made much progress, and we see
another path for more. Meanwhile, I have become old. I can help a while longer, but from

here on, it is for you to carry the ball.
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Industrial seismology sampler
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Figure ﬁ.l: A 2-D seismic survey line. Left half is layers. Right half is a salt dome. Salt
flows upwards, dragging hence bending upwards the adjacent layers. There are no reflections
inside the salt. In the salt are only artefacts of data processing.

Industrial seismology is a big consumer of technologies developed in this book. This
book steers away from seismology because of its complexity (and because I have written
other books devoted to seismology). Figure £.1 is a traditional single survey line of the kind
that dominated the industry in the 1960s.
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This book is merely a “warm up” to today’s industry. In earlier chapterstyou saw tiny
data sets manageable in a small desktop computer. Industrial seismology is“done both on
land and at sea. These examples are marine. Receivers measure hydrophone voltage in a
ﬁve,(dimensional data space, two surface coordinates (zs,ys) for each source pop, two more
(., yr) for each receiver, and the echo delay time ¢. It has the 3-D model space of our world
(z,1, z), though on the cube here we do not see z, but ¢, the vertical seismic travel time.
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Figure ¢2: At t =1.387s (about 1.4km depth): The upper right circular corner is a salt
dome. River meanders from about a million years ago. River meanders are a common sight
in 3-D reflection seismic images. Rivers typically migrate significant distances in the 7000
years between our resolution slices. Some depth ranges contain no rivers. Such correspond

to eras when these layers were being laid down lay beneath the sea.

Ilustrations here may look like data, but they are slices from model space, On ﬁgure K 1
the alternating voltages in the seismic microphone suggest black-white physical layering in
the@—n‘th. While this is surely indicative, highelr':frequency filtration would yield more layers.
Kee in mind as you examine Figure 5.2, a horizontal slice inside the@arth at a constant
depth (travel-time depth ¢ = 1.387sec). Local outline shapes are truly meaningful herc;xwhile
black/white polaritie%rdly so. Whetherna river is white in a black background@‘lér)black
in a white background is an accidental function of overall travel time and spectrum. What

Uk
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The uppenright corner, of the constant depth slices shows a circular region/\/Fhis is salt.
Salt, like a e, seems brittl@but under pressure/sit flows like a liquid. Before the) past million
years agoVbefore the sedinients of this cube were laid down/there was a salt lake here that
eventually dried and was buried beneath the sand, shale, aﬁd carbonates that became this
cubg. Salt is lighterhign rock, and se eventually it erupted like a pimple on the face of
the\earth, a pimple /fmiles wide. No oil in here, but the bent up layers aside it seen in
Figure §.1 are excellent prospects. Salt flow is a dominant feature in the Gulf of Mexico.
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Figure é.S: At t=1.938s: To the east of the fault noted already in Figure )B’.4 is a broken

up layer with a “wormy” appearance. I do not know what it is. Curiously it is found only
on one side of the fault. '
] ey
This data cube (actually model space) is 20 years old. It came from Chevron wia™
David Lumley to James Rickett. It is textbook quality 3-D data from the Gulf of Mexico.
It would have taken the survey company about a month to acquire, and it would cost the

oil company (group maybe) about te% million dollars. ]J 000 ‘fia\r(

\ —

A ship with an air gun towed a ﬁ Bng cable with a_thousand hydrophones. Today A~
there would be several gun boats. The recording ship would trail about a dozen streamers
separated§about 150 meters. World-wideAthere are abeut 50 marine survey teams working
continuously. The half;dozen largest seismic survey comjpanies together sell ten billion
10
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is significant is the rings surrounding the dome. @re a consequence of the upwar%
bending layers you saw in figure /8'.1.

P
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Figure §.3: At t=0.888s: The (z,y) plane shown here is grabbed from a volume of slices
separated by 6ms, about 18 feet. Slice to slice represents about 7,000 years of sedimentary
deposition in the Gulf of Mexico. Top to bottom is about a million years (about the age
of the human species). Think of the creatures in all those rivers, their ancient worlds.

Awesome, isn’t it? |rez/. rivers2

Seismic waves here are a little faster than 2 km/sec, but they must go both down into
the@rth and up again, so the bottom of the tigge axis is a little more than Q&km deep. A
ship sails from west to east creating an z-axis, 22\kilofeet long, a little under 5 miles. Where

q &

o/

the vertical axis is not north-south it is tra\r@ime. Typicallyathat axis might run to 5 secd”™

Herepfor space limitations, it runs less than(2s/ All the planes)you see in this chapter come
from one 292 x 451 x 551 cube of 72 megapixels, a subset of a larger volume of model space.

You may be seeing paper or images of what‘é on paper, but what you see is merely
two-dimensional slice the 3-D model space. I can plunge into these volumes, panning
and zooming. Thanks to my colleague Bob Clappspnd others like hingafter some yearsiwe
may escape the constraints|of PDF files and deliver such experiences t6 readers outside’our

lab. 1



