® " S e 24
Preface ® \’LW“’%" ¢

W

Age and treachery will always overcome youth and skill. —@onymous A

@

u may copy this book but not sell copies. égphysical Image Estimation by Exam-
B@, is copyrighted and-i-t—ig'ricensed under the Creative Commons Attribution-Sharealike
4.0 International License. To view a copy of the license, visi

A

http://creativecommons.org/licenses/by-sa/4.0/.

The electronic version of this book as well as my four earlier books are freely available
-~ X .
at my wemlte . At that web site, find (1) two versions, one for classroom use, the other
with many unfinished loose endg;)and (2) videos of me narrating this book for use in my
newly\“flipped”}class. If you have this book in print in your hands, you have the free limited
edition version eof%8. A final version will be sold byUniversity Press.

I have had the good fortune of having excellent computer access all my professional
life and the further good fortune of 47 years of continuous close association with a stream
of excellent graduate students, typically a dozen at any time. Fro have prepared
five textbooks, this0 be the last, on the topic of geophysical data anzﬂysis. I tell the
students, “We get paid to add value to data that has been collected at great expense. We
do theoretical work based on the data we see; and from that theory and datwe try to coax

value.” W

In thiglboolAL have mostly avoided examples from my own field of specialization, reflec-
tion seismology,{as) they are covered in my earlier booksffand tend to be complicated,
a competitive activity feeding an aggressive industry, the construction of 3-D subsurface
landform images, an activity‘it is not easy to build yourself a niche. See a touch of
it here in the final chapter. Y]

172, %

Instead, here find basic examples from Wide:?anging applications chosen for their diver-
sity and i lack of application-specific complexity, thus leading us soon to the kind
of complications likely to turn up wherever you go. Young people new to building images
from complicated models of data wishing to join the forefront of an established field, need
help overcoming frustrations long since overcome by oldsters like me. Before jumping into
the fray, they could use experience with the simpler examples in this book.

© — * where " opeestuss o place

"Mttp://sep.stanford.edu/sep/prof/

s b ol

peto

1+ads

G)

<

>

ii CONTENTS

Acknowledgements

@ (Sap> In this book, as in my previous books, I owe a great deal to many former students at the
Stanford Exploration Project, You, my readers, are not prepared for a lengthy explication

of the contributions of each of those ex-students, now colleagues. Alternately, it is not fair

to show a giant list of names with no distinction between major and minor contributors.

@ So/{ list them in non%lphabetical order.
~
Sergey Fomel converted my early F77 draft to F90 and did all the helix coding. Antoi 0"
Guitton coded and produced most of the results in Chapter 6. Otherwisell made mostgthe A
illustrations in this beok Eg uf, over time T was assisted by many other students and /
@ ex-students. - ere: lapp, Morgan Brown, Jesse Lomask, Ray Abma, James

Rickett, Christine Ecker, Elita (Yunyue) Li, Xukai Shen, Yang Zhang, and Daniel Rosales.

My second list of credits goes to those who substantially contributed to the infrastructure
that I have depended on: Bob Clapp, Joe Dellinger, Sergey Fomel, Matthias Schwab, Stew
f Levin, Paul Sava, Kamal Al-Yahya, Steve Cole, Dave Nichols, Martin Karrenbach, Jenny

Etgen, and Ali Almomen. pa Commant 3- M(,(war ¥ e)‘}_uo// >

OJ My third list of credits is toho generously supplied data: David Sandwell

" Zvi ben Avraham (Tel Aviv), Umberto Spagnolini (Milan), Alexander Kosovichev
‘5 ay, (Stanford), Alistair Harding (UCSD), Oz Yilmaz (Western Geophysical), James Rickett
(Chevron), John Toldi (Chevron), and Sheldon Breiner.

Finally, my unbounded gratitude goes to my beloved wife DianeAvho accepted to live
with a kind of an alien. Without her continuous love and support during half a centur;h
none of my books could have existed. /

/)k
ﬁ\'

(©Jon Claerbout
July 4, 2014

Commarts!
- A o 7%%&6@1“%
0 W ey | abtu Mwb«{;eé@rw(
‘ti;.:wt a%w,mpm

tion vwh u,au(wm r)\%wex
m:‘ Connectin \f"{'-‘w

\M‘hzd M—Q /\.Q- W’jﬁ,

@ W(M"f‘w)m /\W

ke
o N

Ref
b

min
5

(o)
<.
d\“_
¢

1
L] LA
U"{Y

OQ no recorglingttook plac M& locations where crossing tracks made inconsistent measure-
mentg', mergi e data of various illumination directions. Noise @ omes in four

Overview 2o st O : ki

LPO 0’ 4 ’ WW
w0k toOL cannot
G T o
The difference between theory and practice is smaller in theory than it is in b'e“ . ”
{

practice. —folklore

w'(This book is about the estimation and construction of geophysical images, Geophysi-
cal images are used to visualize petroleum and mineral resource prospectsytor subsurface
water, § transport (environmental pollution), archeology, lost treasure, graves,
and /-_fg simple-thriosity. What does it look like inside the Here we follow physical
measurements from a wide variety of geophysical sounding devices to a geophysical image,
4 1-, 2-, or 3-dimensional Cartesian mesh that is easily transformed to a graph, map image,

or computer movie. < /\Q{
Beyond “simulatiorﬁbi the fields of geophysics, engirfeering, statistics, and applied math-
ematics include a topic’called “inverse theory” el concerns the reverde ~— fitting models

to data. The bulk of this theory is based on the idea that data contains nt?ise. (,)’ur data is
good data. Reality in science, geophysics, and research engineering is thag\misﬁ means the
data contains information the model is not cognizantntifying its meaning is the real
prize. This book aspires to lead you there. With such a grandiose ambition, the best route
I can see is an excursion past many examples, each by necessity of minimal complexity.

Geophysical sounding data used in this book comes from acoustics, radar, seismolog
and even bits of astrophysics and biology. Sounders are operated along tracks on the(arth)
surface (or tracks in the ocean, air, or earth orbit). A basic goal of data processing is an

image that shows the not an image of our data-acquisition tracks. We want to
hide our data acquisition footptint. +RANS FORMATION

in which
To enable thig”book to move

apidly along from one application to another, we ayoid
applications the from model to data is mathematically complicateds buta,
we include the central techniques of constructing the adjoint of any such complicated trans-/
formation. By setting aside application-specific complications, we soon uncover and deal
with universal difﬁcultie?such as: (1) irregular geometry of recording, (2) locations where

flavors: * (1) drift (zero to low frequency), (2) white or steady and stationary broad band,
(3) bursty, i.e., occasional but large and erratic, and (4) all at once (aaack!). This book
has all four kinds.

Missing data and inconsistent data are two humble, though universahproblems. Because
they are universal problems, science and engineering have produced a’cornucopia of ideas
ranging from mathematics (Hilbert adjoint) to statistics (stationary, inverse covariance)

iii

6

\p;ﬂ'm

w

.

~

S

.

~
. M Nobel prizegwinning economists W propaga eories dependent on the “stationarity
et) T

w even the small image m has 10{p00 = 10% un wng/so the matrix F*F has 108

s’
l

() po e we)
iv @ \,.Q“jilpco %}VM uabv‘"

to physics (multi%}imensional spectral, scale-invariant) to numerical analysis (conjugate
direction, precorﬁlltioner) to computer science (object oriented) to simple common sense.
Besides geophysical imaging, a journey through this maze is good preparation for many
other fields! A course in applied mathematics might often turn out to be more narrowly
focused. Our guide through this maze of oppgortunities, digressions, and misconceptions is
the test of what works on real datag what w#l' make a better image.

lomdoot '

Inverse theory is too theoretical.

We make discoveries about reality by examining the discrepancy between theory and prac-
tice. There is a well-developed theory about the difference between theory and practic
it~i8 called “geophysical inverse theory.” In this book MVZFP {"nﬁstigate the practice of the
difference between theory and practice. As the folkloreltells'us, there is a big difference.
Inverse theory provides a logical basis for learning fron gegphysical data. But in practice p
it often fails. Inverse theory says data is noisy. Practice to find aspects of the data Wﬂbﬁ;
missing in the theory. As with computer coding, our first attempts nearly always u“u(J
fail. Inverse theory is the ﬁEﬁ art of dividing by zer& inverting a singular matrix). us -

P bew -
The first problem with all mathematical theory is mﬁzﬁsed on assumptions. Math- bf 1 nj
ematicians are ver at stating exactly what the assumptions are. Buathe practitioner A
often fails to recognize the significance of all the assumptions. Fox examplésin 2009 @
in a financial crisis i biggest financial institutions werdlin a state of collaﬁse. 0
. o wjosS
ple who had been fabulously wealthy were no longes. A major contributing reason 4s=

assumpt?gﬂ” an assumption ignored by financial 18aders because they never saw Amany y M do/

example s failures as we are going to see here! Q;M as % tAJL
Closer to home, academics often take the world to b%homogeneous, one dimensional, W.S. A‘

or two dimensiongl: when in realit}fjt is three dimensional, heterogeneous, and sometimes

time variable as / My colleagued in exploration seismolog%f.or example, often adopt the Wéo

doubtful assumption hav; '{k impulsive point source¢; negle%m -)'

tiple reflections, shear waves anisotrop@and already ha/vén adequate velocity

model.)\O«V\L

software. @ fine, as far as it goe‘@mg\

Synthetic data is often used as a test of ne
the real opportunities lie just beyon en the real data Bt & model somewhat different’
from what we have planned. where this book fills a need. I have chosen a wide
collection of geophysical data types from among those areas where the basic theory is dirt
simple. ThepAwhen theory fails (as it always does when we are starting out),it is not so

hard to recognize what is happening. &";‘-kﬂ»— +hat)
ics is

n-geophysics we often construct r an image is a specialized form of data
isplay. Your computer screen h*as‘@ }@00 X }QOO pixels. Currently, highfdefinition

9 000 pixels. A low resolutioh geophysical image would be 100 x 100 Mﬂ_
i i omething like inverse

application of inverse theory implies a calculation like m = (F*F)~'F*d. But

w\a'\’bo‘\ Another big problem with inve?e/‘theory in geophysi ?‘e problem of dimensionality.
i a

elements. Even with such a tiny image, thel matrix is tod, big)to J’nvert on today’s computers.

MWW/’DJ

™
9
~Tunctions are not merely weights but

\)&9..

N

CONTENTS v

The cost rises with the third power of the number of pixelsawhich is the sixth power of the
resolution. Clearly, most geophysical tasks present computﬁtional challenges too steep for

straightforward application of inverse theory. ;
M ows/
do Wt o

Weights, filters, and theory Werneed
M~

) hadl ST ?' 3 , , :
We find many applications hal?e a great deal in common with one another. First,
0

many applications draw our attention to the importance of two weighting functions (one
required for data spac the other f rmdﬁ\space). Solutions depend strongly on t};ese
weighting functions (eigenvalues de‘t&?' Vhere do these functions ome-frm%,/ from what
rationale or estimatidén procedure? see many examples heléénd find that these

ters. Even deeper, they are generally a combination ,
of weights and filters. We do some tricky bookkeeping and bootstrapping when filter, “'é'
the multidimensional neighborhood of missing and/or suspicious data.

Prior knowledge exploited her%that unknowns are functions og time and space (ng Af%
the covariance matri nown s%ucture). This structure gives predictability. Pre-

dictable functions in 1-D are tides, in 2-D are lines on images (linements), in 3-D are

sedimentary layers, and in 4-D are wavefronts. The tool we need to best handle this pre- g‘ K. 2
dictability is the multidimensional “prediction-error filter” (PEF) ,Af)ne theme of this book. A

Books on geophysical inverse theory tend to address theoretical topics little
used in practice. Foremos%is probability theory. In practice, probabilities are neither
observed nor derived from ogservations. For more than a handful of variables, it would not
be practical to display joint probabilities, even if we had them. If you are data poor, you
might turn to probabilities. If you are data rich, you have far too many more rewarding
things to do. When you estimate a few values, you ask about their standard deviations.
When you have an imageymaking machine, you turn the knobs and make new images (and
invent new knobs). Singular-value (eigenvalue) theory is also a valuable intellectual tool,

but it is not used heret¥™ s 2 Sﬁﬂ‘ Ement

A
A clever friend asked me why my book had no eigenfunctions% good question.
the kind of friend who digs into deep problems and comes up with hair-raising integral
operators. After calculating potential data everywhere on the su aci % the ﬁarth we need
the linear operator that Siiects from his ideal data the subset V‘&ber.awe record real data.

s nasty. On the surface/qzve may often find a nicghlong survey line of uniformly
sampled geophysical data.” Widening our eyes from the line’ to the surface planeawe find
a mess of too-sparse instrument spacing interrupted by surface obstacles. Un I%unately
there is little money to be made these days with single survey lines.\My ugly data selection} /g,

@ator multiplies his elegant integral (iw Those beautiful eigenfunctions are ruined. {
net
w"gL (¥ make

. ?
Going to work (9-» (3) (0 Qepyaeq -

Are you aged 237 If so, th‘i{k')ook is designed for you.'éife has its discontinuities: ﬂvhen
you enter school at age 5, jwhen_you leave university, hen you marry,\when you retire.
The discontinuity at age 23, midygraduate school, is when the world loses interest in your
potential to learn. Instead the world wants to know what you are accomplishing right now!

7%

vi CONTENTS

This book is about how to make images. It is theory and programs that you can use right
now.

This book is not devoid of theory and abstraction. Indeed it makes an important new
contribution to the theory (and practice) of data analysis: multidimensional autoregression
via the helical coordinate system. .(f'(

e ?
The biggest chore in the study of “thef the difference between theory and
@

practice” is that we must look at algorithm8™=S6me of them are short and swegf; jbut
other important algorithms are complicated and ugly in any language. This book can be
printed without the computer programs and their surrounding paragraphs, or you can read
it without them. I suggest, however, you take a few moments to try to read each program.
If you can write in any computer language, you should be able to read these programs well
enough to grasp the concept of each, nderstand what goes in_and whet?should come
out. I have chosen the computer language (more on later) believe is best suited
for our journey through the “elementary” examples in geophysical image estimation.

Besides the tutorial value of the programs, if you can read them, you will know exactly
how the many interesting illustrations in this book were computed 80%% Wel}(':
equipf to move forward in your own direction.

N : Tonee .
- o St
nu e

T e
Although most the examples in this book ayé presented as toy: results are obtained
in a few minutes on a home computer, wé¢ have serious industrial-scale jobs always in the
backs of our minds. forces us to avbid representing operators as matrices. Insteadswe
represent operators as a pair of subroutines, one to apply the operator and one to apply)the
adjoint (transpose matrix). be more clear when you reach the middle of giapter
2:

Scaling up to big problems

ue \.>

By taking a function-pair approach to operators instead of a matrix approach, this book
becomes a guide to practical work on realistic-sized data sets. By realistic, I mean as large
and larger than those here; i.e., data ranging over two or more dimensions, and the data
space and model space sizes being larger thana 300 x 300 ~ 100,000 = 10° element
image. Even for the world’s biggest computer would be required to hold in random
access memory the 10° x 10° matrix linking data and image. Mathematica, Matlab, kriging,
etﬁ are nice toolspbut? it was no surprise when a curious student tried to apply one to an
example from thid book and discovered ﬁh@%’ he needed to abandon 99.6% of the data to
make it work. Matrix methods are limited not only by the size of the matrices but also by
the fact that the cost to multor invert is proportional to the third power of the size.

For simple experimental Work, limits the matrix approach to data and images of
%QOO elements, a low-resolution 64 x 64 image.
?

21 do not mean to imply that these tools cannot be used in the function-pair style of this book, only
that beginners tend to use a matrix approach.

(U

CONTENTS ‘zl:é‘f}/ Mu“e)

Computer Languages

One feature of this book is that it introduces and uses “object programminMOlder
languages like Fortran 77, Matlab, C, and Visual Basi{z%g not object-oriented languages.
The introduction of object-oriented languages like C++, Java, and Fortran 90 a couple
decades back greatly simplified many application programs. An earlier version of this book
used Fortran 77 I had the regrettable experience that issues of Geophysics were constantly
being mixed in A the same program as issues of Mathematics. ‘IS easily avoided in
object-based languages. For ease of debugging and understanding, we want to
keep the mathematical technicalities away from the geophysical technicalities. S called
“information hidinMWe geophysicists can work with numerical analysts without either of
us needing to know many details of the other’s work.

In the older languagesait is easy for a geophysical application program to call a math-
ematical subroutine. % is new code calling old code. The applications we encounter in
this book require the opposite, old optimization code written by someone with a mathe-
matical hat calling linear operator code written by someone with a geophysical hat. The
older code must handle objects of considerable complexityAonly now being built by the
newer code. It must handle them as objects without knowinlg what is inside ke, Linear
operators are conceptually just matrix multiply (and its transpose) but concretely they are
not simply matrices. While a matrix is sunply a two-dimensional array, a sparse matrix

may be specified by many complicated arrangements. W\W 5/

The newer languages allow information hidin(?but a price paidy from my view as a
textbook author, is that the codes are now more verbose, hence the book uglier. Many
initial lines of code are taken up by definitions and declarations making my simple textbook
codes twice as lengthy as in old F77 (or pseudocode). is not a disadvantage for
the reader who can rapidly skim over what soon becom%fami 1ar definitions.

* Of the three object-based languages available, I chose Fortran because, as its name
implies, it looks most like mathematics. Fortran has excellent primary support for multi-
dimensional cartesian arrays and complex numbers, unlike Java and C++. Fortran, while
looked down tego}:l by the computer science community, is the language of choice among
physicists, mechanical engineers, and numerical analysts. While our work is certainly com-
plex, in computer scienc%heir complexity is more diverse.

)

The Loptran computer dialect

Along with theory, illustrations, and discussion, I display the programs that created the
illustrations. To reduce verb031ty in these programs, my colleagues and I have invented
a little language called Lo tran)\that is readlly tra : ated to Fortran 90. I believe readers
without Fortran experlenc comfortably optran, but they should consult
a Fortran book if they plan to‘write it. Loptran is not a new language compiler but a simple

text processor that expands concise scientific language into the more verbose expressions
required by Fortran 90. The name Loptran denotes Linear OPerator TRANslator.

Fortran is the original language shared by scientific computer applications. The people
who invented C and UNIX also made Fortran more readable by their invention of Ratfor?.

3 http://sepww.stanford.edu/sep/bob/src/ratfor90.html

)

% Stay-

viii CONTENTS
cor 7

Sergey Fomel, Bob Clapp, and I have taken the good ideas from original Ratfor and merged
them with concepts of linear operators to make Loptran, a language with much the/éyntax
of modern languages like C++ and Java. Loptran is a small and simple adaptation of
well-tested languagesﬁd translates to F90. On the web‘lj\)‘/ou should be able to find the
codes used in this book in both Fortran 90 and Loptran.)

Reproducibility

We have long held the goal of delivering reproducible research by which we mean we wish
you could find yourself in an environment where you could replicate the calculation we did
for each illustration in a document. I still try, but reality has intruded in many ways. Is
this the place to cite them all? Most likely not, but here are a few. We build uggn many
software tools of others. All software has “the versioning problen(’/\ Besides our own SEP
libraries, I can cite Fortran, C, shell, make, LaTeX, postscript, PDF, Xwindow as software

that over the long haul has changed in various ways. AM\A— W_, j

Another problem is that geophysical data is expensive to collec hen we receive it,,
we are ordinarily not free to pass it along to others. (Bup\i_f some particular data set catches?
your heart strings, don’t be afraid to ask.))

Internally; our idea of reproducible research is that each computed illustration in a
document has in its caption a key to a menu allowing us to burn and rebuild that illustration
(or movie) from its code and data sources. bz_covw\/

Hopefully, as computers mature, these obstacles pwi less formidable. Anyway, our
SEP libraries are also offered free on the SEP We@te. Our software is developed in LINUX,

works also on Magc, but has not been adapted to the Microsoft enviromnento.ﬁa
M one

“http://sepww.stanford.edu/sep/prof/gee/Lib/

Chapter 1

Basic operators and adjoints

A great many of the calculations we do in science and engineering are really matrix multi-
plication in disguise{ The first goal of this chapter is to unmask the disguise by showing
many examples. Second, we see how the adjoint operator (matrix transpose) bacliprojects
information from data to the underlying model.

Geophysical modeling calculations generally use linear operators that predict data from
models. Our usual task is to find the inverse of these calculations; i.e., to find models (or
make images) from the data. Logically, the adjoint is the first step and a part of all subse-
quent steps in this inversion process. Surprisingly, in practiceﬁt_:he adjoint sometimes does
a better job than the inverse! is because the adjoint oper’ator tolerates imperfections

the data provide full information.

in the data and does not demand #hatb

Using the methods of this chapter, you .W.iﬁﬁld that once you grasp the relationship
between operators in general and their adjoints, you can obtain the adjoint just as soon as
you have learned how to code the modeling operator.

If you will permit me a poet’s license with words, I will offer you the following table of
operators and their adjoints:

matrix multiply conjugate-transpose matrix multiply
convolve crosscorrelate
truncate zero pad

replicate, scatter, spray
spray into neighborhoods
derivative (slope)

causal integration

add functions
assignment statements
plane-wave superposition
spread on a curve
stretch

scalar field gradient
upward continue
diffraction modeling
hyperbola modeling

sum or stack

sum within bins

negative derivative
anticausal integration

do integrals

added terms

slant stack / beam form

sum along a curve

squeeze

negative of vector field divergence
downward continue

imaging by migration
stacking for image or velocity

S

2 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

chop image into overlapping patches merge the patches

I

ray tracing tomography L DLQU\) -
"o

\(W
nt ust

L .

/-7 m,?

The left Column is often called “modeling,” and the adjoint operator@he

right ,are often used in “data processing.”

A

When the adjoint operator is not an adequate approximation to the inverse, then you
apply the techniques of fitting and optimization explained in Chapter 2. These techniques
require iterative use of the modeling operator and its adjoint.

The adjoint operator is sometimes called the “back projection” operatorpbecause
information propagated in one direction to data) is projected backward)(data to

model). Using complex-valued operators, the transpose and complex conjugate go

]

S

e

together; and in Fourier analysis, taking the complex conjugate of exp(iwt) reverses the
sense of time. With more poetic license, I say that adjoint operators undo the time and
phase shifts of modeling operators. The inverse operator t.e@,’ but it also divides
out the color. Fqr example, when linear interpolation is done, then high frequencies are
smoothed 0!.@339' nverse interpolation must restore them. You can imagine the possibilities
for noise amplificatio is why adjoints are safer than inverses. ButAnature determines
in each application WhEZt is the best operator to usefjand whether to stop after the adjoint,
to go the whole way to the inverse, or to stop partway. ;

The operators and adjointsansform vectors to other vectors. They also trans-
form data planes t odel planes, volumes, etc. A mathematical operator transforms an
“abstract vector” might be packed full of volumes of information like television sig-
nals (time series) can pack together a movie, a sequence of frames. We can always think of
the operator as being a matrixabut the matrix can be truly huge (and nearly empty). When
the vectors transformed by t b matrices are large like geophysical data set sizesAthen the
matrix sizes are “large squared,” far too big for computers. Thusjalthough we cAn always
think of an operator as a matrix;)in practice, we handle an operatdr differently. Each prac-
tical application requires the practitioner to prepare-@;)g computer programs. One performs
the matrix multiply y = BxJand another multip@ y the transpose x = B*y (without
ever having the matrix itself in memory). It is always easy to transpose a matrix. It is
less easy to take a computer program that does y = Bx and convert it to another to do
X =B*y. In tgi's chapter are many examples of increasing complexity. At the end of the
chapterpwe will'see a test for any program pair to see whether the operators B and B*
are mutﬁally adjoint as they should be. Doing the job correctly (coding adjoints without
making approximations) wi rewar?\us later when we tackle model and image}:estimation
applications. 3

Mathematicians often denote the transpose of a matrix B by BT. In physics and engi-
neerins{\we often encounter complex numbers. Therg\the adjoint is the complex-conjugate
transposed matrix denoted B*. What this book calld the adjoint is more properly called
the Hilbert adjoint.

>

1.0.1 Programming linear operators

The operation y; = >>;b;;x; is the multiplication of a matrix B by a vector x. The
adjoint operation is £; = Y, b;;4;. The operation adjoint to multiplication by a matrix is
multiplication by the transposed matrix (unless the matrix has complex elements, in which
casepwe need the complex-conjugated transpose). The following pseudocode does matrix
mult}plication y = Bx and multiplication by the transpose x = B*y:

if adjoint
then erase x
if operator itself
then erase y

doiy =1, ny {
doix =1, nx {
if adjoint

x(ix) = x(ix) + b(iy,ix) x y(iy)
if operator itself

y(y) = y(y) + b(iy,ix) x x(ix)
) M d

Notice that the “bottom line” in the program is th% y are simply interchanged. The
example is a prototype of many to follow;\sd observe carefully the similarities and
differences between the adjoint and the operator itself.

NextAwe restate the matrix-multiply pseudo code in real code, in a language called
Loptran', alanguage designed for exposition and research in model fitting and optimization
in physical sciences. - —t :

use repeatedly. Atast count there were 53 such routines (operator with adjoint) in this
book alone.

matrix multiply.lop
module matmult { # matrix multiply and its adjoint
real , dimension (:,:), pointer :: bb
#% _init(bb)
#6 -lop(x,)
integer ix, iy
do ix= 1, size(x) {
do iy= 1, size(y) {
if(adj)
x(ix) = x(ix) + bb(iy,ix) * y(iy)
else

}

y(iy) = y(iy) + bb(iy,ix) * x(ix)

}

Notice tbaa/the module matmult does not explicitly erase its output before it begins,

! The programming language, Loptran, is based on a dialect of Fortran called Ratfor. For more details,
see Appendix A.

WW&—MG-“-‘#'W Stert
The module matrix multiplypand its adjoint exhibits the style t-ha??ve vl

W

S

4 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

does the pseudo code.!is because Loptran Vﬂ‘-l!?glvvays eras)a{for you the space required
for the operator’s output™Loptran also defines a logical variable adj for you to distinguish
your computation of the adjoint x = x + B*y from the forward operation y = y + Bx.
In computerese, tEe two lines beginning #% are macro expansions that take compact bits
of information ~g{pfmd into the verbose boilerplate Fortran requires. Loptran is
Fortran with these macro expansions. You can always see how they expand by looking at

http://sep.stanford. edu/sep/prof/.. <
]
W&Wha’c is new in Fortran 90, and will-be a big help to us, is that instead of a subro eine/

S
with a single entry, we now have a module with two entrie ‘nelil med _ini
physical scientist who defines the physical problem by definifig the matri
named _lop for the least-squares problems solver, the computer scientist who
interested in how we specify B, but whoy i iteratively computing Bx and B*y to
optimize the model fitting. The lines beginning with #% are expanded by Loptran into more
verbose and distracting Fortran 90 code. The second line in the module matmult, however,

is pure Fortran syntax saying that bb is a pointer to a real-valued matrix.

To use matmult, two calls must be made, the first one

call matmult_init(bb)
Jhave
is done by the physical scientist after haseprepared the matrix. Herefmemory
is allocated, often later released by call matmult_close(). Most later calls are done by
numerical analysts in solving code like in Chapter 2. These calls look like

stat = matmult_lop(adj, add, x, y)

where adj is the logical variable saying whether we desire the adjoint or the operator itself,
and where add is a logical variable saying whether we want to accumulate like y «— y + Bx
or whether we want to erase first and thus do y «— Bx. The return value stat is an integer
parameter, mostly useless (unless you want to use it for error codes).

We split operators into two independent process@he first is used for geophysical set up Ax

while the second is invoked by mathematical library code (introduced in the next chapter)
to find the model that best fits the data. Here is why we do so._It is important that the
math code contain nothing about the geophysical particulars. enables us to use the
same math code on many different geophysical applications. This concept of “information
hiding” arrived late in human understanding of what is desirable in a computer language.
This feature alone is valuable enough to warrant upgrading from Fortran 77 to Fortran 90,
and likewise from C to C++. Subroutines and functions are the way thet new programs
use old ones. Object modules are the way old programs (math solvers) are able to use
new ones (geophysical operators).

1.1 FAMILIAR OPERATORS

The simplest and most fundamental linear operators arise when a matrix operator reduces
to a simple row or a column.

ilb,not ﬁ ¢
S

1.1. FAMILIAR OPERATORS 5

Vel

A row is a summation operation.

A column is an impulse response.

If the inner loop of a matrix multiply ranges within a
-~

row, uthe operator is called sum or pull.

column, the operator is called spray or push.

AN
Generally, inputs and outputs wil-be high dimensionalfsuch as signals or images. Push
gives ugly outputs. Some output locations wi empty, each having an erratic number of
contributions #e-it. Consequently, most data processing (adjoint) is done by pull.

A basic aspect of adjointness is that the adjoint of a row matrix operator is a column
matrix operator. For example, the row operator [a,)]

T [ab]{i;} = ax +bzs (1.1)

has an adjoint that is two assignments:
531 . a

The adjoint of a sum of N terms is a collection of N assignments.

1.1.1 Adjoint derivative

In numerical analysisswe represent the derivative of a time function by a finite difference.
We do by subtrac%ing each two neighboring time points and then dividing by the sample

interval At. amounts to convolution with the filter (1, —1)/At¢. Omitting the At):ve
express this concept as:)
i v 1 [—1 1 . . . 10T I1 1
Y2 .o —-1 1 . . T2
Y3 _ . . -1 1 . . 3
o m - e, . Z4 (1.3)
Ys -1
L Y6 L

say that the adjoint of the time derivative operation is the negative time derivative.
corresponds also to the fact that the complex conjugate of —iw is iw. We can also spea
of the adjoint of the boundary conditions: we might say that the adjoint of “no boundary
condition” is a “specified value” boundary condition. The last row in equation (1.3) is

® cap gtz o,

6 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

optional. It may seem unnatural to append a null row, but it can be a small convenience
(when plotting) to have the input and output be the same size.
tA ot

Equation (1.3) is implemented by the code in module igradi shieh does the operator
itself (the forward operator) and its adjoint.

first difference.lop

module igradl { # gradient in one dimension
lop(xx, vyy)
integer i
do i= 1, size(xx)—-1 {
if(adj) {
xx(i+1) = xx(i+1) + yy (i) # resembles equation (1.2)
xx(i) =xx(i) — yy(i)
}
else
yy(i) = yy(i) + xx(i+1) — xx(1i) # resembles equation (1.1)
J

¥

The adjoint code may seem strange. It might seem more natural to code the adjoint to be
the negative of the operator itself:ynd thenjmake the special adjustments for the boundaries.
The code given, however, is correct and réquires no adjustments at the ends. To see why,
notice for each value of i, the operator itself handles one row of equation (1.3)pwhile for
each irthe adjoint handles one column. Why coding the aﬁjoint in this %vay does
not reqﬁire any special work on the ends. € present method of coding reminds us that
the adjoint of a sum of N terms is a collection of N assignments. Think of the meaning of
Yi = ¥i + a; j7; for any particular ¢ and j. The adjoint simply accumulates that same value
of a;j going the other direction x; = x; + a; ;¥;.

The Ratfor90 dialect of Fortran allows us to write the inner code of the igradl module
more simply and symmetrically using the syntax of modern la.nguagey‘ﬁuch as C, C++,
Jaya, Python, and Perl. Expressions like a=a+b can be written more tergely as a+=b. With

the heart of module igradl becomes

if(adj) { =xx@@+1) += yy (1)

xx(1) -= yy(@)
+
else { yy(i) += xx(i+1)
yy(i) -= xx(i)
}

where we see that each component of the matrix is handled both by the operator and the
adjoint. With the forward operatorpg single value yy (1) is “pulled” from all the values in
x()-space. With the adjoint operat&rléhe single value yy (i) is “pushed” to all the values
in x()-space.)

do iy=1,ny # north-south derivative on 1-axis
stat = igradl_lop(adj, add, map(:,iy), ruf(:,iy))
do ix=1,nx # east-west derivative on 2-axis

stat igradl_lop(adj, add, map(ix,:), ruf(ix,:))

Thet

L4

ay

-

1.1. FAMILIAR OPERATORS 7

Figure 1.1 illustrates the use of module igrad1 for each north-south line of a topographic
map. We observe that the gradient gives an impression of illumination from a low sun angle.

1.1.2 Transient convolution

The next operator we examine is convolution. It arises in many applications; and it could
be derived in many ways. A basic derivation is from the multiplication of two polynomials,
say X(Z) = x1+x2Z + 2322 4+ 247°% + 25 2% + 26 Z° times B(Z)=b1+bsZ + 22 4-b 75 2
Identifying the k-th power of Z in the product Y (Z) = B(Z)X(Z) gives the k-th row of
the convolution transformation (1.4).

Y1 b1 0 0 0 0 0
Yo bg bl 0 0 0 0 i X1 1
Y3 b3 bg b1 0 0 0)
Y4 0 b3 b2 b1 0 0 I3
A T 0 0 by by by O g | — X (g
Ye 0 0 0 b3 b2 b1 Is
Y7 0 0 0 0 b3 by | =6 |
00 0 0 0 bs|

L Y8 | L
Notice that columns of gquation (1.4) all contain the same signa]ﬂ’{; with different shifts.
This signal is called the filter’s impulse response.

Equation (1.4) could be rewritten as

U1 xr7 0 O
Y2 z2 71 O
Y3 xr3 T2 I by
y = || = | T2yl = Xb (1.5)
Ys Ts T4 I3 B
Y6 Te Tz T4 W
yr 0 T T

5
| Ys | | 0 0 z/
In applicationsfwe can choose between y = Xb an = Bx. In one cas‘e/g_he output y is

dual to the filtet 7 pnd in the other casepthe output y is dual to the input ¥, Sometimes,we

must solve for b and sometimes for x; metimes we use %_quation (1.5)’@nd sometithes
(1.4). Such solutions begin from the adjoints. The adjoint of (1.4) is)
]
[52‘1 1 i b1 bz bg 0 0 0 0 0 7 Y2
2 0 by b b3 0 0 0 O Y3
533 _ 0 0 bl b2 b3 0 0 0 Y4 (1 6)
:ZAZ4 0 0 0 b1 bz b3 0 0 Ys '
.’%5 0 0 0 0 b1 bg bg 0 Ye
L §76 i L 0 0 0 0 0 b1 b2 bg | yr
L Y8 |

2 This book is more involved with matrices than with Fourier analysis. If it were more Fourier analysis/\.
we would choose notation to begin subscripts from zero like this: B(Z) = bo + b1 Z + baZ% + b3 Z5.

8 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

600 800 1000 1200 1400 1600 1800 2000

O0O0T

(o) ok 4 009

[eXe)=

Topographic map, Stanford area
600 800 1000 1200 1400 1600 1800 2000

oo¥% 009 oos8 OO0O0T

[eJe)=+

Southward slope

Figure 1.1: Topography near Stanford (top) southward slope (bottom). |VIEW
‘ajt/.stangradQO

1.1. FAMILIAR OPERATORS 9

The adjoint crosscorrelates with the filter instead of convolving with it (because the filter
is backwardg). Notice that each row in equation (1.6) contains all the filter coefficientspand
there are no rows where the filter soniehow uses zero values off the ends of the dath as
we saw earlier. In some applications[tc is important not to assume zero values beyond the
interval where inputs :%Eg given.)

)

[L {8
The adjoint of A§5) crosscorrelates a fixed portion of filter input across a variable portion
of filter output.

Y1
Y2

81 T1 X9 x3 T4 x5 x¢ 0 O ys
b2 = 0 X1 T3 X3 T4 T Te 0 Y4 (17)

bs 0 0 21 29 T3 x4 X5 g 55
6

yr
Ys

Module tcail is used for y = Bx/@nd module tcafl is used for y = Xb.

transient convolution.lop

module tcail { # Transient Convolution Adjoint Input 1-D. yy(mltnl)
real, dimension (:), pointer :: bb

#% _init(bb)

_lop (xx, yy)

integer b, x, y

if(size(yy) < size (xx) + size(bb) — 1) call erexit(’tcai’)

do b= 1, size(bb) {

do x= 1, size(xx) { y=x+b -1

if(adj) xx(x) += yy(y) * bb(b)

else yy(y) += =xx(x) * bb(b)

b
}

transient convolution.lop

module tcafl { # Transient Convolution, Adjoint is the Filter, 1-D
real , dimension (:), pointer :: xx

_init(xx)

#% _lop (bb, yy)

integer x5 b, y

if(size(yy) < size(xx) + size(bb) — 1) call erexit(’tcaf’)
do b= 1, size(bb) {

do x= 1, size(xx) { y=x+b -1
if(adj) bb(b) += yy(y) * xx(x)
else yy(y) += bb(b) * xx(x)

, b}

The polynomials X(Z), B(Z), and Y (Z) are called Z transforms. An important fact
in real life (but not important here) is that the Z transforms are Fourier transforms in
disguise. Each polynomial is a sum of termsfand the sum amounts to a Fourier sum when
we take Z = ¢S, The very expression Y(Z) = B(Z)X(Z) says that a product in the .
frequency domain (Z has a numerical value) is a convolution in the time domain (that’s® W 5
how we multipy polynomials, convolve their coefficients).

10 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

1.1.3 Internal convolution

Convolution is the computational equivalent of ordinary linear differential operators (with
constant coefficients). Applications are vast, and end effects are important. Another choice

of data handling_at ends is that zero data.not be assymed beyond the interval where the
data is given.,s important in data & ' the cro scorrelation changes with time. Then A_
it is sometimes handled as constant in short»ﬁme windows. Care must be taken that zero”
signal values not be presumed off the ends of those short,time windows; otherwise, the many
ends of the many short segments can overwhelm the results.

In the gets (1.4) and (1.5), the top two equations explicitly assume t-ha'?ale input data
vanishes béfore the interval on which it is given, and likewise at the bottom. Abandoning
the top two and bottom two equations in (1 5) we get:

W‘how

Y3 T3 T2 X1 by
Y4 _ T4 T3 T2 b (1_ 8)
Ys Ts T4 I3 by
Ys T Ts5 T4
The adjoint is
él T3 T4 T5 T zi
132 — Ty T3 Ta T e (1.9)
bs 1 X2 T3 T4 Yo

The difference betweerx(l 9) ang\(1.7) is that hergithe adjoint crosscorrelates a fixed portion
of output across a variable portion of mpu@;vhe eashwith (1.7) the adjoint crosscorrelates
a fixed portion of input across a variable portion of ocutput.

In practche typically allocate equal space for input and output. Because the output is \
shorter than the input, it could slide around in its allocated spa‘ its location is specified @
by an additional parameter called its lag. QZ

convolve internal.lop

module icafl { # Internal Convolution, Adjoint is Filter. 1-D
integer :: lag
real , dimension (:), pointer :: xx

#%6 _init (xx, lag)
#% lop (bb, yy)
integer X; Bs y
do b= 1, size(bb) {
do y= 1+size (bb)—lag, size(yy)—lag+l { x=y — b + lag

i£(adj) bb(b) 4= yy(y) * xx(x)
flse yy(y) += bb(b) * xx(x)

The value of 1lag always used in this book is lag=1. For lag=1 the module icafl implements

1.1. FAMILIAR OPERATORS 11

m—
igw“'b
not %quatlon (1.8) bu}\(l.m).

[y1] 0 0 07

Yo 0 0 0
b

ol T I I I (1.10)

Y4 T4 T3 T2 b3

Ys T5 T4 T3

L Y6 | L L6 T5 T4 |

It may seem a little odd to puf the required zeros at the beginning of the output, but filters
are generally designed so thei 5 strongest coefficient is the first, namely bb(1) /Qo the
alignment of input and output in equatlon (1.10) is the most common one.

The end effects of the convolutlon modules are summarized in Figure 1.2.

s [TTTTITTITTIT

Figure 1.2: Example of convolution °

end-effects. From top to bottom: in- filter

put; filter; output of tcail(); out- l

ut of icaf1() also with (lag=1). - T

P — teail | TPTTITTTLITINE

VIEW| |ajt/. conv90 l l
leall_ PTTTTITITITITTINY

1.1.4 Zero padding is the transpose of truncation

Surrounding a dataset by zeros (zero padding) is adjoint to throwing away the extended
data (truncation). Let us see why thiss-s8. Set a signal in a vector @nd then to make
a longer vector y, add some zeros at the end of x. This zero padding can be regarded as
the matrix multiplication

y = [(I)w X (Ls11)

The matrix is simply an identity matrix I above a zero matrix 0. To find the transpose to
zero-padding, we now transpose the matrix and do another matrix multiply:

% = [I o}y (1.12)

So the transpose operation to zero padding data is simply truncating the data back to its
original length. Module zpadi pads zeros on both ends of its input. Modules for two-
and three-dimensional padding are in the library named zpad2() and zpad3().

zero pad 1-D.lop

module zpadl { # Zero pad. Surround data by zeros. 1-D
_lop(data, padd)
integer p, d
do d= 1, size(data) { p =d + (size(padd)—size(data))/2
if(adj)

data(d) = data(d) + padd(p)

12 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

else
padd(p) = padd(p) + data(d)

1.1.5 Adjoints of products are reverse-ordered products of adjoints@
Helgé:xamine an example of the general idea that adjoints of products are reverse-
ordered products of adjoints. For this examplefwe use the Fourier transformation. No
details of Fourier transformation are given her?‘and we merely use it as an example of
a square matrix F. We denote the complex-conjugate transpose (or adjoint) matrix with
a prime, i.e., F*. The adjoint arises naturally whenever we consider energy. The statement
that Fourier transforms conserve energy is y*y = x*x where y = Fx. Substituting gives
F*F = I, which shows that the inverse matrix to Fourier transform happens to be the
complex conjugate of the transpose of F.

modules transform a dataset of length of 27 whereashdataset lengths are often of length
m x 100. The practical approach is thereforeto pad givgn data with zeros. Padding followed
by Fourier transformation F' can be expressed in matrix algebra as

With Fourier transforms, zero padding ai"truncation are especially prevalent. Most

Program = F [(I)] (1.13)
W /5
According to matrix algebragé transpose of a product, say AB = C, is the product
C* = B*A* in reverse order. the adjoint routine is given by

Program® = [I 0} F* (1.14)

Thughthe adjoint routine truncates the data after the inverse Fourier transform. This con-
crete example illustrates that common sense often represents the mathematical abstraction
that adjoints of products are reverse-ordered products of adjoints. It is also nice to see a
formal mathematical notation for a practical necessity. Making an approximation need not
lead to_collapse of all precise analysis.

1.1.6 Nearest-neighbor coordinates

In describing physical processes, we often either specify models as values given on a uniform
mesh or we record data on a uniform mesh. Typicallydwe have a function f of time ¢ or
depth zlsand we represent it by f(iz) corresponding t0 f(z;) for ¢ = 1,2,3,...,n, where
Z; = 2o 8] (i — 1)Az. We sometimes need to handle depth as an integer counting variable
ipand we sometimes need to handle it as a floating-point variable z. Conversion from the
Caunting variable to the floating-point variable is exact and is often seen in a computer
idion}@uch as either of

)

z0 + (iz-1) * dz
03 + (i3-1) * d3

do iz= 1, nz { =z
do i3= 1, n3 {

»
w
1]

1.1. FAMILIAR OPERATORS 13

The easiest thing is to place it at the nearest neighbor. (I'his’is done by solving for iz, then—"—
adding one half, and then rounding down to the nearest”integer. The familiar computer
idioms are:

The reverse conversion from the floating-point variable @e counting variable is inexact.

1+ (z-2z0) / dz

iz = .5 +
iz = 1.5 + (z-20) / dz
i3 = 1.5 + (x3 - 03) / d3

A small warning is in order: People generally use positive counting variables. If you also
include negative ones, then to get the nearest integer, you should do your rounding with
the Fortran function NINT ().

1.1.7 Data-push binning

A most basic data modeling operation is to copy a nu r/from an (z,y)-location on a
map to a 1-D survey data track d(s), where s is a coordinatg¢ running along a survey track.
This copying proceeds for all s. The track could befalongfé straight, curved, or arbitrary
line. Let the coordinate s take on integral values. Thengalong with the elements d(s) are
the coordinates (z(s),y(s)) where on the map the data Value d(s) would be recorded.

Code for the operator is shown in module bin2.

push data into bin.lop

module bin2 {
Data—push binning in 2-D.

integer :: ml, m2

real it ol,d1,02,d2

real , dimension (:,:), pointer :: xy
#% _init(ml,m2, ol,dl,o02,d2,xy)
#% _lop (mm (ml,m2), dd (:))
integer il,i2, id

do id=1 size(dd) {
il = 1.5 + (xy(id,1)—o0l)/d1
i2 = 1.5 + (xy(id,2)—o02)/d2
if(1<=il && il<=ml &&
I<=i2 && i2<=m2)
if(adj)
mm(il,i2) =mm(il,i2) + dd(id)
else
dd(id) =dd(id) + mm(il,i2)

} : ngw‘/.

To invert this data modeling operation, ag()\from d(s) to (z(s),y(s)) requires more than
the adjoint operator. Si each bin contains a different number of data values. After the
adjoint operation is performed, the inverse operator needs to divide the bin sum by the
number of data values that }j:ée}i in the bin. It is this inversion operator that is generally
calle binning’falthough we use that name here for the modeling operator). To find the
number of data points in a bin, we can simply apply the adjoint of bin2 to pseudo data of
all ones. To capture this idea in an equation, let B denote the linear operator in which the

3 *Wapet Tt

14 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

bin value is sprayed to the data values. The inverse operation, in which the data values in
the bin are summed and divided by the number in the bin, is represented b &

m = diag(B*1)"!B*d (1.15)

LR Lot~
Empty bins, of course, leave us a problenysiiﬂnee we dare not divide by the zero sum they
contain. That-weHl address in anpter 3. Id Figure 1.3, the empty bins contain zero values.

W ootk B N, st

west—east,km west—east, km
198 200 202 204 206 208 210 212 198 200 202 204 206 208 210 212
0 1 1 1 1 1 | 1 I 1 L 1 1 1 1 1
[[

2¢e
WY Y}Nos—Y}Iou
872 262

WY‘Y}nos—Y}I0u
e

0ve

962
elot4

Coarse Binning Iine Binning

Figure 1.3: Binned depths of the Sea of Galilee. |[VIEW]| |ajt/. galbin90

1.1.8 Linear interpolation

The linear interpolation operator is much like the binning operator but a little fancier.
When we perform the forward operation, we take each data coordinate and see which two
model bin centers bracket it. Thel}&ye pick up the two bracketing model values and weight
each in proportion to their’ nearness to the data coordinate, and add them to get
the data value (ordinate). The adjoint operation is adding a data value back into the model
vector; using the same two weights, the adjoint distributes the data ordinate value between
the two nearest bins in the model vector. For example, suppose we have a data point near
each end of the model and a third data point exactly in the middle. Then, for a model space

/=

6 points long, as shown in Figure 1.4, we have the operator in (1.16). *)

Zcﬁud‘icw

1.1. FAMILIAR OPERATORS 15

Figure 1.4: Uniformly sampled
model space and irregularly sampled
data space corresponding toy(1.16).

VIEW| |ajt/. helgerud @

_—
do T B -
d | =~ R R I I (1.16)
ds Y S 4 I I

mq

L ™5

TWwWed

The two weights in each row sum to unity. If a binning operator w; used for the same
data and model, the binning operator would contain a “1.” in each row. In one dimension
(as here), data coordinates are often sorted into sequence, so the? the matrix is crudely
a diagonal matrix like equation (1.16). If the data coordinates covered the model space
uniformly, the adjoint would roughly be the inverse. Otherwise, when data values pile up
in some places and gaps remain elsewhere, the adjoint would be far from the inverse.

Module lint1 does linear interpolation and its adjoint. In chapters 3 and 7/sze build
Y
inverse operators. e

/

linear interp.lop
Nearest—neighbor interpolation would do this: data = model(1.5 + (t—t0)/dt)

This is likewise but with _linear_ interpolation.
module lintl {

real :: ol,dl

real , dimension (:), pointer :: coordinate

#% _init (ol,dl, coordinate)
#% _lop (mm, dd)

integer i, im, id
real £ fx 8%
do id= 1, size(dd) {
f = (coordinate(id)—ol)/d1; i=f im= 1+i
if(1<=im && im< size (mm)) { fx=f—1i; gx= 1.—fx
if(adj) {
mm(im) += gx * dd(id)
mm(im+1) += fx * dd(id)
}
else
dd(id) 4= gx * mm(im) + fx * mm(im+1)
}
}
b

1.1.9 Spray and sum : scatter and gather

Perhaps the most common operation is the summing of many values to get one value. Its
adjoint operation takes a single input value and throws it out to a space of many values.
The summation operator is a row vector of ones. Its adjoint is a column vector of

16 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

w~

W

ones. In one dimensionathis operator is almost too easy for us to bother showing a routine.
Butpit is more interesting in three dimensions, we could be summing or spraying
on a’ny of three subscripts, or even summing on some and spraying on others. In module
spraysum, both input and output are taken to be three-dimensional arrays. Externally,
however, either could be a scalar, vector, plane, or cube. For example, the internal array
xx(n1,1,n3) could be externally the matrix map(n1 ,iii . When module spraysum is given

the input dimensions and output dimensions stated
are implied.

the operations stated alongside

me

(n1,n2,n3) (1,1,1) Sum a cube into a value.

(1,1,1) (n1,n2,n3) Spray a value into a cube.

(n1,1,1) (n1,n2,1) Spray a column into a matrix.
(1,n2,1) (n1,n2,1) Spray a row into a matrix.
(n1,n2,1) (n1,n2,n3) Spray a plane into a cube.
(n1,n2,1) (n1,1,1) Sum rows of a matrix into a column.
(n1,n2,1) (1,n2,1) Sum columns of a matrix into a row.
(n1,n2,n3) (n1,n2,n3) Copy and add the whole cube.

If an axis is not of unit length on either input or output, then both lengths must be the
same; otherwise, there is an error. Normally, after (possibly) erasing the output, we simply
loop over all points on each axis, adding the input to the output. This/implements either
a copy or an add, depending on the add parameter. It is either a spray, a sum, or a copy,

according to the specified axis lengths.

sum and spray.lop

module spraysum { # Spray or sum over 1, 2, and/or 3—axis.
integer :: nl,n2,n3, ml,m2,m3
#% _init(nl,n2,n3, ml,m2,m3)

#% _lop(xx(nl,n2,n3), yy(ml,m2,m3))
integer il,i2,i3, x1,x2,x3, yl,y2,y3

if(nl !I=1 && ml !=1 && nl != ml) call
if(n2!1=1 & m2!=1 && n2 != m2) call

erexit (’spraysum: nl,ml’)
erexit (’spraysum: n2,m2’)

if(n3!l=1 & m3!=1 && n3 != m3) call erexit(’spraysum: n3,m3’)
do i3= 1, max0(n3,m3) { x3= min0(i3 ,n3); y3= min0(i3 ,m3)
do i2= 1, max0(n2,m2) { x2= min0(i2 ,n2); y2= min0(i2 ,m2)
do il= 1, maxO(nl,ml) { x1= min0(il,nl); yl= min0(il ,ml)

if(adj) =xx(x1,x2,x3) += yy(yl,y2,y3)

else yy(yl,y2,y3) 4= xx(x1,x2,x3)

133,

1.1.10 Causal and leaky integration
Causal integration is defined as@

L) = /t #(1) dr
Leaky integration is defined a@

yt) = /Ooo x(t—71)e % dr

(1.17)

(1.18)

1.1. FAMILIAR OPERATORS 17

[

o

Vv
As a — 0, leaky integration Becomes causal integration. The word “leaky” comes from
electrical circuit theory the voltage on a capacitor would be the integral of the current

if the capacitor did not leak electrons.

“
Sampling the tlme axis gives a matrix equation that we should callAcausal summation,
but we often call it I@ausal integration A‘Equatlon (1.19) represents causal integration for
p =1 and leaky integration for 0 < p < 1.

[o | (1 0 0 0 0 0 0] [a0 |
Y1 p 1 0 0 0 0O 1
Yo P p 1 0 0 00 T
y = Y3 = > p2 p 1 0 00 x3 = Cx (1.19)
Y4 Pt p 100 4
Ys P> opt ot p 10 s
| Y6 | A S O B
—aAT

(The discrete world is related to the continuous by p = e and in some applications,
the diagonal is 1/2 instead of 1.) Causal integration is the simplest prototype of a recursive
operator. The coding is trickier than that for the operators we considered earlier. Notice
when you compute ys that it is the sum of 6 terms, but that this sum is more quickly
computed.as ys = pys + 5. Thus l}eguation (1.19) is more efficiently thought of as the

recursion@

(which may also be regarded as a numerical representation of the differential equation
dy/dt +y(1 — p)/ At = w(t)-é atie~

When it comes tim€ to think about the adjoint, however, it is easier to think of 5qua—
tion (1.19) than of(1.20). Let the matrix of gquation (1.19) be called C. Transposing to

get C* and applying it to y gives us something back in the space of x, namely X = C*y
From it e see that the adjoint calculation, if done recursively, needs to be done backward/g,/
as i)

Y = PY-1 T Ty t increasing (1.20)

Ti_1 = pIr+ 1y t decreasing (1.21)
Thuyktihe adjoint of causal integration is anticausal integration.

A module to do these jobs is leakint. The code for anticausal integration is not obvious
from the code for integration and the adjoint coding tricks we learned earlier. To understand
the adjoint, you need to inspect the detailed form of the expression X = C*y and take care
to get the ends correct. Figure 1.5 illustrates the program for p = 1.

leaky integral.lop

module leakint { # leaky integration
real :: rho
#% _init (rho)
lop (xx, yy)
integer i, n
real tt
n = size (xx); tt = 0.
if(adj)
do i=n, 1, -1 { tt = rhoxtt + yy(i)

18
xx (1)
else
do i= 1, n {
iy(i)
AN v

CHAPTER 1. BASIC OPERATORS AND ADJOINTS

= tt

tt =

Figure 1.5: inl is an input pulse. C
in1 is its causal integral. C’> inl is
the anticausal integral of the pulse.

N

s a separated doublet. Its causal

integration is a boxAand its anti-
“causal integration is a'negative box.
CC in2 is the double causal inte-

gral of in2.
eral triangle be built?
‘ajt - causint90|

How can an equilat-

MhF

rhoxtt + xx(1i)

inl °
C inl [°

€ inl TTTTTTTTTTTTTTT—»;.&&.*—O—O—H—O—O—O

in2
0000000 0000000

C in2
R S S S S S R 'MEO—O—Q—O—‘—O*Q—O~01-.~.'.—‘>O'

C* in2

il
CC in2 EIIIIIIII?III.IIIII

The adjoint has a meaning whiclr is nonphysical. The leaky integration damps both

going forward in timepand it damps going backward in ti
integration would grov& going backward in time.

. hereas/}‘g_he inverse of leaky

Laterawe wﬂ?gonsider equations to march wavefields up toward%h

TAYY S @ urface, a
layer at a)time, an operator for each layer. Thelyst,he adjoint wi-]}'star from t e urface
S

and marcly\down, a layer at a time, into the 9ar%h.

S

-

1.1.11 Backsolving, polynomial division and deconvolution

Ordinary differential equations often lead us to the backsolving operator. For example, the
damped harmonic oscillator leads to a special case of gquation (1.22)where (a3, a4, - -)
There is a huge literature on finite-difference solutions of ordinary diﬁemial equatio

lead to equations of this type. Rather than derive such an equation on the basi
possible physical arrangements, we can begin from the filter transformation in
the top square of the matrix on the other side of the equatio%o our transformatioh can be W Of

that
of many

.4)Lbut put

called one of inyersion or backsubstitution. To link up with dpplications in later chapters,
I specialize t@n the main diagonall\and insert some bands of zeros.

)
1 0 0 0 0 0 O [wo| [2o |
az 1 0O O O O O Y1 T
ag agz 1 0 0 O O Yo To
Ay = 0 az agz 1 0 0 O Y3 = T3 = x (1.22)
0 0 a3 a9 1 0 O Y4 T4
as 0 O ag a1 1 O Us s
0 as 0 0 as aj 1 1L Ye L i i
Algebraically, this operator goes under the various names, “backsolving/’/ |“polynomial
division”} and “deconvolutiorly)The leaky integration transformation (1.19) is a sim-

A

2

o

oSThophs

1.1. FAMILIAR OPERATORS Z M &~ 19

p and a2 = a5 = 0. To conﬁrmyou need to

ple example of backsolving svhen a; =
verify that the matrices in}(1.22) and|{1.19) are mutually inverse.

A typical row in equation (1.22) say@

r = Yy + Z Qr Yt (1.23)
>0

Change the signs of all terms in ﬁquation (1.23)/@11d move some terms to the opposite sid@
”~

)
Y= T — Y, GrYir (1.24)
>0

Equation (1.24) is a recursion to find y; from the values of y at earlier times.

In the same way that equation (1.4) can be interpreted as Y (Z) = B(Z)X(Z), gquation
(1.22) can be interpreted as A(Z)Y(Z) = X(Z)awhich amounts to Y (Z) = X(Z2)/A(Z).
Thus, convolution is amounts to polynomial muﬁ)lication/while the backsubstitution we
are doing here is called ‘aeconvolution, and it amounts to polynomial division.

A

A causal operator is one that uses its present and past inputs to make its current
output. Anticausal operators use the future but not the past. Causal operators are generally
associated with lower triangular matrices and positive powers of @Wherea;@nticausal
operators are associated with upper triangular matrices and negative powérs of Z. A
transformation like equation (1.22) but with the transposed matrix would require us to run
the recursive solutioh the opposite direction in time, as we did with leaky integration.

A module to backsolve equation 1.22 is polydivi.

deconvolve.lop

module polydivl { # Polynomial division (recursive filtering)
real , dimension (:), pointer :: aa
#% _init (aa)
#6 -lop (xx, yy)
integer ia, ix, iy
real tt
if(adj)

do ix= size(xx), 1, -1 {

tt = yy(ix)

do ia = 1, min(size(aa), size (xx) — ix) {
iy = ix + ia
tt —= aa(ia) * xx(iy)

xx(ix) = xx(ix) + tt

else
do iy= 1, size(xx) {
tt = xx(iy)
do ia = 1, min(size(aa), iy—-1) {

ix = iy — ia
tt —= aa(ia) * yy(ix)
}

yy(iy) = yy(iy) + tt

K

()

20 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

’
We may wonder why the adjoint of Ay = x actually is A*%x = y. With the well known
fact that the inverse of a transpose is the transpose of the inverse we hav, A

y = A7x (1.25)
x = (A YH*y (1.26)
x = (A" ly (1.27)
A*% y (1.28)

1.1.12 The basic low-cut filter

Many geophysical measurements contain very low-frequency noise called “drift.” For ex-
ample, it might take some months to survey the depth of a lake. Meanwhile, rainfall or
evaporation could change the lake level so that new survey lines become inconsistent with
old ones. Likewise, gravimeters are sensitive to atmospheric pressure, which changes with
the weather..A magnetic survey of an archeological site would need to contend with the fact
that the‘nain magnetic field is changing randomly through time while the survey is
being doné™=Shch nois@wetimes called “secular noisﬁ’

The simplest way to eliminate lowj"frequency noise is to take a time derivative. A
disadvantage is that the derivative changes the waveform from a pulse to a doublet (finite
difference). Herepwe examine the most basic low-cut filter. It preserves the waveform at
high frequencies & has an adjustable parameter for choosing the bandwidth of the low cu@/%‘ oz

and it is causal (uses the past but not the future). ‘ ot P WU mgs

P
We make a causal low;iut filter (highpass filter) by two stages whielt can be done in
either order.

1. Apply a time derivative, actually a finite difference, convolving the data with (1, —1).

2. Integratefjctually to do a leaky integration#fto deconvolve with (1, —p) where numer-
ically, p is glightly less than unity. A

The convolution with (1, —1) ensures Ghe?ﬁle zero frequency is removed. The leaky integra-
tion almost undoes the differentiation but cannot restore the zero frequency. Adjusting the
numerical value of p has interesting effects in the time domain and in the frequency domain.
Convolviéthe finite difference (1, —1) with the leaky integration (1, p, p?, p2, p*, - - -) gives
the resul

(17 p,pZ,p3,,04, s)
- (O> 1apa:027p35"’)'

Rearranging, it become@

(17 0507070;"') +
(p'—l) (07 1>,0:P27P3a"‘)-

p is a tiny bit less than one, (1 — p) is a small number. Thu§hur filter is an impulse

followed by the negative of a weak decaying exponential pt. If you prefer a time-symmetric
(phaseless) filter, you could follow this one by its time reverse.

1.1. FAMILIAR OPERATORS

this filter is H(Z) = (1 - Z)/(1 — pZ) here Z /s the unit-delay operator is Z = ¢“%and
where w is the frequency. The spectraﬁespo Se of the filter is |H (w)|. Were we to plot this
functionfwe would see it is ne ére except in a small region near w = Qgwhere it
becomes’tmy. It is called a Figure 1.6 compares a low-cut filter té a finite
difference.

west—east,km west—east, km

198 200 202 204 206 208 210 212 198 200 202 204 206 208 210 212

9¢2
9¢e

2¢e
2¢e

872
872

W YINos—yjIou
e

w‘gjnos—yjiou
ve

0¥2

0ve

982
962

Ruffened: T.oweut

Figure 1.6: The depth of the Sea of Galilee after roughening. On the left, the smoothing
is done by low-cut filtering on the horizontal axis. On the rightait is a finite difference.
We know because of a few scattered impulses (navigation i’aﬂure) outside the lake.
Both results solve the problem of Figure 1. ﬂVthh is too smooth to see interesting features.
‘ajt/. galocutg()’)

1.1.13 Smoothing with box and triangle

Simple “smoothing” is a common application of filtering. A smoothing filter is one with all
positive coefficients. On the time axis, smoothing is often done with a single-pole damped
exponential function. On space axes, however, people generally prefer a symmetrical func-
tion. We Vn@gegin with rectangle and triangle functions. When the function width is
chosen to be long, then the computation time can be large, but recursion can shorten it
immensely.

The inverse of any polynomial reverberates forever, although it might drop off fast
enough for any practical need. On the other hand, a rational filter can suddenly drop to

22 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

zero and stay there. Let us look at a popular rational filter, the rectangle or “box car”:

5

wﬁﬁwﬁ‘—"“w 11_ZZ = 1+Z2+ 2%+ 2%+ 2* (1.29)
The filterf1.29) gives a moving average under a rectangular window. s a basic smooth-
ing filter. A clever way to apply it is to move the rectangle by adding a new value at one
end while dropping an old value from the other end. This approach is formalized by the
polynomial division algorithm, which can be simplifieddbecause so many coefficients are
either one or zero. To find the recursion associated with Y (Z) = X(2)(1 — Z°)/(1 — 2),
we identify the coefficient of Z! in (1 — Z)Y(Z) = X(Z)(1 — Z5). The result id

Yo = Y1 T Ty — Ty5. (1.30)
This approach boils down to the program boxconv (I)/thich is so fast it is almost free!

box like smoothing.r90

module boxsmooth {

contains
subroutine boxconv(nbox, nx, xx, yy) {
integer , intent (in) ::nx,nbox
integer ::i,ny
real , dimension (:), intent (in) ::xx
real , dimension (:), intent (out)::yy
real , dimension (:), allocatable ::bb
allocate (bb(nx+nbox))
if(nbox < 1 || nbox > nx) call erexit(’boxconv’) # ”7||” means .OR.

ny = nx+nbox—1
bb(1) = xx(1)
do i= 2, nx {Db
do i= nx+1, ny { b
do i= 1, nbox {
do i= nbox+1, ny {
do i= 1, ny { vy
deallocate (bb)
}

}

bb(i—-1) + xx(i) } # B(Z) =X(Z)/(1-Z)
bb(i-1) }
= bb(i})
= bb(i) — bb(i—nbox)} # Y(Z) = B(Z)*(1—Z%=*nbox)
yy(i) / mbox }

=11

Its last line scales the output by dividing by the rectangle length. With this scaling, the
zero-frequency component of the input is unchanged, while other frequencies are suppressed.

Triangle smoothing is rectangle smoothing done twice. For a mathematical descrip-
tion of.the triangle filter, we simply square equation (1.29). Convolving a.rectangle function
witany times yields a result that ﬁathematically tends towardg’a Gaussian func-
tion. Despite the sharp corner on the top of the triangle function, it has a shape that-is-@—
remarkably similar to a Gaussian. Convolve a triangle with @: nd youswillrsee a very
nice approximation to a Gaussian (the central limit theorem). 2}

With filtering, end effects can be a nuisance. Filtering increases the length of the
data, but people generally want to keep input and output the same length (for various
practical reasons). qis particularly true when filtering a space axis. Suppose the five-
point signal (1,1,1,T;1) is smoothed using the boxconv() program with the three-point
smoothing filter (1,1,1)/3. The output is 5+ 3 — 1 points long, namely, (1,2,3,3,3,2,1)/3.
We could simply abandon the points off the ends, but I like to fold them back in, getting

1.1. FAMILIAR OPERATORS 23

instead (1+2,3,3,3,1+2). An advantage of the folding’is that a constant-valued signal is
a; unchanged by the smoothing. is desirable § a smoothing filter is a low-pass filter

{’)\» /.’—whmh naturally should pass the lowest frequency @ = 0 without distortion. The result is
like a wave reflected by a zero-slope end condition. Impulses are smoothed into triangles
except near the boundaries. What happens near the boundaries is shown in Figure 1.7.
Note that at the boundary, there is necessarily only half a triangle, but it is twice as tall.

wrotdong] Tmttes.

” T

I
Figure 1.7: Edge effects when ﬁm‘mﬂ | UTTTTT*«
smoothing an impulse with a tri-

angle function. Inputs are spikes WTUHNUUTTT&

at various distances from the edge.

VIEW| |ajt/. triend
[Mtre..
| TTTT\

Why might @be useful? Consider a survey of water depth in an area of the deep
ocean. All the depths are strongly positive with interesting but small variations on them.
Ordinarilyfswe ci I enhance higfﬁrequency fluctuations by one minus a lowj)ass filter, say

H=1-L"1If is to work, however, it is important that the L truly cancel the 1 near

zero frequency.
Figure 1.7 was derived from the routine triangle().

1D triangle smoothing.r90

module trianglesmooth { # Convolve with triangle
use boxsmooth

contains

subroutine triangle(nbox, nd, xx, yy) {
integer , intent (in) ::nbox ,nd
integer ::i,np,nq
real , dimension (:), intent (in) ::xx

real , dimension (:), intent (out)::yy
real , dimension (:), allocatable ::pp,qq
allocate (pp(nd+nbox—1), qq(nd+nbox+nbox—2))

call boxconv(nbox, nd, xx, pp); np = nbox+nd—1

call boxconv(nbox, np, pp, qq); nq = nbox+np—1

do i=1,nd { yy(1) = qq(i+nbox—1) }

do i=1,nbox—1 { yy(i) =yy (i) + qq(nbox—i) } # fold back
do i=1,nbox—1 { yy(nd—i+1)=yy(nd—i+1) + qq(nd+(nbox—1)+i)} # fold back

deallocate (pp,qq)

b

1.1.14 Nearest-neighbor normal moveout (NMO)

Normal-moveout|correction\(NMO)|is a geometrical correction of reflection seismic data
that stretches the time axis so t ata recorded at nonzero separation xy of shot and

Xy O,U\W“"ﬁ(}\w&:\ M@\Qﬁ \fg\w

o MO

ot

24 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

receiver, after stretching, appears to be at x9p = 0. NMO correction is roughly like time-
to-depth conversion with the equation v?t? = 22 + x%. After the data at xg is stretched
from ¢ to z, it should look like stretched data from any other x (assuming these are plane
horizontal reflectors, etc.). In practice, z is not used; rather, traveltime depth 7 is used,
where 7 = z/v; so t? = 72 + x3/v2. (Because of the limited alphabet of programming
languages, I often use the keystroke z to denote 7.)

Typically, many receivers record each shot. Each seismogram can be transformed by
NMO and the results all added. @15 called “s or “NMO stacking.” The
adjoint to this operation is to begin from a model wl*ép ? ally is the zero-offset tracesand
spray this model to all offsets. From a matrix viewpoint, stacking is like a row vector of
HOrmMal-mevesut operatorskand modeling is like a column. An example is shown in Figure

M 18)
Model [(TN
[T T
[R
im S
m [
. . m [T
Figure 1.8: Hypothetical model, Synthe— i i
synthetic data, and model image. e et A 5 ’_‘ﬁ

.] m
VIEW]| |ajt/. cunha —

Ldaar
il

Image Ao

[T T T T T I I
0 05 1 L5 2 25 3 35 4
time,sec

wa W\aﬂ.— M&m
b&z m&ﬂh’%ﬁppera‘cors from other operatyc% Given operators A and B, another

operator is the product AB. Still anotherfis the row matrix [A B]J. We%nmder
soon. Even more tricky than a matrix containing operators is an operator containing
operators. This situation gave me a programming bug that took me quite,while to digest,
and even longer to explain to others. The essential feature to keep in mind is that the
external world wild pass*your operator module an adj,add pair. Likewise, internal to your
module}#ill-be your own adj,add pair that you are feeding to the operator you are calling.

on’tyconfuse the different pairs! Our habit that physical modeling is done without adjoint
likely means both pairs have the same adj, but there is no reason to predict the two pairs

/?'K have the same add.

A module that does reverse moveout is hypotenusei. Given a zero-offset trace, it makes
another at non\/zero offset. The adjoint does the usual normal moveout correction.

inverse moveout.lop

module hypotenusei {

integer :: nt

integer , dimension (nt), allocatable

_init(nt, t0, dt, xs)

integer it

real t0, dt, xs, t, zsquared

do it=1, nt { t = t0 4+ dt=(it —1)
zsquared = t % t — Xs % XS
if (zsquared >= 0.)

Inverse normal moveout

iz

1.1. FAMILIAR OPERATORS 25

iz (it) = 1.5 4+ (sqrt(zsquared) — t0) /dt
else
iz (it) =0
}
#% _lop(72z, tt)
integer it

do it= 1, nt {
if (iz (it) > 0) {
if(adj) zz(iz (it)) 4= tt(it)
else tt(it) += zz(iz (it))

}
NMo

(My 1992 textbook (PVI) illustrates many additional features of nermel-moeveout.) A
companion routine imospray loops over offsets and makes a trace for each. The adjoint of
imospray is the industrial process of moveout and stack.

inverse NMO spray.lop

module imospray { # inverse moveout and spray into a gather.
use hypotenusei
real :: x0,dx, t0,dt
integer :: nx,nt
_init (slow, x0,dx, t0,dt, nt,nx)
real slow

x0 = x0xslow
dx = dxxslow
#% _lop(stack(nt), gather (nt,nx))

integer ix, stat
do ix= 1, nx {
call hypotenusei_init (nt, t0, dt, x0 + dxx*(ix—1))
stat = hypotenusei_lop (adj, .true., stack, gather(:,ix))

call hypotenusei_close ()

}

1.1.15 Coding chains and arrays M}V mé

With a collection of operators, we can build more glaborate operators. An amazing thing
about matrices is that @ elements may be matrices. A row is a matrix
containing two matrices. is done by subroutine row0 also in module smallchain3. An
operator product A = BC is represented in the subroutine chain2(opl, op2, ...).
As you read these codes, please remember the output is the last argument only when the
output is d. When the output is m, the output is the second from last.

operator chain and array.r90

module smallchain3 {

logical , parameter, private :: AJ = .true., FW = .false.
logical , parameter, private :: AD .true., ZP = .false.
interface chain0{

module procedure columnO

module procedure row0

module procedure chain20

module procedure chain30

I

26

}

contains

CHAPTER 1. BASIC OPERATORS AND ADJOINTS

subroutine columnO(opl,op2, adj,add, m,d1,d2) { # COLUMN dl = Am, d2 = Bm

interface {

integer function opl(adj,add,m,d){real::m(:),d(:);logical
integer function op2(adj,add,m,d){real::m(:),d(:);logical

}

logical , intent(in) adj, add

real , dimension(:) :: m,dl,d2

integer st

if(adj) { st = opl(AJ, add, m, dl) # m
st = op2(AJ, AD, m, d2) # m

}

else { st = opl(FW, add, m, dl) # d
st = op2(FW, add, m, d2) # d

¢

}

subroutine row0O(opl,op2, adj,add,

interface {

::adj ,add}
:radj ,add}

m0 + A’ dl
m + B’ d2

I

I
joNgaN
N =
+ +
W >
E B

ml, m2, d) { # ROW d = Aml4+Bm2

integer function opl(adj,add,m,d){real::m(:),d(:);logical::adj,add}
integer function op2(adj,add,m,d){real::m(:),d(:);logical::adj,add}

}

logical , intent (in)

real , dimension (:)

integer

if (adj) { st = opl
st = op2

else { st = op2
st = opl

}

}

subroutine chain20(opl,op2, adj,add, m,d,t1) { # CHAIN 2

interface {

adj, add
: ml,m2,d
st
(AJ, add, ml, d) # ml = A’d
(AJ, add, m2, d) # m2 = B’d
(FW, add, m2, d) # d = Bm2
(FW, AD, ml, d) # d = Aml+Bm?2

d = ABm

integer function opl(adj,add,m,d){real::m(:),d(:);logical::adj,add}
integer function op2(adj,add,m,d){real::m(:),d(:);logical::adj,add}
}
logical , intent(in) adj, add
real , dimension(:) :: m,d, t1
integer ::ost
if(adj) { st = opl(AJ, ZP, tl1, d) # A d
st = op2(AJ, add, m, t1) #m=B"t =B A" d
}
else { st = op2(FW, ZP, m, t1) # 1 = B m
st = opl (FW, add, t1, d) #d=A t=A B m
}
}
subroutine chain30(opl,op2,0p3, adj,add, m,d,t1,t2) { # CHAIN 3 d = ABCm

interface {
integer function
integer function
integer function

opl(adj,add,m,d){real ::m(:)
op2(adj,add ,m,d){real::m(:)
op3(adj,add,m,d){real ::m(:)

,d(:);logical ::adj,add}
,d(:);logical::adj,add}
,d(:);logical::adj,add}

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 27

logical , intent(in) :: adj,
real , dimension (:) :: m,d,
integer vi 8t
if(adj) { st = opl(AJ, 7ZP
st = op2(AJ, 7ZP
st = op3(AJ, add
}
else { st = op3(FW, ZP
st = op2(FW, ZP
st = opl (FW, add
}

add

t1,t2

, t2, d) # t1 = A’ d
, t1, t2) # t2 =B t1 = B’ A’ d
,m, tl1) #m =C’ t2 = C’ B’ A’ d
,m o, t1) # t1 = C m
, t1, t2) # t2 =B t1 = B C m
,t2,d) #d =A t2 = A B C m

1.2 ADJOINT DEFINED: DOT-PRODUCT TEST

Having seen many examples of spaces, operators, and adjoints, we should now see more
formal definitions,because abstraction helps us push these concepts tolimits.

5n

1.2.1 Definition of a vector space e‘

An operator transforms a space to another space. EX&Wigpaces are model space m

and data space d. We think of these spaces as vectors components packed with
numbers, either real or complex numbers. The important practical concept is that not only
does this packing include one-dimensional spaces like signals, two-dimensional spaces like
images, 3-D movie cubes, and zero-dimensional spaces like a data mean, e% bu}gspaces
can be sets of all the One space that is a set of three cubes is the@rth’s n‘fagnetic
field, which has three components; and each component is a function of a three-dimensional
space. (The 3-D physical space we live in is not the abstract vector space of models and

. data so abundant in this book. He

‘I\vector spacezz

r%he word “space” without an adjective means the
)

A more heterogeneous example of a vector space is data tracks. A depth-sounding
survey of a lake can make a vector space that is a collection of tracks, a vector of vectors
(each vector having a different number of components, because lakes are not square). This
vector space of depths along tracks in a lake contains the depth values only. The (z,y)-
coordinate information locating each measured depth value is (normally) something outside
the vector space. A data space could also be a collection of echo soundings, waveforms

recorded along tracks.

We briefly recall information about vector spaces found in elementary books: Let « be
any scalar. Themf d; is a vector and ds is conformable with it, thep other vectors are ad;
and d; + ds. Tﬁe size measure of a vector is a positive value called a norm. The norm is
usually defined to be the dot product (also called the Ly norm), say d - d. For complex
data it is d - d gyhere d is the complex conjugate of d. A notation that does transpose
and complex corjugate at the same time is d* d. In theoretical worly\the “size of a vector”
means the vector’s norm. In computational work the “size of a vectgr” means the number
of components in the vector.

&
%

28 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

Norms generally include a weighting function In hysics, the norm generally mea-
sures a conserved quantity like energy or momentu , for example, a weighting function
for magnetic flux is permittivity. In data analysis, t e proper choice of the weighting func-
tion is a practical statistical issue, discussed repeatedly throughout this book. The algebraic
view of a weighting function is that it is a diagonal matrix with positive values w(i) > 0
spread along the diagonal, and it is denoted W = diag[w(4)]. With this weighting function /L..
the Ly norm of a data space is denoted d*Wd. Standard notation for norms uses a double ?
absolute value, where ||d|| = d*Wd. A central concept with norms is the triangle inequal-
ity, ||d1 + d2|| < ||di]| + ||d2||proof you might recall (or reproduce with the use of

dot products). 6‘6 M

1.2.2 Dot-product test for validity of an adjoint

There is a huge gap between the conception of an idea and putting it into practice. During
development, things fail far more often than not. Often, when something fails, many tests

are needed to track down the cause of failure. Maybe the cause cannot even be fou ,',4‘
More insidiously, failure may be below the threshold of detection and poor ormance
suffered for years. The dot-product test enables us to ascertain he program for

the adjoint of an operator is precisely consistent with the operatorétself; It can be, and it
should be.

Conceptually, the idea of matrix transposition is simply a'ij = aj;. In practice, however,
we often encounter matrices far too large to fit in the memory of any computer. Sometimes
it is also not obvious how to formulate the process at hand as a matrix multiplication.
(Examples are differential equations and fast Fourier transforms.) What we find in practice
is that an operator and its adjoint are two routines. The first amounts to the matrix multi-
plication Fm. The adjoint routine computes F*d, where F* is the conjugate-transpose
matrix. In later chapters we withb solvi huge sets of simultaneous equationsgin which
both routines are required. If the pair of routines are inconsistent, we may be doomed
from the start. The dot-product test is a simple test for verifying that the two routines are
adjoint to each other.

@Hl you first what the dot-product test is, and then explain how it works. Take a
model space vector m filled with random numbers, and likewise a data space vector d filled
with random numbers. Use your forward modeling code to computd'}

m < random (1.31)
d <« random (1.32)
d = Fm (1.33)
m = F*d (1.34)

You should find these two inner products equal:
m-m=d-d (1.35)
If they are, it means what you coded for F* is indeed the adjoint of F'. There is a glib way
of saying why this must be so:
d*(Fm) (d*F)m (1.36)
d*(Fm) = (F*d)'m (1.37)

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 29

This glib way is easily made concrete with explicit summation. We may express 3, 3, diFijm;
in two different Wayé’l ‘

k.

= Z(Z Fijdi)m; (1.39)

Zdi(z Fijmp) = Z(Z diFij)m; (1.38)

d* (Fm) = (;“*d)-m (1.40)
d-d = m-m (1.41)

Should F contain complex numbers, the dot-product test is a comparison for both real parts
and for imaginary parts.

The program for applying the dot product test is dot_test. The Fortran way of passing
a linear operator as an argument is to specify the function interface. Fortunately, we have
already defined the interface for a generic linear operator. To use the dot_test program,
you need to initialize an operator with specific arguments (the _init subroutine)fand then
pass the operator‘the _lop function) to the test program. You also needAo specify
the sizes of the model and data vectors so that temporary arrays can be constructed. The
program runs the dot product test twice,}é&)nd time with add = .true. to test if the
operator can be used properly for accumulating results, for example. d «— d + Fm.

I ran the dot product test on many operators and was surprised and delighted to find
that for small operators it is generally satisfied to an accuracy near the computing precision.
For large operators, precision can become and issue. Every time I encountered a relative
discrepancy of 10™° or more on a small operator (small data and model spaces)I was later
able to uncover a conceptual or programming error. Naturally, when I run dot-product
tests, I scale the implied matrix to a small size both to speed things alonggand to be sure
that boundaries are not overwhelmed by the much larger interior. %

Do not be alarmed if the operator you have defined has truncation errors. Such errors
in the definition of the original operator should be matched by like errors in the adjoint
operator. If your code passes the dot-product test, then you really have coded the adjoint
operator. In that case, to obtain inverse operators, you can take advantage of the standard

methods of mathematics. /%l(
n_

/
We can speak of a continuous function f(t) or a discrete function f;. Fo m
tinuous functionWe use integratiopy land for discrete onesawe use summation. formal j"
mathematics, the dot-product test nes the adjoint operagor, except that the summation
in the dot product may need to be changed to an integral. The input-or the output or
both can be given either on a continuum or in a discrete domain. the dot-product test
m-m=d-d could have an integration on one side of the equal sign and a summation on

the other. Linear-operator theory is rich with concepts not developed here.

1.2.3 Automatic adjoints

Computers are not only able to perform computations; they can do mathematics. Wellj
known software is Mathematica and Maple. Adjoints can also be done by symbol manipu-
lation. For exampl?é{alf Giering offers a program for converting linear operator programs

)

30 CHAPTER 1. BASIC OPERATORS AND ADJOINTS

into their adjoints. Actually, it does more tha He says:3

Given a Fortran routine (or collection of routines) for a function, TAMC pro-
duces Fortran routines for the computation of the derivatives of this function.
The derivatives are computed in the reverse mode (adjoint model) or in the
forward mode (tangent-linear model). In both modes Jacobian-Matrix products
can be computed.

1.2.4 The word “adjoint” qhe~
In mathematicsgghe word “adjoin” has two meanings. One of the so-called Hilbert
adjoint, is the Jone generally foind in physics and engineering and it is the one used in

, this book. In linear ,algebrafis a different matrixgcalled the adjugate matrix. It is a

\hﬂﬁ/ matrix ¥ elementéd}l% signed cofactors (minor determinants). For invertible matrices, .
this matriXis the determinant times the inverse matrix. It can be computed without m
ever using division, so potentially the adjugate can be useful in applications .
inverse matrix does not exist. Unfortunately, the adjugate matrix is sometimes called the
adjoint matrix, particularly in the older literature. Because of the confusion of multiple
meanings of the word adjoint, in the first printing of PVI, I avoided the uge-of the word
and substituted the definition, “conjugate transposm UnfortunatelyA was often
abbreviated to “conjugate,” which caused even more confusion. Thus defided to use the
word adjoint and have it always mean the Hilbert adjoint found in phfsics and engineering.

1.2.5 Inverse operator

A common practical task is to fit a vector of observed data dops to some modeled data
dmodel by the adjustment of components in a vector of model parameters m.

dobs =~ dmoda = Fm (1-42>

A huge volume of literature establishes theory for two estimates of the model, 1h; and 1o,
where

m; = (F*F)"'F*d (1.43)

my, = F*(FF)"'d (1.44)

Some reasons for the literature being huge are the many questions_about the existence,
quality, and cost of the inverse operators. Before summarizing let us quickly see
why these two solutions are reasonable. Inserting equation (1.42) into equation (1.43), and

inserting equation (1.44) into equation (1.42), we get the reasonable statements:
¢ < 5
’

m = (FFF)'(FFF)m = m (1.45)
dmode = (FF*)(FF)'d = d (1.46)

Equation (1.45) says thag/the estimate my gives the correct model m if you start from the
modeled data. Equation (1.46) says tl(azt the model estimate my gives the modeled data if

3 http://www.autodiff.com/tamc/

1.2. ADJOINT DEFINED: DOT-PRODUCT TEST 31

we derive my from the modeled data. Bothef these statements are delightful. No%et us
return to the problem of the inverse matrices. J

Normallysa rectangular matrix does not have an inverse. Surprising things often happen,
but commonl&, when F is a tall matrix (more data values than model values)sghen the matrix
for finding m; is invertible while that for finding msy is no@and when thé matrix is wide
instead of tall (the number of data values is less than the number of model values)it is the
other way around. In many applications neither F*F nor FF* is invertible. This d#ficulty is
solved by “damping” as we will see in later chapters. If it happens that FF* or F*F equals
I (unitary operator), then the adjoint operator F* is the inverse F~! by either equation A
(1.43) or (1.44). -

Current computational power limits matrix inversion jobs to about 10* variables. This
book specializes in big problems, those with more than about 10* variables. The itegy %
methods we learn here for giant problems are also excellent for smaller proble«@ e -
rarely here speak of inverse matrices or worry much if neither FF* nor F*F is an 1dentity. J

32

CHAPTER 1. BASIC OPERATORS AND ADJOINTS

ke

g P

w%”ﬁ”“
VS

Chapter 2

Model fitting by least squares

The first level of computer use in science and engineering is modeling. Beginning from
physical principles and design ideas, the computer mimics nature. After the worker
looks at the result and thinks a while, then alters the modeling program &nd tries again.
The next, deeper level of computer use is that the compute examines the results of
modeling and reruns the modeling job. This deeper level is variously called “fittin ’ar—g“’
“estimation® or “inversion.” We inspect the conjugate-direction method of fifting
and write a stibroutine for it that wi A sed in most of the examples in this book.

2.1 UNIVARIATE LEAST SQUARES

A single parameter fitting problem arises in Fourier analysis, where we seek a “best answer”
at each frequency, then combine all the frequencies to get a best signal. Thuy‘qmerges a
wide family of interesting and useful applications. However, Fourier analysis ﬁr)st requires
us to introduce complex numbers into statistical estimation.

Multiplication in the Fourier domain is convolution in the time domain. Fourier-
domain division is time-domain deconvolution. This division is challenging when F' has
observational error. Failure erupts if zero division occurs. More insidious are the poor
results we obtain when zero division is avoided by a near miss.

2.1.1 Dividing by zero smoothly

Think of any real numbers z, y, and f and any program containing « = y/f. How can we

change the program so that it never divides by zero? A popular answer is to change z =y /f

to z = yf/(f? + €%), where ¢ is any tiny value. When |f| >> [e|, then x is approximately

y/f as expected. But when the divisor f vanishes, the result is safely zero instead of infinity..

The transition is smooth, but some criterion is needed to choose the value of . This method

may not be the only way or the best way to cope with zero division, but it is a good WLMOL
and-it'permeates the subject of signal analysis.

To apply this method in the Fourier domain, suppose that X, Y, and F' are complex
numbers. What do we do then with X = Y/F? We multiply the top and bottom by the

33

34 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

complex conjugate F', and again add €2 to the denominator. Thus,

_ Fw)Y(w)
Xw) = AT (2.1)

Novyé:he denominator must always be a positive number greater than zero, so division is
alwa}rs safe. Equation (2.1) ranges continuously from inverse filtering, with X = Y/F, to
filtering with X = FY, which is called “matched filtering.” Notice that for any complex
number F, the phase of 1/F equals the phase of F, so the filters have the same phase.

2.1.2 Damped solution M M

Another way to say x = y/f is to say fz —y is small, or (fz — y)? is small. This
big. To

solve the problem of f going to zero, so we need the idea that x? does not get too
find x xe minimize the quadratic function in z.

: Q) = (fo- g+ (2.2)

The second term is called a “damping factorf because it prevents xz from going to +co
when f — 0. Set d@/dxz = 0, which giveé /}
b

0 = fo—y)+e (2.3)

b . ‘
ields our earlier cémmon—sense answer z = fy/(f% + €2). It also leads is to wider
areas of application

.

With Fourier transforms,-the signal X is a complex number at each frequency w.
generalize equation (2.2) t

%~
X, X) = FX-YV)FX-Y)+&XX = (XF-YV)FX-Y)+£XX (24)

To minimize Qfwe could use a real-values approach, where we express X = u + v in terms

of two real valuzxs u and vpand then set 0Q/0u = 0 and 8Q/0v = 0. The approach we witt &

take, however, is to use complex values, where we set 0Q/0X = 0 and 0Q/ 0X = 0. Let us
examine 0Q/0X: ~
0Q(X, X)

55 = FFX-Y)+eX = 0 /,u (2.5)

The derivative 8Q/0X is the complex conjugate of 0Q/ 0X. SK if either is zero, the other Lo &«&o

istooY Thuspwe do not need to specify both 8Q/8X = 0 and 9Q/0X = 0. I usually set
0Q/0X equal to zero. Solving equation (2.5) for X gives equation (21):

Equation (2.1) solves Y = X F for X, giving the solution for what is called “the decon-
volution problem with a known wavelet F'.” AnalogouslyAwe can use Y = XF when the
filter F' is unknown, but the input X and output Y are giéen. Simply interchange X and
F in the derivation and result.

2.1.3 Formal path to the low-cut filter

This book defines many geophysical estimation applications. Many of Ghem}amount to
statement of two goals. The first goal is a dat?"\ﬁtting goal, the goal that the model should

the elements are complex vectors and matrices.
88, we 7

LY B

2.1. UNIVARIATE LEAST SQUARES 35

VA

imply some observed data. The second goal is that the model be not too big Q/(:OO wiggly.
We aill state these goals as two residuals, each of which is ideally zero. A very simple data
fitting goal would be that the model m equals the data d, thus the difference should vanish,
say 0 & m — d. A more interesting goal is that the model should match the data especially
at high frequencies but not necessarily at low frequencies.

0 =~ —iw(lm—d) (2.6)
magnitude as well as large amplitudes for low frequencies. To suppress(we need the

second goal, Gxodel residual whieh-%o be minimized. We need a small number e. The

A danger of this goal is that the model could have a zero-frequency comiinent of infinite
model goal is ‘

0 ~ em (2.7)

To see the consequence of these two goals, we add the squares of the residuals@
Q(m) = w(m—d)?+ €2m? (2.8)

and the?\vye minimize Q(m) by setting its derivative to zer@
)

0 = % = 2 (m—d)+28m (2.9)
or 2
w

Letyus rera?e ¢ to give it physical units of frequency wo = €. Our expression says says m
matchy d except for low frequencies |m| < |wp| where it wi-ﬁ’tenito 7€ero. dei‘ines

a low-cut filter with “cut-off frequency” wq.

.

2.1.4 The plane-wave destructor
we et

We address the question of shifting signals into pest alignment. The most natural approach
might seem to be via cross corfelations/AFhat is indeed a good approach when signals
are shifted by large amount ereAwe as%ume signals are shifted by small amounts, often
less than a single pixel. aké an approach closely related to differential equations.
Consider this definition of a Tesidual. o

0] 0
0 = residual(t, = — — t, 2.11
residual(t, x) (8x+p8t> u(t, x) (2.11)
By taking derivativesjwe see the residual vanishes when the two-dimensional observation
u(t,) matches the eqllation of moving waves u(t — pz). The parameter p has units inverse
to velocity, the velocity of propagation.

In practice, u(t,z) might not be a perfect wave but an observed field of many waves
that we might wish to fit to the idea of a single wave of a single p. We seek the parameter p.
Firstpwe need a method of discretization that allows the mesh for ddu/ddt to overlay exactly
ou/ 2 To this en?{ chose to represent the t-derivative by averaging a finite difference at
x with one at = + :

36 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

2

o 1<u(t+At,x)—u(t,a:)> L1 <u(t+At,x+Aw)—u(t,x+Am)
ot 2

AL A7) (2.12)

Likewisehere is an analogous expression for the z-derivative with ¢t and z interchanged. The
function ’u(t,) lies on a grid, and the differencing operator d,+pd; lies atop it and convolves
across it. The operator is a 2 x 2 convolution filter. We may represent equation (2.11) as a

matrix operation,
0 =~ r=Au ' (2.13)

where the two-dimensional convolution with the difference operator is denoted A.

The module wavekill () applies the operator ad, + bd;. Suitable choices of a and b give
us the operators we need, namely 0y, 0¢, 65 + Pids.

wavekill().r90

module wavekill_mod{

contains
subroutine wavekill (aa,bb,nt,nx,uu,vv){
real :: aa,bb(:,:),uu(:,:),vv(:,:)
integer :: it ,ix,nt,nx
real :: sl1(nt,nx),sl2(nt,nx),s21(nt,nx),s22(nt,nx)
sll = —aa—bb; s12 = aa—bb
s21 = —aa+bb; s22 = aatbb
vv=0.

do ix=1,nx—1{
do it=1,nt-1{
vy (it,ix)=uu(it ,ix)xsll(it,ix)+&
' uu (it L ix+1)*s12(it ,ix)4+&
uu(it+1,ix)*xs21(it,ix)+&
uu (it +1,ix+1)*s22 (it ,ix)

¥

}

vv(nt,:)=vv(nt—1,:)
vv (:,nx)=vv(:,nx—1)

) | 3,\6*"""‘] vpd*

Nowplet us find the numerical value of/p that fits a i% wave u(t — pz) to observations
u(t, x). Let x be an abstract vector @ omponents axé values of du/dz taken everywhere

on a 2-D mesh in (¢, z). Likewise, let t contain du/0t. Sinc§ we want x+pt ~ 0, we minimize

the quadratic function of p, Becamnal
Q(p) = (x +pt) - (x+pt) (2.14)

by setting to zero the derivative. We get@

MW po= - (2.15)

Singe data witk not always fit the model very well, it may be helpful to have some way to
measure how good the fit is. I suggest@

“
-y

-+

(x + pt) - (x + pt)
XX

c? = 1 - (2.16)

2.1. UNIVARIATE LEAST SQUARES 37

(g)
which, on inserting p = —(x - t)/(t - t), leads to C , where
-

x-t

is known as the “normalized correlation.” The program for this calculation is straight-
forward. The name puck2d() denotes picking on a continuum.

puck2d().r90

module puck2d_mod{
use triangle_smooth
use wavekill_mod
contains
subroutine puck2d(dat,coh,pp,res,boxsz,nt,nx){

integer e A i, mt n%

integer , intent(in) :: boxsz

real , intent (in) :: dat(:,:)

real , intent (out) :: coh(:,:),pp(:,:),res(:,:)

real :: dt(nt,nx),dx(nt,nx),dtdt(nt,nx),dtdx(nt,nx),dxdx(nt, nx)

pp=0.; call wavekill (1.,pp,nt,nx,dat,dx) # space derivative
pp=1.; call wavekill (0.,pp,nt,nx,dat,dt) # time derivative
dtdx = dt*dx # (x.t)
dxdx = dx=dx # (x.x)
dtdt = dt*dt # (t.t)
do ix=1,nx{ # smooth along time axis

call triangle (boxsz,nt,dtdt (:,ix),dtdt (:,ix))

call triangle (boxsz,nt,dxdx(:,ix),dxdx(:,ix))

call triangle(boxsz,nt,dtdx (:,ix),dtdx(:,ix))

}

coh = sqrt((dtdxxdtdx) / (dtdtxdxdx))
pp = —dtdx / dtdt

call wavekill (1.,pp,nt,nx,dat,res)

}
}

To suppress noise, the quadratic functions x - x, t - t, and x - t were smoothed over time
with a triangle filter.

Figure 2.1: Input synthetic seismic N e
data includes a low level of noise.
VIEW| |lsq/. puckin NP e e e

T S~ ——
s
/\V%AVA s,
e Pt e e ot s
e S~ e
Wi P safina RN TS, e
~— e e o i

Subroutine puck2d shows the code that generated Figure 2.1 through 2.3. An example
based on synthetic data is shown in Figures 2.&.3. The synthetic data in Figure 2.1 mimics

i

38 CHAPTER 2.

Figure 2.2: Residuals, i.e., an eval-
uation of U, + pU. VIEW

lsq/. residual

Figure 2.3: Output values of p are
shown by the slope of short line seg-

ments. |VIEW

MODEL FITTING BY LEAST SQUARES

NS
A e
L~ e
I S AT
NV aaad
N
X ¥
7
-
i
NSO
LYY
T
V
Vv
N
i
>
IIIIIII o L) e R R YR vl N\
' AV e Vi v //.\\\\'////
.................... .. v L Lo \N\Nszz”
lllllll . ST //: \\\/////////
i R A R 77778
. R R /2777778
: WYAIBssss 1117117
|// ’ z//////////////

.........

\\\

NN
NN

.....

/\\\\

(RN
P /7%/*/////7))))))/,7777777//4,«7
//// e
T I e
..... \.%((((((Hl'iI{{({?fi!((({{{HH{HH{HH
" RO LR TR AL ER RN RN R AR AR AR ERERRRARN

2.2, MULTIVARIATE LEAST SQUARES 39

a reflection seismic field profile, including one trace that is slightly delayed as if recorded
on a patch of unconsolidated soil.

Figure 2.2 shows the residual. The residual is small in the central region of the data,
it is large where the signal is not sampled densely enoughaand it is large at the transient
onset of the signal. The residual is rough because of the’ noise in the signal, because it
is made from derivatives, and bce&a&jtie synthetic data was made by nearest-neighbor
interpolation. Notice that the residual is not particularly large for the delayed trace.

Figure 2.3 shows the dips. The most significant feature of this figure is the sharp
localization of the dips surrounding the delayed trace. Other methods based on “beam
stacks” or Fourier concepts might lead us to conclude that the aperture must be large to
resolve a wide range of angles. Hereywe have a narrow aperture (two traces), but the dip
can change rapidly and widely.)

Once the stepout p = dt/dz is known between each of the signals, it is a simple matter
to integrate to get the total time shift. A real-life example is shown in Figure 2.4. In this
Distance (ft) Distence (ft)

28000 92000 36000 40000 44000
> i IWE
2

W s, ‘g m.n‘

28000 82000 96000 40000 44000

Figure 2.4: A seismic line be-

fore and after flattening. |VIEW i
lsq/. TwoD

Unflattened Flattened

case the flattening was a function of z only. More interesting (and more complicated)
cases arise when the stepout p = dt/dz is a function of both « and ¢. The code shown here
should work well in such cases.

A disadvantage, well known to people who routinely work with finite-difference solutions
to partial differential equations, is that for short wavelengths a finite difference operator is
not the same as a differential operator; thereforghthe numerical value of p is biased. This
problem can be overcome in the following way, Firstsestimate the slope p = dt/dz between
each trace. Then/shift the traces to flatten . Nofyathere may be a residual p because of
the bias in the initial estimate of p. This process can be iterated until the data is flattened.
Everywhere in a plane we have solved a least squares problem for a single value p.

2.2 MULTIVARIATE LEAST SQUARES

2.2.1 Inside an abstract vector

In engineering uses, a vector has three scalar components that correspond to the three
dimensions of the space in which we live. In least-squares data analysis, a vector is a one-
dimensional array that can contain many different things. Such an array is an “abstract

40 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

vector.” For example, in earthquake studies, the vector might contain the time an earth-
quake began, as well as its latitude, longitude, and depth. Alternatively, the abstract vector
might contain as many components as there are seismometers, and each component might
be the arrival time of an earthquake wave. Used in signal analysis, the vector might contain
the values of a signal at successive instants in time or, alternatively, a collection of signals.
These signals might be “multiplexed” (interlaced) or “demultiplexed” (all of each signal
preceding the next). When used in image analysis, the one-dimensional array might contain
an image, which coul be thought of as an array of signals. Vectors, including abstract
vectors, are usually denoted by boldface lettersAsuch as p and s. Like physical vectors,
abstract vectors are orthogonal when dot Broduct vanishes: p -s = 0. Orthogonal
vectors are well known in physical space; V\ﬁ?)l also encounter in abstract vector
space.

We consider first a hypothetical application with one data vector d and two fitting
vectors f; and fy. Each fitting vector is also known as a “regressor.” Our first task is to
approximate the data vector d by a scaled combjnation of the two regressor vectors. The
scale factors m; and meo should be chosen so the model matches the data; i.e.,

d =~ fimg+fameo (2.18)
Notice that we could take the partial derivative of the data in (2.18) with respect to an

unknown, say m1, and the result is the regressor f;. The partial derivative of all modeled
data d; with respect to any particular model parameter m; gives a regressor.

A regressor is a column in the matrix of partial-derivatives, 0d; /Om;.

The fitting }pal (2.18) is often expressed in the more compact mathematical matrix
notation d ~ Fim, but in our derivation herggve it keep track of each component explicitly
and use mathematical matrix notation to shmmarize the final result. Fitting the observed
data d = d°b to its two theoretical parts fymi and famg can be expressed as minimizing
the length of the residual vector r, Wher@

0 ~ r = dtheorwdobs (2‘19)
0 ~ r = fim+fHmy — d (2.20)

We use a dot product to construct a sum of squares (also called a “quadratic form”)
of the components of the residual vector:

Q(ml,mg) = I r (2.21)
Q(ml,mg) = (f1m1 + fomg — d) < (fimg + fomg — d) (2.22)

To find the gradient of the quadratic form Q(m1,m2), you might be tempted to expand out
the dot product into all nine terpms,and then differentiate. It is less cluttered, however, to
remember the product rule, tha@

d dr dr

e, = S 2.23
dwr r dzx S dx ()

Thus, the gradient of @Q(m1, m2) is defined by its two components:

2.2, MULTIVARIATE LEAST SQUARES 41

0
8—776121 = f1: (fimy +fomg — d) + (fimy + fome —d) - i (2.24)
0
-%% = - (fimy + famg — d) + (fimq + fomg — d) - £ (2.25)

Setting these derivatives to.zero and using (f; - f2) = (f2 - f1) etc., we ge@

(fi-d) = (fi-fi)ma+(f - f2)me (2.26)
(f2-d) = (f2-fi)ma+ (f2-fo)mo . (2.27)

We can use these two equations to solve for the two unknowns m; and mo. Writing this
expression in matrix notation, we hav@

(f] ¢ d) _ (fl U f1) (f1 : fg) mi (2 28)
(f2 g d) (fg . fl) (f2 . fg) mo ’
It is customary to use matrix notation without dot products. To d we need some

additional definitions. To clarify these definitions, we inspect vectors f1, T2, and d of three
components. Thus ﬁ).

fi1 fi2
F = B B = for fo2 (2.29)
fs1 f32

Likewise, the transposed matrix F* is defined b

€ _ fir fa [fa
Bo= [f12 f22 fBQ} (2:30)

Using this matrix F*athere is a simple expression for the gradient calculated in equa-

tion (2.24). It is used in nearly every example in this book. -
oQ 1
i 0 fu fa f
_ am, - 1 noJar J81 r = F'r (231
& [%} [frr] |:f12 fa2 [> (2:31)
T3

In words this expression says, the gradient is found by putting the residual into the adjoint
operator g = F*r. Notic%he gradient g has the same number of components as the
unknown solution m, so we ‘can w of the gradient \s%‘:n, something we could add
to m getting m + Am. LatepweW see how much of A we'Wwant to add to m. We witk@-
havd reached the best solutioh when we find the gradienl g = 0 vanishes/ghich happenvzz-
as equation (2.31) says, when the residual is orthogonal to all the fitting fnctions (all the

[oedi] . * . .
rows in the matrix F*, the columns in F, are perpendicular to r).

The matrix in equation (2.28) contains dot products. Matrix multiplication is an ab-
stract way of representing the dot products:

fi1 fi2

(fy - f1) (f1-£f2) _ fu fa fa

{ (£ £1) (f-f2) } - [fm i fsz} fa fa (2.32)
f31 fa2

42 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

Thus, e;luation (2.28) without dot products is @
”~

dy fi1 fiz
fir fa1 fa _ fii fa fan m1
l: fe ¥ I } 2; B { fiz fo [} 21 ﬁz [ms } (2.33)
which has the matrix abbreviation@
F*d = (F*F)m (2.34)

Equation (2.34) is the classic result of least-squares fitting of data to a collection of regres-
sors. Obviously, the same matrix form applies when there are more than two regressors and
each vector has more than three components. Equation (2.34) leads to an analytic solu-
tion for m using an inverse matrix. To ‘solve formally for the unknown m, we premultiply
by the inverse matrix (F* F)~L

m = (FFF)!Fd (2.35)

The central result of least-squares theory is m = (F* F)~! F*d. We see it every-

where. W/
_AeeSs il 4~
Let us exax:i_r;e/ff the second derivatives of Q(m; ,iy/) defined by equation (2.22). Any
multiplying d wi¥ not survive the second derivative, sé the terms we are left with ar

Q(ml,mg) = (fl . fl)m% -+ 2(f1 . fg)mlmz + (fz . fz)mg) (2.36)

After taking the second derivative, we can organize all these terms in a matri)@

P, T [®8) (B
omiom; [(fz.fl) (f2.f2>:| (2.37)

Comparing o équation (2. 32)‘we conclude that F*F is a matrix of second derivatives.

This matrix 15"also 'known as the &-Iesglsm T-himt often plays an important role in

small problems.

Larger problems tedd to have insufficient computer memory for the Hessian matrix A_
because it is the size”of model space squared. Where model space is a multidimensional
éimage, thatigda large number of values even before squaring. Therefore, this book
rarely works with the Hessian, working instead with gradients.

Rearrange parentheses representing (2.33).
F*d = F*(Fm) (2.38)

Equation (2.34) led to the “analytic” solution (2.35). In a later section on conjugate di-
rections, we witf'see that equatlon (2.38) expresses better than (2 35) the philosophy of
iterative methods. « Sug;(-(ow

Notice how gquation (2.38) invites us to cancel the matrix F* from each side. We cannot
do that of course, because F* is not a number, nor is it a square matrix with an inverse.

u gt

¢

el

2.2. MULTIVARIATE LEAST SQUARES 43

If you really want to cancel the matrix F*, you may, but the equation is then only an
approximation that restates our original goal (2.18):
,

W d ~ Fm (2.39)
aN2—

. A speedy prgblem solver might ignorg ematics covering the previous page,
study(able to write the statement of geals (2.39) =
(2.18), pre iply by F*, replace ~ by =, getting (2.34), and take (2.34) to a simultaneous
equation-solving program to get m.

What I call “fitting goals” are called “regressions” by statisticians. In common
languaggfhe word regression means to “trend toward a more primitive perfect statef, whi
vaguely resembles reducing the size of (energy in) the residual r = Fm — d. Formﬁlly his

is often written as: /}
min |[Fm — d| (2.40)

AU S
Thegnotation abaw}\;ith two pairs of vertical lines looks like double absolute value, but
we can understand it as a reminder to square and sum all the components. This formal
notation is more explicit about what is constant and what is variable during the fitting.

2.2.2 Normal equations

An important concept is that when energy is minimum, the residual is orthogonal to the
fitting functions. The fitting functions are the co mn vectors f1, f2, and f3. Let us verify
only that the dot product r - f5 vanishes; to do‘ we 'l show that those two vectors are
orthogonal. Energy minimum is found b

0 or ‘
0 = —=—r- = 2r-—— = 2r-f 2.41
p r-r r Brma r-f ()
S(To compute the derivativy},refer to equation EZZ(B) Equation (2.41) shows that the residual
is orthogonal to a fitting function. The fitting functions are the column vectors in the fitting

matrix.

The basic least-squares equations are often called the “normal” equations. The word
“normal” means perpendicular. We can rewrite gquation (2.38) to emphasize the perpen-
dicularity. Bring both terms to the right, and recall the definition of the residual r from
_equation (2.20):

-,

0 = F*(Fm—d) (2.42)
0 = F*r (2.43)

Equation (2.43) says that the residual vector r is perpendicular to each row in the F*
matrix. These rows are the fitting functions. Therefore, the residual, after it has been
minimized, is perpendicular to all the fitting functions.

2.2.3 Differentiation by a complex vector

Complex numbers frequently arise in physical applications, particularly those with Fourier
series. Let us extend the multivariable least-squares theory to the use of complex-valued

44 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

unknowns m. Firsfazecall how complex numbers were handled with single-variable least
squares; i.e., as in t‘he discussion leading up to equation (2.5). Use an asterisk, such as
m*, to denote the complex conjugate of the transposed vector m. Now/quite the positive
quadratic form as@)

Q(m*, m) = (Fm-d)* (Fm‘— d) = mF -d)(Fm-d) (2.44)

Recall from equation (2.4)/).where we minimized a quadratic form Q(_X' ,X) by setting
to zero both 8Q/0X and 8Q/0X. We noted that only one of 9Q/0X and 0Q/0X is
necessarily zeroabecause are conjugates of each other. NowAtake the derivative of Q
with respect to t’he (possibly complex, row) vector m*. Notice tha{: 0Q /Om* is the complex
conjugate transpose of 8Q/0m. Thus, setting one to zerg,sets the other to zero a/lZ Setting

0Q/dm* = 0 gives the normal equations: Qﬁ,{ o
' 8Q
0 = —— = F'(Fm-d .
i (P — d) (245)

The result is merely the complex form of our earlier result (2.42). Therefore, differentiating
by a complex vector is an abstract concept, but it gives the same set of equations as
differentiating by each scalar component, and it saves much clutter.

2.2.4 From the frequency domain to the time domain

Where data fitting uses the notation m — d, linear algebra‘and signal analysis often use the
notation x — y. Equation (2.4) is a frequency-domain quadratic, form that we minimized
by varying a single parameter, a Fourier coefficient. Nowwe w-iﬁ/look at the same problem
in the time domain. We -vr'rl}gee that the time domain offers flexibility with boundary

conditions, constraints, and weighting functions.; The notation wi > that a filter f; has
input z; and output y;. In Fourier spac is Y = XF. There ar¢ two applications to
look at, unknown filter F' and unknown iﬁput X. ‘. <

Unknown filter

When inputs and outputs are given, the problem of finding an unknown filter appears to be
overdetermined, so we write y &~ Xf where the matrix X is a matrix of downshifted columns
like (1.5). ThuS/?_he quadratic form to be minimized is a restatement of equation (2.44) with
filter definitions: -

QU f) = Xf-y) (Xf-y) (2.46)
The solution f is found just as we found (2.45), and it is the set of simultaneous equations
0=X*(Xf -y).

Unknown input: deconvolution with a known filter

For solving the unknown-input problem, we put the known filter f; in a matrix of down-
shifted columns F. Our statement of wishes is now to find z; so that y ~ Fx. We can

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 45

expect to have trouble finding unknown inputs z; when we are dealing with cert:;r;k}ds/‘ ate_
of filters, such as bandpass filters. If the output is zero in a frequency band, we wit¥never
be able to find the input in that band and witfneed to prevent x; from diverging there.
We do by the statement that we wish 0 ~ e¢x, where € is a parameter that is small

and @ exact size wi chosen by experimentation. Putting both wishes into a single,
partitioned matrix equation 'vesé-‘ 5

0 - r] _ F ¥
To minimize the residuals r1 and rz, we can minimize the scalar r*r = rjri +rjra. @is{,f)

Qx*x) = (Fx-y) (Fx—y)+ex*x
= X*F' —y)(Fx-y)+ex'x (2.48)

We solved this minimization in the frequency domain (beginning from equation %4} Ma- C’MJ

FormallyAthe solution is found just as with Equation (2.45), but this solution looks
unappealing n practic%because there are so many unknowns and the problem can
be solved much more quickly in the Fourier domain. To motivate ourselves to solve this
problem in the time domain, we need either to find an approximate solution method that is
much faster, or to discover that constraints or time-variable weighting functions are required
in some applications. éis an issue we must be continuously alert tg, whether, the cost

of a method is justified By its need. N d o LrAth /\B’L “.0'6

2.3 KRYLOV SUBSPACE ITERATIVE METHODS

The solution time for simultaneous linear equa:;zés grows cubically with the number

of unknowns. There are three regimes for solution;¥vhich one is applicable depends on the

number of unknowns m. For m three or less, we use analytical methods. We also sometimes

use analytical methods on matrices of size 4 x 4 if the matrix contains many zeros. My 1988

. (‘d workstation solved a 100 x 100 system in a minute. Ten years latepit would do a

W‘w 600 x 600 system in@bouf) a minute. A nearby more powerful computer would o 1000 % 1000
in a minute. @ the computing effort increases with the third power of the size] and shree™ M“«—;&_

43 =64 ~ 60, an hour’s work solves a four times larger matrix, namely 4]1900 x 4000 on the

M more powerful machine. For significantly larger values of m, exact numerical methods must

b

721

be abandoned and iterative methods must be used. PBecarae

The compute time for a rectangular matrix is slightly more pessifmistic. It is.the product
of the number of data points n times the number of model points/Squared m2. appens
to be the cost of computing the matrix F*F from F. ¢/ the number of data points
generally exceeds the number of model points n > m by~a substantial factor (to allow
averaging of noises), it leaves us with significantly fewer than §’QOO points in model space.

A square image packed into a ﬂ@_%g'oint vector is a 64 x 64 array. The computer power
for linear algebra to give us solutiéns that fit in a k x k image is thus proportional to kS,
which means that even though computer power grows rapidly, imaging resolution using
“exact numerical methods” hardly grows at all from our 64 x 64 current practical limit.

46 CHAPTER‘ 2. MODEL FITTING BY LEAST SQUARES

i Cppro-simlily

The retina in our eyes captures an image\of size 000 x 1000xwhich is a lot bigger
than 64 x 64. Life offers us many occasions @ final imakes excbed’the 4000 points of a
64 x 64 array. To make linear algebra (and inverse theory) relevant to such Jpplications, we
investigate special techniques. A numerical technique known as the “conjugate-direction
method” works well for all values of m and is our subject here. As with most simultaneous
equation solvers, an exact answer (assuming exact arithmetic) is attained in a finite number
of steps. An@if n and m are too large to allow enough iterations, the iterative methods
can be interru‘pted at any stage, the partial result often proving useful. Whether or not a
partial result actually is useful is the subject of much research; naturally, the results vary
from one application to the next.

2.3.1 Sign convention

On the last day of the survey, a storm blew up, the sea got rough, and the receivers drifted
further downwind. The data recorded that day had a larger than usual difference fromt that
predicted by the final model. We could call (d — Fm) the experimental error. (Her/id
is data, m is model parameters, and F is their linear relation)! /

The alternate view is that our theory was too simple. It lacked model parameters for the
waves and the drifting cables. Because of this model oversimpliﬁcatiowe had a modeling
error of the opposite polarity (Fm — d).)

m
périmentalist prefers to think of the error as,experimental error, something
for lw to work out. Likewisgha strong ‘analyst likes to think of the error as a
theoretical problem. (Weaker investigators might be inclined to take the opposite view.)

Regardless of the opposite to common practice, I define the sign convention
(

for the error (or residual) as (Fm — d). Here is why. Minus signs are a source of confusion
and errors. Putting the minus sign on the field data limits it to one locatio%ﬁuhile putting
it in model space would spread it into as many parts as model space has parts.

Beginners often feel disappointment when the data does not fit the model very well.
They see it as a defect in the data instead of an opportunity to discover what our data
contains that our theory does not.

2.3.2 Method of random directions and steepest descent

Let us minimize the sum of the squares of the components of the residual vector given b@

residual = transform model space — data space (2.49)

7] B 7

_ F - (2.50)

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 47

A contour plot is based on an altitude function of space. The altitude is the dot
product r-r. By finding the lowest altitude, we are driving' the residual vector r as close as
we can to zero. If the residual vector r reaches zero, then we have solved the simultaneous
equations d = Fx. In a two-dimensional worldpthe vector x has two components, (z1,x2).
A contour is a curve of constant r - r in (z1,2%)-space. These contours have a statistical
interpretation as contours of uncertainty in (z1,z2), with measurement errors in d.

Let us see how a random search-direction can be used to reduce the residual 0 =~ r =
Fx —d. Let Ax be an abstract vector with the same number of components as the solution
x, and let Ax contain arbitrary or random numbers. We add an unknown quantity o of
vector Ax to the vector x, and thereby create Xpew:

Xnew = X + CEAX (251)
ives a new residual:
rnew = F Xnpew — d (2.52)
Tnew = F(X -+ OéAX) —d (253)
Tnew = r+alr = (Fx-—d)+oFAx (2.54)

which defines Ar = FAx.

Nex}\we adjust-a to minimize the dot product: rpew * I'new
(r+aAr)- (r+aAr) = r-r+2a(r-Ar) + o®Ar-Ar (2.55)
Set to zero its derivative Wi‘th respect to oz@
0 = 2r-Ar+2aAr-Ar (2.56)

which says that the new residual ryey = r + aAr is perpendicular to the “fitting function”
Ar. Solving gives the required value of «.
(r- Ar)

I
A “computation template” for the method of random directions is(:)

r «— Fx-d
iterate {
Ax ««— random numbers
r «— FAx
«— —(r-Ar)/(Ar- Ar)
— x+alAx
— 1 +alAr

~— = x 2 D>

A nice thing about the method of random directions is that you do not need to know the
adjoint operator F*.

48 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

In practice, random directions are rarely used. It is more common to use the gradient
direction than a random direction. Notice that a vector of the size of Ax is(?

g = 0T (2.58)
Recall this vector can be found by taking the gradient of the size of the residuals:

0 0 * ok * _ *
e I E = 8x*(XF - d)(Fx - d) = F'r (2.59)

Choosing Ax to be the gradient vector Ax = g = F*r is called “the method of steepest

descent.”
the

Starting from a model x = m (which may be zero), is a template of pseudocode
for minimizing the residual 0 ~ r = Fx — d by the steepest-descent method:

r — Fx-d
iterate {
Ax «— F*r
Ar ««—— FAx
a «— —(r-Ar)/(Ar-Ar)
X — x+aAx
r «— 1 +alAr
}

Good science and engineering is finding something unexpected. For (thig)fou look both
in data space and in model space. In data spacg you look at the residual r. I model space,
you look at the residual projected there F*r. ’What dogs it mean? It is simply Am, the
changes you need to make to your model. It sl meafj more in later chaptergawhere the
operator F is a column vector of operators that are fighting with one another {o grab the
data.

2.3.3 Why steepest descent is so slow

Before we can understand why the conjugate-direction method is so fast, we need to see
why the steepest-descent method is so slow. The process of selecting o is called “line
searcl%but for a linear problem like the one we have chosen here, we hardly recognize
choosing « as searching a line. A more graphic understanding of the whole process is
possible from considering a two-dimensional spacwhere the vector of unknowns x has just
two components, 1 and xzz. ThenAthe size of tlfe residual vector r - r can be displayed
with a contour plot in the plane of (z1,z2). Figure 2.5 shows a contour plot of the penalty
function of (z1,x2) = (m1,m2). The gradient is perpendicular to the contours. Contours
and gradients are curved lines. When we use the steepest-descent methodawe start at a point
and compute the gradient direction at that point. Thepf}we begin a s!might-lz’ne descent
in that direction. The gradient direction curves away from our direction of travel, but we
continue on our straight line until we have stopped descending and are about to ascend.
Therefwe stop, compute another gradient vector, turn in that direction, and descend along
a new’straight line. The process repeats until we get to the bottomor until we get tired.

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 49

Search paths
T T

Figure 2.5: Route of steepest de-
scent (black) and route of conju- 2
gate direction (light grey or red).

Isq/. yunyue

P
ﬁﬁc‘:"‘ jad
d be/wrong with such a direct strategy? The difficulty is at the stopping
locations. accur where the descent direction becomes parallel to the contour lines.
(There the path becomes level.) Sopafter each stop, we turn 90°4Trom parallel to perpen-
dicular to the local contour line for the next descent. What if the final goal is at a 45° angle
to our path? A 45° turn cannot be made. Instead of moving like a rain drop down the
centerline of a rain gutter, we move along a fine-toothed zigzag path, crossing and recrossing
the centerline. The gentler the slope of the rain gutter, the finer the teeth on the zigzag
path.

What co

2.3.4 Null space and iterative methods

In applications where we fit d ~ Fx, there might exist a vector (or a family of vectors)
defined by the condition 0 = Fxpuy. This family is called a null space. For example, if the
operator F is a time derivative, then the null space is the constant function; if the operator
is a second derivative, then the null space has two components, a constant function and a
linear function, or combinations of‘ The null space is a family of model components
that have no effect on the data.

When we use the steepest-descent method, we iteratively find solutions by this updating:
Xi+1 = X+ alAx (260)

Xi+l1 = X+ oF*r (2.61)
Xiy1 = X; 4+ oF* (Fx —d) BL camdt (2.62)

After we have iterated to convergence, the gradient Ax = F*r vanishes. Adding any Xnun
to x does not change the residual r = Fx — d. r is unchanged\Ax = F*r remains\f
zero and X;41 = x;. Thuspwe conclude that any null space in the initial guess xg wéMemaig,\
there unaffected by theggi'adient-descent process. So, in the presense of null space, the
answer we get from an iterative method depends on the starting guess. Oops! The analytic
solution does not do any better. It needs to deal with a singular matrix. Existence of a null
space destroys the uniqueness of any resulting model. ‘

50 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

Linear algebra theory enables us to dig up the entire null space should we so desire. On
the other hand, the computer demands might be vast. Even the memory for holding the
many x vectors could be prohibitive. A much simpler and more practical goal is to find out
if the null space has any members, and if so, to view some o @ To try to see a member
of the null space, we take two starting guesse?\and we run our iterative solver for each of

If the two solutions, x; and xg, are the s’ame, there is no null space. If the solutions
differ, the difference is a member of the null space. Let us see why: Suppose after iterating
to minimum residual we fin

rn = Fx;—-d (2.63)
ro = FXQ’*d (264)

We know that the residual squared is a convex quadratic function of the unknown x. Math-
ematicallyathat means the minimum value is unique, so r1 = rz. Subtractingawe find
0 =r; —rf = F(x; — x2) proving that x; — x3 is a model in the null space. Adding x; — x9
to any to any model x mt echsz_mge the modeled data.

A practical way to learn about the existence of null spaces and general appearance
is simply to try gradient-descent methods beginning from various different starting
guesses.

“Did I fail to run my iterative solver long enough?” is a question you might have. If two
residuals from two starting solutions are not equal, r1 # ra, then you should be running
your solver through more iterations.

[
If two different starting solutions produce two different residuals, then you didw? ’\run
your solver through enough iterations.

2.3.5 The magical property of the conjugate directipgl method ;3

{

In the conjugate-direction method, not a linefbut rather”a plane, is searched. A plane
is made from an arbitrary linear combination of two vecférs. One vector wi chosen to
be the gradient vector, say g. The other vector wi chosen to be the previous descent
step vector, say s = x; —X;_1. Instead of g e need a linear combination, say ag+8s. For
minimizing quadratic functions the plane search requires only the solution of a two-by-two
set of linear equations for o and 5.

The conjugate-direction (CD) method described in this book has a magical property
shared by the more famous conjugate-gradient method. This magical property is not proven
in this book, but it may be found in many sources. Although these methods are iterative
methods, { converge on the exact answer (assuming perfect numerical precision) in a
fixed number of steps. That number is the number of components in model space x.

om _iterative methods is if @happen to require less than the

i i bf iterations. Whethey that is so, depends on the problem at
hand. Reflection seismology has many problems so ﬁsiv are said to be solved simply

by one application of the adjoint operator. The idea\that such solutions might be improved
by a small number of iterations is very appealing.

" ot

2.3. KRYLOV SUBSPACE ITERATIVE METHODS ' o1

2.3.6 Conjugate-direction theory for programmers 4 S
|
Fourier-transformed variables are often capitalized. This convention wil-be helpful here, so
in this subsection only, we capitalize vectors transformed by the F matrix. As everywhere, a
matriwuch as\Fpis printed in boldface type but in this subsection, vectors are not printed
in bolc?facep&) Thughwe efine the solution, the solution step (from one iteration to the
next), and the gradient)b .

X = Fz ‘modeled data = F model | (2.65)

S; = Fsj model solution step (2.66)
G; = Fyg; Ar = FAm (2.67)

A linear combination in solution space, say s + g, corresponds to S + G in the conjugate
space, the data space, because S+ G = Fs+Fg = F(s +g). According to equation (2.50),

the residual is the modeled data minus the observed data.
- -

R = Fz-D = X - D (2.68)
The solution z is obtained by a succession of steps s;, say@
x = 8 + 89 + s3 + - (2.69)
The last stage of each iteration is to update the solution and the residual:

solution update : T —z +s8 (2.70)
residual update : R «R +58 (2.71)

The gradient vector g is a vector with the same number of components as the solution
vector . A vector with this number of components is@

g = F*R = gradient (2.72)
G = Fg = conjugate gradient = Ar (2:73)
The gradient g in the transformed space is G also known as the conjugate gradient.

o)
What with our solution update Ax =s bg It will-ke some unknown amount « of the
gradient g plus another unknown amount § of the previous step s. Likewise in residual
space.
Ax = ag+ s model space (2.74)
Ar = oG+ S data space (2.75)

The minimization (2.55) is now generalized to scan not only in a line with «, but
simultaneously another line with 4. The combination of the two lines is a plane. We now
set out to find the location in this plane that minimizes the quadratic Q.

Q(,3) = (R+aG+p6S) - (R+aG+p9) (2.76)
The minimum is found at 9Q/da = 0 and 0Q/0f = 0, namely,

0 = G- (R+aG+pS) (2.77)
0 = S (R+aG+85) (2.78)

L]

52 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

G-R] _ [G6 (56)][a
[(S'R)} B [(GS) (S.S)W{ﬁ} (2.79)

”is a set of two equations for o and (. Recall the inverse of a 2 x 2 matrix, equation
00). -

{a} _ ~1 [(S-9) —(S-G)} [(G~R)} (2.80)
g G S 8=-(G-82| -G-8 (G-G) (S-R) '

The many applications in this book all need to find o and 8 with (2.80 nd then
update the solution with (2.70) and update the residual with (2.71). Thuw/e ackage
these activities in a subroutine named cgstep(). To use that subroutingAw W‘I‘Héhave a
computation template with repetitive work done by subroutine cgstep() ' This template
(or pseudocode) for minimizing the residual 0 ~ r = Fx — d by the conjugate-direction
method is@

r «— Fx-d
iterate {
Ax «— F'r
Ar «— F Ax
(x,r) «— cgstep(x,r, Ax, Ar)

}

where the subroutine cgstep() remembers the previous iteration and works out the step
size and adds in the proper proportion of the Ax of the previous step.

2.3.7 Routine for one step of conjugate-direction descent

Because Fortran does not recognize the difference between upper- and lower-case letters,
the conjugate vectors G and S in the program are denoted by gg and ss. The inner part
of the conjugate-direction task is in function cgstep().

one step of CD.r90

module cgstep.mod {

real , dimension (:), allocatable, private i s, ss
contains
integer function cgstep(first, x, g, rr, gg) {
real , dimension (:) :: x, g, 1T, g8
logical o first
double precision :: sds, gdg, gds, determ, gdr, sdr, alfa, beta
if(.not. allocated (s)) { first = .true.

allocate (s (size (x)))
)))

allocate (ss (size (rr

if (first){ s = 0.; ss = 0.; beta = 0.d0 # steepest descent
if (dot-product(gg, gg) = 0)
call erexit(’cgstep: grad vanishes identically’)
alfa = — sum(dprod(gg, rr)) / sum(dprod(gg, gg))

else{ gdg = sum(dprod(gg, gg)) # search plane by solving 2-by-2

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 53

sds = sum(dprod(ss, ss)) #

gds = sum(dprod(gg, ss)) # (R — Gxalfa — Sxbeta)
if (gdg==0. .or. sds==0.) { cgstep 1; return }

determ = gdg * sds x max (1.d0 — (gds/gdg)#(gds/sds), 1.d—12)

G . (R — Gxalfa — Sxbeta)
S

gdr = — sum(dprod(gg, rr))

sdr = — sum(dprod(ss, rr))

alfa = (sds % gdr — gds % sdr) / determ

beta = (—gds * gdr + gdg * sdr) / determ

}
s = alfa % g + beta x s # update solution step
ss = alfa * gg + beta x ss # update residual step
Xx = x4+ s # update solution
rr = rr 4+ ss # update residual
first = .false.; cgstep =0

}

subroutine cgstep-close () {
if(allocated(s)) deallocate(s, ss)

} L]
} 1S
Observe the cgstep() function has a logical parameter called first/ This parameter
does not need to be input. In the normal c&e of things, first wi 3 true on the first

iteration and false on subsequent iterations. refers to the fact that on the first iteration,

there is no previous step, so the conjugate direction method is reduced to the steepest
descent method. At any iteration, however, you have the option to set f irst=.trued"‘ D
which amounts to restarting the calculation from the current location, something we rarely

find reason to do.

2.3.8 A basic solver program

are
There are many different methods for iterative least-square estimation some of which wilt”
‘b‘@/driscussed later in this book. The conjugate-gradient (CG) family (including the first
order conjugate-direction method&escribed a-bei') share the property that theoretically
they achieve the solution in n iterations, where n is the number of unknowns. The various
CG methods differ in their numerical errors, memory required, adaptability to no&%ear
optimization, and their requirements on accuracy of the adjoint. What we do in this section
is to show you the generic interface.

None of us is an expert in both geophysics and in optimization theory (OT), yet we need
to handle both. We would like to have each group write its own code with a relatively easy
interface. The problem is that the OT codes must invoke the physical operators yet the
OT codes should not need to deal with all the data and parameters needed by the physical
operators.

In other words, if a practitioner decides to swap one solver for another, the only thing
needed is the name of the new solver.

The operator entrance is for the geophysicist, who formulates the estimation application.
The solver entrance is for the specialist in numerical algebra, who designs a new optimization
method.

The Fortran-90 programming language allows us to achieve this design goal by means
of generic function interfaces.

54 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

A generic solver subroutine solver() is shown in module smallsolver. It is simplified
substantially from the library version, which has a much longer list of optional arguments@

generic solver.r90

module smallsolver {

logical , parameter, private :: AJ = .true., FW = .false.
logical , parameter, private :: AD = .true., ZP = .false.
logical , private :: first
contains
subroutine solver(oper, solv, x, dat, niter, x0, res) {
optional 0 x0, res
interface {
integer function oper(adj, add, x, dat) {
logical , intent (in) :: adj, add
real , dimension (:) :: x, dat
}
integer function solv(first, x, dx, r, dr) {
logical oo first
real , dimension (:) :: x, dx, r, dr
}
} .
real , dimension (:), intent (in) :: dat, x0 # data, initial
real , dimension (:), intent (out) :: x, res # solution , residual
integer , intent (in) :: niter # iterations
real , dimension (size (x)) piodx # gradient
real , dimension (size (dat)) ioor, dr # residual , conj grad
integer :r i, stat
r = — dat
if (present(x0)) {
stat = oper(FW, AD, x0, r) # 1r <— F x0 — dat
x = x0 # start with x0
}
else {
x = 0. # start with zero
}
first = .false.
do i = 1, niter {
stat = oper(AJ, ZP, dx, r) #dx < F’r
stat = oper(FW, ZP, dx, dr) # dr <— F dx
stat = solv(first, x, dx, r, dr) # step in x and r
}
if(present(res)) res =1
}

}

(The first parameter is not needed by the solvers we discuss first.)

is defined by the interface from Chapter I,’and the solver function solv, which implements
one step of an iterative estimation. For example, a practitioner who choses to use our new
cgstep () for iterative solving the operator matmult}x/\ould' write the cal@

The two most important arguments ilaolver() are the operator function oper, which
3

call solver (matmult_lop, cgstep, ... sp,,uv

The other required parameters to solver() are dat (the data we want to fit), x (the
model we want to estimate), and niter (the maximum number of iterations). There i QN
also a couple of optional arguments. For example, x0 is the starting guess for the model.

N

/)
\‘\6& timization may diverge while theoretically converging. The conjugate direction method
(’_—%ER@ mind the roundofg }{ simply takes longeg to converge.

o

2.3. KRYLOV SUBSPACE ITERATIVE METHODS 55

If this parameter is omitted, the model is initialized to zero. To output the final residual
vector, we include a parameter called res, which is optional as well. We will watch how the
list of optional parameters to the generic solver routine grows as we attack more and more
complex applications in later chapters.

2.3.9 Fitting success and solver success

Every time we run a data modeling programaye have access to two publishable numbers
1—|r|/|d| and 1 — [F*r|/|F*d|. The first says how well the model fits the data. The second
says how well we did the job of finding out. ;5

Define the residual r = Fm — d and ghe “sizg” of any vector, such as the data vector,
as |d| = vd-d. The number 1 — |r|/|d|fwu called the “success at fitting data.” (Any
data-space weighting function should have been incorporated in both F and d.)

While the data fitting success is of interest to everyone, the second number 1—|F* r|/[F* d|

is of interest in QA (quality analysis). In giant problems, especially those arising in seis-

y, running iterations to completion is impractical. A question always of interest is

Mnough iterations have been run. This number gives us guidance to where more
effort could be worthwhile.

0 < Success < 1
Fitting success: 1 — |r|/|d|
Numerical success: 1 — |[F*r|/|F*d|

2.3.10 Roundoff

jugate-direction method defined in this
method defined in the fofmal professional
tell you why.

Surprisingly, as a matter of practice, the simple
book is more reliable than the conjugate-gradi
literature. I know this sounds unlikely, but

In large application#umerical roundoff can be a problem. Calgulations need to be
done in higher precision. The conjugate gradient method depends pn you to supply an
operator adjoint is correctly computed. Any roundoff in computing the operator
should somehow be matched by the roundoff in the adjoint is unrealistic. Thus /™

)

e wiaek

Let us see an example of a situation wiere roundoff becomes a problem. Suppose we
00 You expect the sum to be 100 million. I got a sum of 16.7 million.
Whyss=this? After the sum gets to 16.7 millior}@dding a one to it adds nothing. The extra
1.0 disappears in single precision roundoft.)

»

real function one(sum); one=1.; return; end
integer i; real sum
do i=1, 100000000

sum = sum + one(sum)

56 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

write (0,*) sum; stop; end
4. 6777216E+O.7 S

PUZ-VO

st
Th9\code must be a little more complicated than I had hopedAbecause modern

compilers are so clever. When told to add all the values in a vecto know it is wise
to add the numbers in groups, and then add the groups. Thu hadAo hide the fact I was
adding ones by getting from a subroutine that seems t depeni?on the sum (but

really do??&.\o _(’

2.3.11 Test case: solving some simultaneous equations

Noyrve assemble a module cgmeth for solving.simultaneous equations. Starting with the
conjlgate-direction module cgstep;nod»we insert the module matmult as the linear opera-
tor.)

demonstrate CD.r90

module cgmeth {

use matmult

use cgstep_mod

use solver_tiny._.mod
contains’

setup of conjugate gradient descent, minimize SUM rr(1)%%2

#° nx

rr(i) = sum fff(i,j) = x(j) - yy(i)

i=1

subroutine cgtest(x, yy, rr, fff, niter) {
real, dimension (:), intent (out) :: x, 11
real , dimension (:), intent (in) :: yy
real , dimension (:,:), pointer o fff
integer , intent (in) :: niter

call matmult_init(fff)

call solver_tiny (m=x, d=yy, &
Fop=matmult_lop, stepper=cgstep, &
niter=niter , resd=rr)

call cgstep-close ()

ik{sﬂ— A/

shows the solution togh x 4 set of simultaneous equations. Observe that the
“exact” solution is obtained in the last step. Because the data and answers are integers, it
is quick to check the result manually.

d transpose
3.00 3.00 5.00 7.00 9.00

F transpose

1.00 1.00 1.00 1.00 1.00
1.00 2.00 3.00 4.00 5.00
1.00 0.00 1.00 0.00 1.00
0.00 0.00 0.00 1.00 1.00

for iter = 0, 4
b4 0.43457383 1.56124675 0.27362058 0.25752524

2.4. INVERSE NMO STACK 57
res -0.73055887 0.55706739 0.39193487 -0.06291389 -0.22804642
x 0.51313990 1.38677299 0.87905121 0.56870615
res -0.22103602 0.28668585 0.55251014 -0.37106210 -0.10523783
x 0.39144871 1.24044561 1.08974111 1.46199656
res -0.27836466 -0.12766013 0.20252672 -0.18477242 0.14541438
x 1.00001287 1.00004792 1.00000811 2.00000739
res 0.00006878 0.00010860 0.00016473 0.00021179 0.00026788 -
x 1.00000024 0.99999994 0.99999994 2.00000024 .
res -0.00000001 -0.00000001 0.00000001 0.00000002 -0.00000001
.
2.3.12 W Fortran 90 is much better than Fortran 77

Is/ike to digress from our geophysics-mathematics themes to explain why Fortran 90
has been a great step forward over Fortran 77. Many of the illustrations in this book
were originally computed in F77. The odule smallsolver() was simply a subroutine.
It was not one mo for the whole bo }i, as it is now, but it was many conceptually
identical subroutines/idozens ne ‘subroutine for each application. The reason for
the proliferation was that F77 lacks the ability of F90 to represent operators as having two
ways to enter, one for science and another for math. On the other hand, F77 did not require
the half e/page of definitions that we see here in F90. Bufathe definitions are not difficult to
understandfyand are a clutter that we must see once and never again. Another benefit
is that the book in F77 had no easy way to switch from the cgstep solver to other solvers.

2.4 INVERSE NMO STACK

To illustrate an example of solving a huge set of simultaneous equations without ever writing
down the matrix of coeﬁicienty&ye consider how back projection can be upgraded towar
tnwversion in the application galled moveout and stack.

Model TR _ mm
__ [mm fm
[___[nm
i} [
Figure 2.6: Top is a model trace m. m m
Nextaare the synthetic data traces, Synthe- " m mmﬂlﬂ]ll
d =/Mm. Then, labeled niter=0 tic data i L
is the stack, a result of processing i :
by adjoint modeling. Increasing val- L
ues of niter show m as a function |
of iteration count in the fitting goal mitara b
d ~ Mm. (Carlos Cunha-Filho) niter=1____ jmifi i
iter=2 Tl
VIEW l?q/ . invstaCkQOl ﬁitZLB—Mm
niter=4 [Jli

I I f I I
2 25 8 35 4

lime,sec

The seismograms at the bottom of Figure 2.6 show the first four iterations of conjugate-
direction inversion. You see the original rectangle-shaped waveform returning as the it-

58 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

amplitudes, but after enough iterations bhw’ﬁe equal, as began. Mathematically, we
can denote the top trace as the model m, the synthetic data signals as d = Mm, and the
stack as M* d. The conjugate-gradient algorithm optimizes the fitting goal d ~ Mx by vari-
ation of x, and the figure shows x converging to m. Because there are 256 unknowns in m,
it is gratifying to see good convergence occurring after the first four iterations. The fitting is
done by module invstack, which is just like cgmet cept the matrix-multiplication
operator matmult has been replaced by imospray. S’tudying the program, you can deduce
that, except for a scale factor, the output at niter=0 is identical to the stack M*d. All the
signals in Figure 2.6 are intrinsically the same scale.

erations proceed. Notice also on the stack that the earlﬁ and late events have unequal

inversion stacking.r90

module invstack {
use imospray
use cgstep-mod
use solver_tiny_-mod

contains
NMO stack by inverse of forward modeling
subroutine stack(nt, model, nx, gather, t0,x0,dt,dx,slow, niter) {
integer nt , nx, niter
real model (:), gather (:), t0,x0,dt,dx,slow

call imospray-init(slow, x0,dx, t0,dt, nt, nx)
call solver_tiny(model, gather, imospray.lop, cgstep, niter)
call cgstep_close (); call imospray.-close () # garbage collection

}

This simple inversion is inexpensive. Has anything been gained over conventional stack?
First, though we used nearest-neighbor interpolation, we managed to preserve the spectrum
of the input, apparently all the way to the Nyquist frequency. Second, we preserved the
true amplitude scale without ever bothering to think about (1) dividing by the number of
contributing traces, (2) the amplitude effect of NMO stretch, or (3) event truncation.

With depth-dependent velocity, wave fields become much more complex at wide offset.
NMO soon fails, but wave-equation forward modeling offers interesting opportunities for
inversion.

2.5 FLATTENING 3-D SEISMIC DATA

Here is an expression that on first sight seems to say nothin@

or

Oz

Vr = (2.81)

or

oy
Equation (2.81) looks like a tautology, a restatement of basic mathematical notation.
is so, however, only if 7(z,y) is known and the derivatives come from it. When 7(z,y) is
not known but the partial derivatives are observed, thenawe have two measurements at each
(z,v) location for the one unknown 7 at that location.’In Figure Z.We have seen how to
flatten 2-D seismic data. The 3-D process (z,y, 7) is much more inte!esting because of the
possibility encountering a vector field that cannot be derived from a scalar field.

s Te

2.5. FLATTENING 3-D SEISMIC DATA 99

oK

The easy case is when y;)u(él move around the (z,y) plane adding up 7 by Steps of
dr/dx and dr/dy and find pon returningto your starting location that the fotal t bgrﬁ

change 7 is zero. When dr/dz and d7/dy were derived from noisy data, that not

Old time seismologists would say, “The survey lines don’t tie.” Mathematicall is like
an electric field vector that may be derived from a potential ﬁelgkunless the loop éncloses a
changing magnetic field. “-5

T We would like a sorl'ﬁon for 7 that gives the best fit/of all the data (the stepouts dr/dx

and dr/dy) in a volu Given a volume of data d(f,z,y Ne seek the best 7(z,y) such
that w(t,z,y) = d(t — 7(z,y), z,y) is flattened. L get it,

We write a regression, a residual r that we ocr?;%X gt small to find a best fitting

7(x,y) or maybe 7(z,y,t). Let d be the measurements in the vector in f,quatlon (2.81), the
measurements throughout the (¢,z,y)-volume. Expressed as a regressm}ge‘guatlon (2.81)
become@)

0 ~ r = Vr-d (2.82)

Figure 2.7 shows slices through a cube of seismic data. A paper book is inadequate to
display all the images require to compare before and after (one image of output is blended
e move on to a radar application of much the same idea,

over multiple images of inpu
but in 2-D instead of 3-D.

¥€e02— ¥EEGI—

(1) £
78862 —

20¥'0 ¥€€0€—

=

3

@

% 25995 30995 35995 40995
v (1)

Figure 2.7: [Jesse Lomask] Chevron data cube from ghe Gulf of Mexico. A salt dome
(lower left corner in the top plane) has pushed upwards;’dragging bedding planes (seen in

the bottom two orthogonal planes) along with it. |[VIEW| |lsq/. chev

WAI‘
- 8

60 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

2.6 VESUVIUS PHASE UNWRAPPING

+

Figure 2.8 shows radar images of Mt. Vesuvius! in Italy. These images_are made from
backscatter signals s1(t) and s (t), recorded along two satellite orbits 800km high and 54,{"
m apart. The signals are very high frequency (the radar wavelength being 2.7 cm).
were Fourier transformed and one multiplied by the complex conjugate of the other, getting
the product Z = S (w)S2(w). The product’s amplitude and phase are shown in Figure 2.8.
Examining the data, you can notice that where the signals are strongest (darkest on the
left), the phase (on the right) is the most spatially consistent.

8] 100 200 300 400 500 600 700 (6] 100+ ‘200 300 400 500 600 700

Amplitude

Figure 2.8: Radar image of Mt. Vesuvius. Left is the amplitude |Z(z,y)|. Nonsreflecting
ocean in uppe}fleft corner. Right is the phase arctan(Re Z(z,y),Im Z(z,y)). (European

Space Agency via Umberto Spagnolini) |VIEW Iﬁl/ ; vesuvio940|

To reduce the time needed for analysis and printing, I reduced the data size two different
ways, by decimation and ocal averaging, as shown in Figure 2.9. The decimation was
to about 1 part in 9 on each axis, and the local averaging was done in 9 x 9 windows giving
the same spatial resolution in each case. The local averaging was done independently in
the plane of the real part and the plane of the imaginary part. Puttingack together
again showed that the phase angle of the averaged data behaves much more consistently.

From Figures 2.8 and 2.9\we see that contours of constant phase appear to be contours

of constant altitude; this conClusion leads us to suppose that a study of radar theory would U

lead us to a relation like Z(z,y) = eih(“”y)lwhere h(z,y) is altitude. We nonjradarfspecialists
often think of phase in e*® = ewto(@Y) ag l?eing caused by some time dela; aand being defined
for some constant frequency w. Knowledge of this w (as well as some angle parameters)
would define the physical units of h(z,y).

Because the flat land away from the mountain is all at the same phase (as is the altitude),
the distance as revealed by the phase does not represent the distance from the ground to

1 A web search engine quickly finds you other views.

2.6. VESUVIUS PHASE UNWRAPPING 61

decimated smoothed

Figure 2.9: Phase based on decimated data (left) and smoothed data (right). [VIEW
Ilsq/ . squeeze90|

datu ut heretthe distance seems to be measured from the ground along a 23° angle from

the satellite viewer. We are accustomed to measuring altitude along a vertical line to a
¢
the vgtical to aldatum at the satellite height.

Phase is a troublesome measuremenﬁecause we generally see it modulo 27. Marching
up the mountainawe see the phase getting’ lighter and lighter until it suddenly jumps to blacka,
which then Cont‘{nues to lighten as we continue up,the mountain to the next jump. Let u
undertake to compute the phasyi.ncluding all e;/its jumps of 2. Begin with a complex
number Z representing the complex-valued image at any location in the (z,y)-plane.

re = Z (2.83)
In|r|+i¢p = InZ (2.84)
U’" #(z,y) = Im InZ(z,y) + 27N(z,y) (2.85)
A computer .mﬁl find the imaginiﬁar of the logarithm with the arctan function of two
arguments, atan2(y,x), which s pt%the phase in the range —7m < ¢ < mpalthough
any multiple of 27 could be added. e seem to escape the 2mN phase ambiguity by
differentiating:
29 1oz _ mzE thevfereg
e e S pranut = . 2.
0x o Z 0z VA) (2.56)

For every point on the y-axis, gquation (2.86) is a differenfial/equation on the z-axis, and

we could integratall t6 find qb(ac,y)/rw asy. On the other hand, the

same equations are valid when z and y are interciang 'lsd we get twice as many equations

as unknowns. For ideal data, either of these sets of equations should be equivalent to the

oth@but for real dat7\we expect to be fitting the fitting goa@
) Im ZVZ

ve A7

(2.87)

62 CHAPTER 2. MODEL FITTING BY LEAST SQUARES
MCW

where V = (a%, 8%) @is essentially the same application we solved flattening seismic

data with the regression V7 ~ d. Taking megsurements to be phase differences between

neighboring mesh points, it is more correct/to interpret gquation (2.87) as a difference

equation than a differential equation. Si we measure phase differences only over tiny

distances (one piere hope not to worry about phases greater than 2. Bu}‘if such jumps
8 7

do occur,(?ontribute to overall error.

Let us consider a typical location in the (z,y) plane where the complex numbers Z; ;
are given. Define a shorthand a, b, ¢, and d as follows:

a b Zij Zz 41
= ' ’ 2.88
[¢ d } [Zit1j Zit1,+1 (2.88)

With this shorthand, the difference equation representation of the fitting goal (2.87) is:

biv1j — bij = Aac
h i 2.89
Bigii—big ~ Ada (2:89)
Novylet us find the phase jumps between the various locations. Complex numbers a and
b ma?y be expressed in polar form, say a = ree'®s and b = rpe®. The complex number

ab = rarpet(®=9%) has the desired phase %TO obtain i}\gve take the imaginary part of
]
*

the complex logarithm In |rg7p| + iA¢ap)
¢p— o = Adgy = Im Inad
¢qg— e = Apa = Imlncd

¢a—dp = OAdpa = Im Inbd

N el : YL (2.90))
be—ba = Db = Iml v\f"’l %&"AMI

which gives the information needed to fill in the righ side of (2.89), as done by
subroutine makedata() from module unwrap.

The operator needed is igrad2, gradient with its adjoint, the divergence.

gradient 2-D..lop

module igrad2 { # 2-D gradient with adjoint, r= grad(p)
integer :: nl, n2
#-init (nl, n2)
#%_lop (p(nl, n2), 1r(nl,n2,2))
integer 1i,]
do i= 1, nl-1 {
do j= 1, n2-1 {
i (adj) {
p(i+1,j) 4= r(i,j,1)
p(i)) - r(i’jzl)
p(i ,j+1) += r(i,j,2)
p(l)j) - I‘(i,j,?) :
&
else { r(i,j,1) += (p(i+1,j) — p(i,i))"
I‘(i,j,2) = (p(173+1)_p(1»3))
}
b}

2.6. VESUVIUS PHASE UNWRAPPING 63

2.6.1 Estimating the inverse gradient

To optimize the fitting gpal (2.89), module unwrap () uses the conjugate-direction method
like the modules cgmetr(() and invstack(@

Inverse 2-D gradient.r90

module unwrap {
use cgstep-mod
use igrad?2
use solver_smp.mod ,

contains
subroutine makedata(z, nl,n2, rt) {
integer i, j, nl,n2
real rt(nl,n2,2)
complex z(nl,n2), o a,b,c
rt = 0.
do i= 1, nl-1 {
do j= 1, n2-1 {
= z(i ,j)
c= z(i+l,j); rt(i,j,1) = aimag(clog(¢ * conjg(a)))
b= z(i, j+1); rt(i,j,2) = aimag(clog(b * conjg(a)))
}}
}
Phase unwraper. Starting from phase hh, improve it.
subroutine unwraper(zz, hh, niter) {
integer nl,n2, niter
complex 2z (% 5%)
real hh (:)
real , allocatable :: rt(:)
nl = size(zz, 1)
n2 = size(zz, 2)

allocate (rt(nlxn2x2))

call makedata(zz,nl,n2, rt)

call igrad2_init(nl,n2)

call solver_smp(hh, rt, igrad2_.lop, cgstep, niter, mO=hh)
call cgstep-close ()

deallocate(rt)

i
} N V\})(
An open_question is whetherpthe required number of iterations is reasonable or wirether
we wsu.).&gr'leed to uncover a preconditioner or more rapid solution method. I adjusted the

frame size (by the amount of smoothing in Figure 2.9) so that I would get the solution in
about Tseconds with 400 iterations. Results are shown in Figure 2.10.

2.6.2 Analytical solutions

We have found a numerical solution to fitting applicationj&s_uch as

0 =~ VT—d ! (2.91)

An analytical solution vn-ll-b?J much faster. From any regresswsze get the least squares

solution when we multiply by the transpose of the operator. Thus A

I
0 = V*Vr - v*d (2.92)

64 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

o 100 200 300 400 500 600 100 200 300 400 500 600
| Il 1 1 1

001

002

00¢

00+

00§

009

3
ltitude as density, (as contours’

Figure 2.10: Estimated altitude. ‘lsq/ . veshighg(ﬂ
Lo conar—

We need to understand what is the transpose of the gradient operator. Recall the finite
difference representation of a derivative in chapter 1,/Ignoring end effects, the transpose
of a derivative is the negative of a derivative. &i the transpose of a column vector is a
row vector, the adjoint of a gradient V, namely, V* is more commonly known as the vector
divergence (V-). LikewisghV *V is a positive definite matrix, the negative of the Laplacian
V2. Thus, in more conve?ltional mathematical notation, the solution 7 is that of Poisson’s
equation.

Vir = -V-.d (2.93)

In the Fourier domainAwe can have an analytic solution. Thergg:v2 = k%-{—kg where (kz, ky)
are the Fourier frequgncies on the (z,y) axes. Instead of th‘[’nking of equation (2.93) as a
convolution_in physical space, think of it as a product in Fourier space? Thus, the analytic
solution is(
. L FT V-d ,
T(z,y) = FT 2T (2.94)
where FT denotes two-dimensional Fourier transform over z and y . Here is a trick from
numerical analysis that gives better results: Instead of representing the denominator k2 +k§
in the most obvious way, let us represent it in a manner consistent with the finite-difference
way we expressed the numerator V - d. Recall that —iwAt ~ i0At = 1-2 =1 -
exp(—iwAt)awhich is a Fourier domain way of saying that differenge equations tend to
differential elquations at low frequencies. Likewis%\f symmetric second time derivative has
a finite-difference representation proportional to (-2 + Z 4 1/Z) and in a two-dimensional
space, a finite-difference representation of the Laplacian operator is proportional to (—4 +
X+1/X+Y + 1/YWhere X = exp(ik,Az) and Y = exp(ikyAy). Fourier solutions have
eculiarities7 (periodic boundary condition icjt are not always appropriate in
practice, but having these solutions available is often a'nice/place to start from when solving
an application that cannot be solved in Fourier space.

2.7. THE WORLD OF CONJUGATE GRADIENTS 65

For example, suppose we feel some data values are ba,gﬂand we would like to throw out
the regression equations involving the bad data points. AR Vesuviuﬁ_ye might consider the
strength of the radar return (which we have previgusly ignored) add use it as a weighting
function W. Nokur regression (2.91) become{é

/ 0 ~ W ({V¢-d) = (WV)p — Wd (2.95)

<i his)is a problem we know how to solve, a regression with an operator WV and data

. The weighted problem is not solvable in the Fourier domaigbecause the operator

(WV)* WV has no simple expression in the Fourier domain. Tﬁuy\we would use the

analytic solution to the unweighted problem as a starting guess for the Tterative solution to
the real problem.

With the Vesuvius data/we could construct a weight W from the signal strength. We
also have available the curl, Xwhich should vanish. Vanishing is an indicator of questionable
data W'h?x could be weighted down relative to other data.

2.7 THE WORLD OF CONJUGATE GRADIENTS

Nonlinearity arises in two ways: First, modeled data might be a nonlinear function of the
model parameters. Second, observed data could contain imperfections that force us to use
nonlinear methods of statistical estimation.

2.7.1 Physical nonlinearity

When standard methods of physics relate modeled data dipeor to model parameters m,
often use a nonlinear relation, say dineor = f(m). The power-series approach then leads to
representing modeled data as

dtheor = f(mO + Am) ~ f(m()) + FAm (296)

where F is the matrix of partial derivatives of data values by model parameters, say
dd;/Omj, evaluated at mg. The modeled data dineor minus the observed data dgps is
the residual we minimize.

0 ~ dipeor —dobs = FAm+ [f(mp) — dops] (2.97)
is Tnew = FAMmM4rgyqg (2.98)

It is worth notiging that the residual updating (2.98) in a nonlinear application is the same
as that in a liiear application (2.54). If you make a large step Am, however, the new
residual wi different from that expected by (2.98). Thusgyou should always re-evaluate
the residual vector at the new location, and if you are reasggably cautious, you should be
sure the residual norm has actually decreased before you accept a large step.

The pathway of inversion with physical nonlinearity is well developed in the academic
literature/and Bill Symes at Rice University has a particularly active group.
Y

There are occasions to change the weighting function during model fitting. Thep@ne
simply restarts the calculation from the current model. In the co%you would flag a reStart
with the expression first=.false.)

66 CHAPTER 2. MODEL FITTING BY LEAST SQUARES

2.7.2 Coding nonlinear fitting problems w’/‘m’”‘a,‘ftél(

We can solve nonlinear least-squares problems in same way as we do iteratively

reweighted ones. A simple adaptation of a linear method gives us a nonlinear solver if the
residual is recomputed at each iteration. Omitting the weighting function (for simplicity)
the template is:

iterate {

r «— f(m)-d

Define F = 6d/0m.

Am ««— F*r

Ar +«— F Am

(m,r) «— step(m,r,Am,Ar)

} 3
Capsr 3

A formal'theory for the optimizationéxists, but we are not using it here. The assumption

we make is that the Step size wi small, so that familiar line-search and plane-search
approximations witfsucceed in reducing the residual. Unfortunatelyafhis assumption is not
reliable. What we should do is test that the residual really does &ecrease, and if it does
notAwe should revert to steepest descent with a smaller step size. Perhapwe should test
an incremental variation on the status quo: where inside solver, we chedk to see if the

residual diminished in the previous step? hnd if it did not, restart the iteration (choose the
current step to be steepest descent instéad of CD).

Experience shows that nonlinear applications have many pitfalls. Start with a linear
problem, add a minor physical improvement or abnormal noise, and the problem becomes
nonlinear and probably has another solution far from anything reasonable. When solving
such a nonlinear problem, we cannot arbitrarily begin from zero aggwe do with linear prob-
lems. We must choose a reasonable starting guess. Chapter 3 on tHe topic of regularization
offers an additional way to reduce the dangers of nonlinearity.

2.7.3 Inverse of a 2 x 2 matrix

A A = 1 (2.99)
1 d —b a b 10
ad~bc[—c a} {cd] = {o 1} (2100}
EXERCISES:
@It is possible to reject two dips with the operato@
(8 + p10:)(Oz + p20t) (2.101)
This is equivalent t@

82 82 82
(8:32 + a5 o + b8t2> u(t, x) v(t, z) 0 (2.102)

2.7. THE WORLD OF CONJUGATE GRADIENTS 67

where u is the input signajtand v is the output signal. Show how to solve for a and b
by minimizing the energy in v.

%.) Given a and b from the previous exercise, what are p; and pp?

30Reduce d = Fm to the special case of one data point and two model points like thi@
_ mi
d = [21]{@} (2.103)
Fm Cuwf

@In 1695, 150 years before Lord Kelvin’s absolute temperature scale, 120 years before
Sadi Carnot’s PhIDihesis, 40 years before Anders Celsius, and 20 years before Gabriel
Fahrenheit, the French physicist Guillaume Amontons, deaf since birth, took a mercury
manometer (pressure gange) and sealed it inside a glass pipe (a constant volume of air).
He heated it to the boiling point of water at 100°C. As he lowered the temperature to
freezing at 0°C, he observed the pressure dropped by 25% . He could not drop the
temperature any furthegabut he supposed that if he couldﬁ‘rop it further by a factor
of three, the pressure wduld drop to zero (the lowest possible pressurejand the tem-
perature would have been the lowest possible temperature. Had he lived after Anders
CelsiugAbe might have calculated this temperature to be -300°C (Celsius). Absolute
zero is how known to be -273°C.)
/I, s It is vour job to be Amontons’ lab assistant. Your ith measurement of temperature 7;
WM ? Qou make WithiIssac Newton'’s thermometel;f,nd you measure pressure FP; and volume
V; In the Thetric system. Amontons needs you to fit his data with the regression 0 ~
a(T; — Tp) — B;V; and calculate the temperature shift Tp that Newton should have made
when he defined his temperature scale. Do not solve this problem! Instead, cast it
in the form of equation (2.23), identifying the data d and the two column vectors f

and fo that are the fitting fur.lstions. Relate the model parameters x; and x3 to the

W physical parameters o and Ty . Suppose you make ALL your measurements at room
temperature, can you find T oL Why or why not?

W &t ‘W

What is the null space?

One way to remove a mean value m from signal s(t) = s is with the fitting goal 0 = s—m.
What operator matrix is involved?

@ What linear operator subroutine from Chapter 1 can be used for finding the mean?
7@ How many CD iterations should be required to get the exact mean value?

@ Write a mathematical expression for finding the mean by the CG method.

68

CHAPTER 2. MODEL FITTING BY LEAST SQUARES

Chapter 3

Regularization is model stylings)
N

Regularization is a method used in mathematics and statistics to deal with insufficient
;réormation. The reader must supply additional information in the form of a&‘?perator.
3 here ig,this operator to come ﬁne;a/and what does it mean? It amounts to u };}\ac’citioners A
M 3 13 b2 3 3 .
specify g a style” of model. Where the model is a signal or an imagealf amounts to}
specifying one weighting function in physical space and another in Fourier space.

3.1 EMPTY BINS AND INVERSE INTERPOLATION

A method for restoring missing data is to ensure that the restored data, after specified M’ o
filtering, has minimum energy. Specifying the filter chooses the interpolation philosophﬂ wﬁ‘t ?
Generally the filter is a roughening filter. When a roughening filter goes off the end of %’ X
smooth data, it typically produces a hig end transient. Minimizing energy implies a choice
for unknown data values at the endﬁg minimize the transient. We fexamine five casesq_

)

and then make some generalizations.

A method for restoring missing data is to ensure that the restored data, after specified
filtering, has minimum energy.

Let u denote an unknown (missing) value. The dataset on which the examples are
based is (---,u,u, 1,4,2,1,2,u,u,-). TheoreticallyAwe could adjust the missing u values
(each different) to minimize the energy in the unﬁlter%d data. Those adjusted values would
obviously turn out to be all zeros. The unfiltered data is data that has been filtered by an
impulse function. To find the missing values that minimize energy out of other filters, we
can use subroutine mis1(). Figure 3.1 shows interpolation of the dataset with (1, —1) as a
roughening filter. The interpolated data matches the given data where they overlap.

;_ ‘es 3.1-3.4 illustrate that the rougher the filter, the smoother the interpolated

agand vice versa. Let us switch our attention from the residual spectrum to the residual wat

The residual for Figure 3.1 is the slope of the signal (because the filter Q, —1} is a v\‘

Tst derivative), and the slope is constant (uniformly distributed) along the straight lines
where the least-squares procedure is choosing signal values. So pthese examples confirm M

the idea that the least-squares method abhors large values (bécause they are squared). eM

]
.

69

70 CHAPTER 3. REGULARIZATION IS MODEL STYLING

Figure 3.1: Top is given data. Mid-
dle is given data with interpolated
values. Missing values seem to be in-
terpolated by straight lines. Bottom
shows the filter (1, —1), #vhosg out-

put has minimum energy. VIEW

iin/. mlines90

Figure 3.2: Top is the same input
_data as in Figure 3.1. Middle is in-
~ terpolated. Bottom shows the fil-
ter (—1,2,—1). The missing data
seems to be interpolated by parabo-

las. \iin/. mparab90J

Figure 3.3: Top is the same in-
put. Middle is interpolated. Bot-.
tom shows the filter (1,-3,3,—1).
The missing data is very smooth.
It shoots upward high off the right
end of the observations, apparently
to match the data slope there.

ViEw

Figure 3.4: Bottom shows the
filter (1,1). The interpolation._is
rough. Like the given data
the interpolation has much energy

at the Nyquist frequency. But un-
like the given data, it has little

zero-frequency energy. VIEW

iin/. moscil90

aen 3 Jo]

mterp o0t 119110000,

Ei¥En ¢ Tof
mmﬁij*fT%vTTITTT.
filtery T

- l O

given T T

mterg ¢ | Tlri

er] T

3.1. EMPTY BINS AND INVERSE INTERPOLATION 71

Thus, least squares tends to distribute residuals uniformly in both time and frequency to
the extent allowed by the constraints.

This idea helps us answer the question, what is the best filter to use? It suggests choosing
the filter to have an amplitude spectrum that is inverse to the spectrum we want for the in-
terpolated data. A systematic approach is given in ghapter 7, but I offer a simple subjective
analysis here: Looking at the data, we see that all points are positive. It seems, therefore,
that the data is rich in low frequencies; thussthe filter should contain something like (1, —1),
which vanishes at zero frequency. Likewise,’ the data seems to contain Nyquist frequen
S(ﬁhe filter should contgin (1,1). The result of using the filter (1, 1) * (1,1) = (1,0, -
is $hown in Figure 3.5.*13 my best subjective interpolation based on the idea that the
missing data should loo e the given data. The interpolation and extrapolations are
so good that you can hardly guess which data values are given and which are interpolated.

®
Figure 3.5: Top is the same as in given T T T
Figures 3.1 to 3.4. Middle is in-
terpolated. Bottom shows the filter

®
(1,0, —1), which comes from the co- inter T
efficients of (1, —1) % (1,1). Both the sete * i T ? T d T °?
given data and the interpolated data

have significant energy at both zero fAlter
and Nyquist frequencies. VIEW l

iin/. mbest90

3.1.1 Missing-data program “M
g prog W

NovVJ.e 1s see how Figures 3.1F8.5 could have been calculated and how were calcu-
lated! could have been calculated with matricewhere the matrices were pulled apart
according to subscripts of known and missing data. fnsteau}\l computedq

tors, and applied only operators and‘a

because it is more conventional.

with opera-

Matrix approach to missing data
51’ eT

Customarily, we have referred to data by the symbol d. Noygthat we are dividing the data
space into two parts, known and unknown (or missing), we refer to this complete space
as the model (or map) space m. en

There are 15 data points in Figures 3.@.5. the 15, 4 are knownAand 11 are missing.
Denote the known by k and the missing by u. el}ﬁ;he sequence of missing and known is
(u, w, u, u, k, u, k, k, k, u, u, u, u, u,u). Because I canndt print 15 x 15 matrices, please allow
me to describe instead a gata space of 6 values (mq, mg, m3, M4, ms, me) with known values
only ms and ms, ig arranged like (u, k, k, u, u, u).

Our approach is to minimize the energy in the residual, which is the filtered map (model)

adjoints. Firs wh inspect the matrix approach
A A

PS.

oK

72 CHAPTER 3. REGULARIZATION IS MODEL STYLING

space. We state the fitting goals 0 ~ Fm a@

= & = -

0 ag 0 0O O 0 O
0 az ap 0 0 0 0 i mq 1
0 asz az CL} 0 0 0 mo
0 -~ . 0 as az a1 0 0 ms
0 = k= 0.0 a3 az a1 O ma (3.1)
0 00 0 0 a3 az a1 ms
0 0 0 0 0 a3z ag L Me |
| 0] L0 0 0 0 0 a3
We rearrange thﬁtting goals, bringing the columns multiplying known data
values (mg and mg) tothe left, getting y = —Fpmg ~ Fym,,.
[y] [0 0 (a1 0 0 O }
Y ap O aa 0 0 O
Y3 a aj as 0 0 0 ma
Ya _ _ asz a2 l: ma] v 0 a1 0 0 maq (3 2)
Ys 0 as ms 0 as ax 0 msy '
U 0 O 0 a3 ay a Mg
Y7 0 O 0 0 a3 ao
L Ys | L 0 0 i L 0 0 0 as]

Hat
is the familiar form of an overdetermined system of equations y ~ F,m, which we
cottfd solve for m, as illustrated earlier by conjugate directiongy or by a wide variety of
well-known methods. '

The trouble with this matrix approach is that it is awkward to program the partitioning
of the operator into the known and missing parts, particularly if the application of the
operator uses arcane techniques, such as those used by the fast-Fourier-transform operator
or various numerical approximations to diﬁerentiaybr partial differential operators that
depend on regular data sampling. Even for the modest convolution operator, we already
have a library of convolution programs that handle a variety of end effects, and it would
be much nicer to use the library as it is rather than recode it for all possible geometrical
arrangements of missing data values.

Note: HereAl take the main goal to be the clarity of the code, not the efficiency or
accuracy of thelsolution. So, if your application consumes too many resources, and if you
have many more knots than missing ones, maybe you should fit y ~ Fumugnd

ignore the suggestions)}
Operator approach to missing data

For the operator approach to the fitting goal —Fymy ~ F,m, we rewrite it as —Fym; =~
FJm where)

4t

X

3.1. EMPTY BINS AND INVERSE INTERPOLATION 73

ag 0 0 O O O
ag aj 0 0 0 0 1 1T mi i
ag a2 a; 0 0 O 0 mo

N 0 a3 as a3 0 O 0 m

— Fimy ~ 0 0 a3 ag a1 O 1 mz = Bim (3:3)
0 0 0 as Qaz a1 . . . R ms
0 0 0 0 a3z a L +» + + « 1] Lme |
L0 0 0 0 0 a3 |

Notice the introduction of the new diagonal matrix J, called a masking matrix or a
constraint-mask matrix because it multiplies constrained variables by zero leaving freely
adjustable variables untouched. Experience shows that a better name than “mask mafrix”
is “selector matrix® because what comes out of it, that which is selected, is a less-confusing
name for it than whiich is rejected. With a selector matrixathe whole data space seems freely
adjustable, both the missing data values and known va des. We see that the CD method
does not change the known (constrained) values. In general, we derive the fitting goal (3.3)
o

byf ¢ -
0 Fm (3.4)
0 ~ FU+(I-J))m (3.5)
0 ~ FIm+F(I-J)m (3.6)
0 ~ FJm+ Fmyown (3.7)
0 ~ r FJm +r (3.8)

As usual, we find a direction to go Am by the gradient of the residual energy.

Am:—a——r*r:(

om*

r*) r= <_8_ (m*J*F* + rS)) r=JFr (3.9)

om* om*

We begin the calculation with the known data values where missing data values are
replaced by zeros, namely (I —J)m. Filter this data, getting F(I — J)m, and load it into
the residual rg. With this initialization completed, we begin an iteration loop. Firs}cve
compute Am from gquation (3.9).)

7

Am «— J'F'r (3.10)

F* applies a crosscorrelation of the filter to the residualand then J* sets to zero any changes
proposed to known data values. Next, compute the Chaﬁge in residual Ar from the proposed
change in the data Am.

Ar «— FJAm (3.11)

applies the filtering again. Theptuse the method of steepest descent (or conjugate
ditection) to choose the appropriate sczzling (or inclusion of previous step) of Am and Ar,
and update m and rbaccordingl}fand iterate.
)

I could have passed a new operator FJ into the old solver, but found it worthwhile to
write a new, more powerful solver having built-in constraints. To introduce the masking
operator J into the solver-smp subroutin?té introduce an optional operator Jop, which is

initialized with a logical array of the modellsize. Two lines in the solver-tiny modul

74 CHAPTER 3. REGULARIZATION IS MODEL STYLING

stat
stat

n

Fop(AJ, ZP, dm, rd) # dm = F’ Rd
Fop(FW, ZP, dm, dr) # dR =F dm

become three lines in the standard library module solver_smp. (We use a temporary array
tm of the size of model space.) Am is dm and Ar is dr.

stat = Fop(AJ, ZP, dm, rd) # dm = F’ Rd
if (present(Jop)) { tm=dm; stat= Jop(FW, ZP, tm, dm) # dmn = J dm
stat = Fop(FW, ZP, dm, dr) # dR = F dm

The full code includes all the definitions we had earlier in solver-tiny module. Merging
it with thits of codefhwe have the simple solver solver-smp.

) simple solver.r90
module solver_smp.mod { #0=W (FJm- d)

use chain0_mod + solver_report_-mod

logical , parameter, private :: AJ = .true., FW = .false.
logical , parameter, private :: AD = .true., ZP = .false.
contains
subroutine solver_smp(m,d, Fop, stepper, niter &
3 Wop, Jop ,m0, err , resd ,mmov, rmov, verb) {
optional :: Wop,Jop,m0,err ,resd ,mmov,rmov,verb
interface { # begin definitions _—
integer function Fop(adj,add,m,d){real::m(:),d(:);logical::adj,add}

Wop(adj,add ,m,d){real ::m(:),d(:);logical ::adj,add}
Jop(adj,add,m,d){real ::m(:),d(:);logical ::adj,add}
stepper(first ,m,dm,r,dr) {

integer function
integer function
integer function

real , dimension (:) m,dm, r ,dr

logical first }
}
real , dimension (:), intent (in) d, mo0
integer , intent (in) niter
logical , intent (in) verb
real , dimension (:), intent (out) :: m,err, resd
real , dimension(:,:), intent(out) rmov, mmov
real , dimension(size (m)) 0 dm
real , dimension(size(d)), target i1, dr
real , dimension(size(d)+size(m)), target T
real , dimension (:), pointer rd, drd, td
real, dimension (:), pointer rm, drm, tm
integer iter , stat
logical first

rd => r(1l:size(d));

drd => dr(1l:size(d));

td => tt(1l:size(d)); tm => tt(1+size(d):)

if (present (Wop)) stat=Wop(FW,ZP,—d,rd) # begin initialization —————

else rd = —d #Rd = W d
if (present(m0)){ m=m0 #m = m0
if (present(Wop)) call chain0(Wop,Fop ,FW,AD,m,rd,td)
else stat = Fop (FW,AD,m, rd) #RdH= WF m0
} else m=0
first = .true.; # begin iterations —————
do iter = 1,niter ({
if (present (Wop)) call chain0 (Wop, Fop,AJ,ZP,dm,rd , td)
else stat = Fop(AJ,ZP,dm, rd) #dm = (WF)’Rd
if (present (Jop)){ tm=dm; stat = Jop(FW,ZP,tm, dm)} #dm = J dm
if (present (Wop)) call chain0O(Wop,Fop,FW,ZP,dm,drd,td)

3.1. EMPTY BINS AND INVERSE INTERPOLATION 75

else stat = Fop (FW, ZP ,dm, drd) #dRd = (WF) dm
stat = stepper(first, m,dm, r,dr) #mt=dm; R+=dR
if (stat ==1) exit # got stuck descending

if (present(mmov)) mmov(:,iter) = m(:size(mmov,1)) # report ——

if (present (rmov)) rmov(:,iter) = rd(:size(rmov,1))

if (present(err)) err(iter) = dot_product(rd,rd)
if (present(verb)){ if(verb) call solver.report (iter ,m,dm,rd)}
first=.false.

}
if (present(resd)) resd = rd

}

) gl«"*

P
There are two methods of invoking the solvt Y. Comment cards in the code indicate the
slightly more verbose method of solution matches the theory presented in the book.

The subroutine to find missing data is mis1(). It assumes that zero values in the input
data correspond to missing data locations. It uses our convolution operator tcail (). You
can also check the Index for other operators and modules.

1-D missing data.r90

module mis_mod {
use tcail+maskl+cgstep-mod+solver_smp_mod

use mtcail

contains

fill in missing data on l—axis by minimizing power out of a given filter.
subroutine misl (niter , mm, aa) {

integer , intent (in) i1 mniter # number of iterations
real , dimension (:), pointer 11 aa # roughening filter
real , dimension (:), intent (in out) :: mm # in — data with zeroes
out — interpolated

real , dimension (:),allocatable i1 zero # filter output
logical , dimension (:), pointer :: msk
integer 11 stat

real , dimension (:),allocatable codd
allocate (zero(size (mm)+size(aa))); zero = 0.

allocate (msk(size (mm)))
allocate(dd(size (mm)+size(aa)))
solve F m=0 w/J
msk=@mm==0.); call maskl_init (msk)
call tcail_init (aa)
call solver_smp(mm, zero, tcail_lop, cgstep, niter, mO=mm, Jop=mask1_lop)
solve (F J) m=d

call mtcail-init (aa,msk) # F(I-J)
stat = mtcail_lop (. false.,.false. ,mm,dd) # F(I-J) m
dd = - dd #d=-F(I-J) m
msk=(mm==0.); call maskl_init (msk) # J
call solver_smp(mm, dd, mtcail_lop, cgstep, niter , mO=mm)

call cgstep_close ()
deallocate (zero)

}
} . A’L & V\O{

I sought reference material on conjugate gradients with constraints and did-n‘t[ﬁnd any-
thing, leaving me to fear that this chapter was in errorfand had lost the magic property
of convergence in a finite number of iterations. I tested the codwnd it did converge in a

)

76 CHAPTER 3. REGULARIZATION IS MODEL STYLING

o a/’o 0s K.b'réb
finite number of iterations. The explanati

is that these constraints are almost trivial. We
pretended we had extra variables, and gomputed a Am = g for each '@1‘- Using J | pye
then set the gradient Am = g to ze making no changes to anything, like as ifAve

had never calculated the extra A
3.2 WELLS NOT MATCHING THE SEISMIC MAP
<

Accurate knowledge comes from (gl wells, but wells are expensive and far apart. Less ac-
curate knowledge comes from surface seismology, but this knowledge is available densely in
space and can indicate significant trends between the wells. For example, a prospective
area may contain 15 wells but 600 or more seismic stations. To choose future well locations,
it is helpful to match the known well data with the seismic data. Although the seismic data
is delightfully dense in space, it often mismatches the wells because there are systematic dif-
ferences in the nature of the measurements. These discrepancies are sometimes attributed
to velocity anisotropy. To work with such measurements, we do not need to track down
the physical model, we need only to merge the information somehow M—ﬂb—&g appropri-
ately map the trends between wells and make a proposal for the next drill site. HereAwe
consider only a scalar value at each location. Take w to be a vector of 15 components, éach
component being the seismic travel time to some fixed depth in a well. Likewisglet s be
a 600-component vector each with the seismic travel time to that fixed depth as dstimated
Wh@}‘i from surface seismology. Such empirical corrections are often called “fudge fac-

tor§).] An example is the Chevron oil field in Figure 3.6. The binning of the seismic data in

4000 8000 12000 16000 20000 24000 28000 4000 8000 12000 16000 20000 24000 28000
— 1 1 1 1 1 1 1 1 1 1 1 1 1 1

= = B

= N ®

g =

S 8 []

- -
- — .
» o
=] 2.
a =]

! ~ a

=R g1

8 8 o

! I

& &

S | 2

8 8

g g

8 8

/’\\ B Lir“

inned seismic data

C’fﬁned WCE data 9

Figure 3.6: Binning by data push. Left is seismic data. Right is well locations. Values in
bins are divided by numbers in bins. (Toldi) |VIEW Iiin/ . wellseis90|

Figure 3.6 is not really satisfactory when we have available the techniques of missing data
estimation to fill the empty bins. Using the ideas of subroutine mis1()we can extend the
seismic data into the empty part of the plane. We use the same principl& that we minimize
the energy in the filtered map where the map must match the data where it is known. I

[Py

it bbk‘p‘r

3.2. WELLS NOT MATCHING THE SEISMIC MAP 7

?
chose the filter A = V*V = —V? to be the Laplacian operator (actually, 1/[8 negative) to W

obtain the result in Figure 3.7. aroyt‘Of'(.v.

4000 8000 12000 16000 20000 24000 28000 4000 8000 12000 16000 20000 24000 28000
|

00001
00007

sixe §
sixe &

00001~
00007~

00002~
00002~

binned seismic data

extended seismic

Figure 3.7: Seismic binned (left) and extended (right) by minimizing energy in Vis.

:
M that e

Wk
W There are basically two ways to hagdle bourdary conditions. Firs}egas e did in Figure

3.1, by using a transient filter operator assumes zero outside to/fegion of interest.
. S Secondkis to use an internal filter operator{ It’s h bit trickier. Solutions could be growing at
|

the boundarie lw almost never desirable. In @sﬂt is better to assign boundary

___—valu e is what I did in Figure 3.7. I{(didn dd it because it is betterq but to
inirmiize the area surrounding the data of interest. d‘,d wot rde

The first job is to_fill the gaps in the seismic data. We just finished doing a job 1ike
in one dimension.(I#give you more computational details later. Let us call the extended

seismic data s.

Think of a map of a model space m of infinitely many hypothetical wells that must d
match the real wells, where we have real wells. We must find a map that matches the wells
exactly and somehow matches the seismic information elsewhere. Let us define the vector
Ws shown in Figure 3.9&0 w is observed values at wells and zeros elsewhere.

) Where the seismic dat,a contains sharp bumps or streaks, we want our ﬁnamodel
to have those features. The yells cannot provide the rough featureybecause the wells are
too far apart to provide highyspatial frequencies. The well informatllon generally conflicts
with the seismic data at lowaspatial frequencies because of systematic discrepancies between
the two types of measurements. Thuskwe must accept that m and s may differ at IOWEpatial
frequencies (where gradient and Laplécian are small).

Our final map m would be very unconvincing if it simply jumped from a well value at
one point to a seismic value at a neighboring point. The map would contain discontil uities

around each well. Our philosophy of finding anmodel m is that our map

78 CHAPTER 3. REGULARIZATION IS MODEL STYLING

should contain no obvious “footprint” of the data acquisition (well locations). We adopt
the philosophy that the difference between the final map (extended wells)dand the seismic
information x = m — s should be smooth. Thus, we seek the minimum residual Which
is the roughened difference between the seismic data s and the map m of hypot&’letical
omnipresent wells. With roughening operator A we fi

0 ~ r = A(m-s) = Ax (3.12)

along with the constraint that the map should match the wells at the wells. We could write
as 0 = (I — J)(m — w). We honor this constraint by initializing the map m = w to
the wells (where we have wells, and zero elgewhere). After we find the gradient direction to
suggest some changes to m, we simply m'-dqot allow those changes at well locations. We do
With a mask. We apply a “missing data selector” to the gradient. It zeros out possible
changes at well locations. Like with the goal (3.7), we havé
e

0 ~ r = AJx+ AXinown (3.13)

After minimizing r by adjusting x, we have our solution m = x +s.

Nowawe prepare some roughening operators A. We have already coded a 2-D gradient
operato? igrad2. Let us combine it with its adjoint to get the 2—D'Laplacian operator. (You
might notice that the laplacian operator is “self-adjoin{ meaning that the operator does
the same calculation that its adjoint does. Any operatér of the form A*A is self-adjoint
because (A*A)* = A*(A*)* = A*A.:}

Laplacian in 2-D.lop

module laplac2 { # Laplacian operator in 2-D

use igrad2

#*

logical , parameter, private :: AJ = .true., FW = .false .
logical , parameter, private :: AD = .true., ZP = .false.
real , .dimension (mlxm2x%2), allocatable :: tmp

#%_infit (ml, m2)

integer ml, m2
call igrad2_init (ml, m2)

#h-lop (x, y)
integer statl, stat2
if(adj) { A
statl = igrad2_lop (FW, ZP, y, tmp) # tmp = grad y
stat2 = igrad2_lop (AJ, add, x, tmp) # x = x + grad’ tmp
} else {
statl = igrad2_lop (FW, ZP, x, tmp) # tmp = grad x
stat2 = igrad2_lop (AJ, add, y, tmp) # vy =y + grad’ tmp
.}
}

Subroutine 1apfil12() is the same idea as mis1() except that the filter A has been spe-
cialized to thelﬁplacian implemented by module laplac2.
7 ;

Find 2-D missing data.r90

module lapfill { # fill empty 2-D bins by minimum output of Laplacian operator
use laplac2
use cgstep-mod
use maskl
use solver_smp.mod

3.2. WELLS NOT MATCHING THE SEISMIC MAP 79

contains
subroutine lapfill2(niter, ml, m2, yy, mfixed)
integer , intent (in) :: niter , ml, m2
logical , dimension (mlxm2), intent (in) :: mfixed # mask for known
real , dimension (mlsm2), intent (in out) :: yy # model
real , dimension (ml*m?2) ;i zero # laplacian output
logical , dimension (:), pointer :: msk

allocate (msk(size (mfixed)))

msk=.not . mfixed

call maskl_init (msk)

call laplac2_init (ml,m2); zero = 0. # initialize

call solver_smp (m=yy, d=zero, Fop=laplac2_lop, stepper=cgstep, &
niter=niter , m0=yy, Jop=maskl_lop)

call laplac2_close () " # garbage collection
call cgstep_close () # garbage collection
}
}
[/ .
Subroutine 1apfi112() can be used for each of our two application) extending the

. seismic data to fill space, and (2) fitting the map exactly to the wells and approximately to
the seismic data. When extendin ¢/seismic data, the initially nonﬁfero components s # 0
~are fixed and cannot be changed is done by calling 1apfill2 m&th mfixed=(s/=0.).
onjzero components w # 0 are fixed and cannot be

PS I\ .»_When extending, wells, the initially A
Mchange @ 1s done by calling 1ap£fil12() with mfixed=(w/=0.).
d]

The final map is shown in Figure 3.8.

000 16000 20000 24000 28000 4000 8000 12000 16000 20000 24000 2800C
1 L 1 L 1

00001
00001

sixe }
sixe)

00001~
00001~

00002~
00002~

Map based on Laplacian

Figure 3.8: Final map based on Laplacian roughening. |VIEW |iin/ . ﬁnalmap90J Da?go

Results can be computed with various filters. I tried both V? and V. There are dis-
advantages of each, V being too cautious and V? perhaps being too aggressive. Figure 3.8
shows the difference x between the extended seismic data and the extended wells. Notice
that for V the difference shows a localized “tent pole” disturbance about each well. For V.
there could bé large overshoot between wells, especially if two nearby wells have significantly

80 CHAPTER 3. REGULARIZATION IS MODEL STYLING

&o net We wOuM
different values. 1 see that problem here.

My overall opinion is that the Laplacian dgés the better job in this case. I have that
opinion because in viewing the extended gradiéntMl can clearly see where the wells are. The
wells are where we have acquired data. d) liké our map of the world to not show where
we acquired data. Perhaps our estimat?d@\ap of the world cannot help but show where we

have and have not acquired data, but gve’d like to minimize that aspect.

A good image of thehides our data acquisition footprint.

0 =a000 wsOOO

000

Gradient_map — Seismic

Figure 3.9: Difference between wells (the final map) and the extended seismic data. Left
is plotted at the wells (with gray background for zero). Center is based on gradient rough-
ening and shows tent-pole-like residuals at wells. Right is based on Laplacian roughening.

VIEW] [iin/. diffdiff90

To understand the behavior theoretically, recall that in one
polates with straight lines and V? interpolates with cubics. { is becatse the fitting goal
0 ~ Vm, leads to a;fn*m* V*Vm =0 or V*Vm = éﬂher fSAthe fitting goal 0 ~ V?m
leads to V4m = Opwhich is satisfied by cubics. In two dimensiJns, minimizing the output
of V gives us solutions of Laplace’s equation @ sources at the known data. It is as if V

dimensiomythe filter V inter-

stretches a rubber sheet over poles at each w herea?\v2 bends a stiff plate.

st because V? gives smgother maps than V does not mean those maps are closer to
reality; is a deeper topic%dressed in Chapter 7. It is the same issue we noticed when

compating figures 3&
- WA

3.3 SEARCHING THE SEA OF GALILEE

Figure 3.10 shows a bottom-sounding survey of the Sea of Galilee! at various stages of
processing. The ultimate goal is not only a good map of the depth to bottom, but images
useful for the purpose of identifying archaeological, geological, or geophysical details of
the sea bottom. The Sea of Galilee is uniqu?tgecause it is a fresh-water lake below sea-level.

! Data collected by Zvi ben Avraham, TelAviv University. Please communicate with him ’

zvi@jupiterl.tau.ac.il for more details or if you make something publishable with his data.

L]

L]

3.3. SEARCHING THE SEA OF GALILEE 81

It seems to be connected to the great rift (pull-apart) valley crossing east Africa. We might
delineate the Jordan River delta. We might find springs on the water bottom. We might

find archaeological objects. . ;’,&
& ppior i wately appus woma
The raw data is 1327044 triples, (z;,yi, 2;), where z; ranges over 12 m and e
i ranges over mﬂ 20 km. The lines you see in Figure 3.10 are sequences of data pgints,

i.e., the track of the survey vessel. The depths z; are recorded to an accuracy of about 10
cm.

The first frame in Figure 3.10 shows simple binning. A coarser mesh would avoid the
empty bins but lose resolution. As we refine the mesh for more detail, the number of empty
bins growskas does the care needed in devising a technique for filling them. This first frame
uses the si?nple idea from Chapter 1 of spraying all the data values to the nearest bin with
bin2() and dividing by the number in the bin. Bins with no data obviously need to be
filled in some other way. I used a missing data program like that in the recent section on
“wells not matching the seismic map.” Instead of roughening with a Laplacian, however, I
used the gradient operator igrad2. The solver is grad2£i11().

low cut missing data.r90

module grad2fill { # min r(m) =L Jm+ L known where L is a lowcut filter.
use igrad?2
use cgstep-mod
use maskl
use solver_smp._mod

contains
subroutine grad2fill2(niter, ml, m2, mm, mfixed) {
integer , intent (in) :: niter, ml,m2
logical , dimension (mlxm2), intent (in) :: mfixed # mask for known
real , dimension (mlsxm2), intent (in out) :: mm # model
real , dimension (mlxm2x2) oyy # lowcut output
logical , dimension (:) pointer :: msk

allocate (msk(size (mfixed)))

msk=.not . mfixed

call maskl_init (msk) .

call igrad2_init(ml,m2); " yy = 0. # initialize

call solver_smp (m=mm, d=yy, Fop=igrad2_lop , stepper=cgstep, niter=niter, &
mO=mm, Jop=maskl_lop)

call cgstep_close ()

The output of the roughening operator is an image, a filtered version of the depth, a
filtered version of something real. Such filtering can enhance the appearance of interesting
features. For example,'scanning the shoreline of the roughened image (after missing data
was filled), we see several ancient_shorelines, now submerged. The roughened map is often
more informative than the map

The views expose several defects of the data acquisition and of our data processing.
The impulsive glitches (St. Peter’s fish?) need to be removedabut we must be careful not
to throw out the sunken ships along with the bad data points.) Even our best image shows
clear evidence of the recording vessel’s tracks. Strangely, some tracks are deeper than others.
Perhaps the survey is assembled from work done in different seasonyf&nd the water level
varied by season. Perhaps/;aome days the vessel was more heavily loade%nd the depth

/

82 CHAPTER 3. REGULARIZATION IS MODEL STYLING

km

200 202 204 206 208 =210 <RI2

oS
©
s3]

(== =Sz

I >
rvye

oz

Qe
L

Binned

Fast-west depths

198 200 202 204 206 208 210 212
km

x>y

e

Iy

v

km
w98 200 202 204 206 Q08 210 212
o-l 1 1 I | 3 1 | 1

o s

2sz

s8vz

ovz

jSR 394

Missing filled

km
98 200 202 R04 206 208 210 212
o

z2sze

eva

ovz

282

Filled and d/dx

Figure 3.10: Views of the bottom of the Sea of Galilee. [VIEW] |iin/. locfil90

3.4. CODE FOR THE REGULARIZED SOLVER 83

sounder was on a deeper keel. As for the navigation equipment, we can see that some data
values are reported outside the lake!

Can
We want the sharpest pis‘;i}kzv/ie; of this classical site. A treasure hunt is never easy /’_

and no one guarantees we wiltfind anything of great valugput at least the exercise is a = /o
good warm-up for submarine petroleum exploration.

3.4 CODE FOR THE REGULARIZED SOLVER

In Chapter Ipawe defined linear interpolation as the extraction of values from between
mesh points. Mn a typical setup (occasionally the role of data and model are swapped),
a model is given on a uniform meshkand we solve the easy problem of extracting values
between the mesh points with subr(;utine 1lint1 (), The genuine problem is the inverse
problem, which we attack here. Data values are sprinkled all around, and we wish to find a
function on a uniform mesh from which we can extract that data by linear interpolation.
The adjoint operator for subroutine 1int1() simply piles data back into its proper location
in model space without regard to how many data values land in each region. Thustsome
model values may have many data points added toile other model values get} none.
We could interpolate by minimizing the energy in the model gradient, cr-t;ha%a the second
derivative of the model, or in the output of any other roughening filter applied to the
model.

Formalizing now our wish that data d be extractable by linear interpolation F, from
a model m, and our wish that application of a roughening filter with an operator A have
minimum energy, we write the fitting goals:

Fm-d
Am

0
0

Q

(3.14)

Suppose we take the roughening filter to be the second difference operator (1,-2,1) scaled
by a constant €, and suppose we have a data point near each end of the model and a third
data point exactly in the middle. Then, for a model space 6 points long, the fitting goal
could look hk@

= = -

.8 2 . . . ; do
1 . dy
5 b - da
¢ mo 0
—2¢ € s 0
e —2% ¢ 22 0 :d} ~ 0 (3.15)
€ —2¢ € mz 0 m
€ —2¢ € L il 0
€ —2¢ € 0
e —2¢ 0
L € L 0]

The residual vector has two parts, a data part ry on top and a model part ry, on the
bottom. The data residual should vanish except where contradictory data values happen

to lie in the same place. The model residual is the roughened model.

84 CHAPTER 3. REGULARIZATION IS MODEL STYLING

Finding something unexpected is good science and engineering. Fo:@@e look both
in data space and*# model space. In data spacoNye look at the residual r. In’model space,
we look at the residual projected there Am = Frr. After iterating to completion/we have
Am = 0 = F*rg + A*r,, a sum of two images identical but for polarity. #tell’us what
we have learned from the data;&h%v“ the model differs from what we thought it would be.

Two fitting goals (3.14) are so common in practice that it is convenient to adopt our least-
square fittin subroutine solver-smp accordingly. The modification is shown in module
solver—reg@addition to specifying the “data fitting” operator F (parameter Fop), we
need to pass the “model regularization” operator A (parameter Aop) and the size of its
output (parameter nAop) for proper memory allocation.

(When 1 first looked at module solver-reghl , was appalled by the many lines of code,
especially all the declarations. Thegd] realized hdw much worse was Fortran 7jwhere
I needed to write a new solver for every pair of operators. This one solver module wgrks for
all operator pairs and for many optimization descent strategiegdbecause these “objects” are
arguments. These more powerful objects require declarations’ that are more complicated
than the simple objects of Fortran 77. As an authopl have a dilemma: To make algorithms
compact (and_seem simple) requires many careful definitions. When these definitiong put
in the code, are careful, but the code becomes annoyingly verbose. Otherwise, the
definitions must go in the surrounding natural language where are not easily made
precise

generic solver with regularization.r90

module solver_reg.mod{ #0=W (FJm- d)
use chain0_mod + solver_report_.mod # 0 = A m
logical , parameter, private :: AJ = .true., FW = .false.
logical , parameter, private :: AD = .true., ZP = .false.

contains

subroutine solver_reg(m,d, Fop, Aop, stepper, nAop, niter,eps &
; Wop, Jop ,m0,rm0, err ,resd ,resm ,mmov, rmov,verb) {
optional :: Wop,Jop,m0,rm0, err ,resd ,resm,mmov, rmov, verb
interface { # begin definitions —
integer function Fop(adj,add,m,d){real::m(:),d(:);logical::adj,add}
integer function Aop(adj,add,m,d){real::m(:),d(:);logical::adj,add}
integer function Wop(adj,add,m,d){real ::m(:),d(:);logical::adj,add}
integer function Jop(adj,add,m,d){real::m(:),d(:);logical::adj,add}
integer function stepper(first ,m,dm,r,dr) {

real , dimension(:) :: m,dm, r ,dr

logical i first }
}
real , dimension (:), intent (in) ;i d, m0,rm0
integer , intent (in) :: niter , nAop
logical , intent (in) i1 verb
real , intent (in) i1 eps
real , dimension (:), intent (out) :: m,err, resd,resm
real , dimension (:,:), intent(out) ¥ rmov ,mmov
real , dimension(size(m)) ;i dm
real , dimension(size(d) + nAop), target 1w T dr; &t
real , dimension(:), pointer :: rd, drd, td
real , dimension (:), pointer :: tm, drm, tm
integer :: iter , stat
logical :o first

rd = r(1l:size(d)); rmm => r(l+size(d):)
drd = dr(1l:size(d)); drm => dr(l+size(d):)

3.4. CODE FOR THE REGULARIZED SOLVER 85

td => tt(l:size(d)); tm => tt(l+size(d):)
if (present (Wop)) stat=Wop(FW,ZP,—d,rd) # begin initialization

l
|

else rd = —d #Rd = -W d

m = 0.; if(present(rm0)) rm=rmo0 #Rm = Rm0

if (present(m0)){ m=m0 #n = m0
if (present (Wop)) call chain0(Wop,Fop ,FW,AD,m,rd,td)
else stat= Fop (FW,AD,m, rd) #Rd += WF m0
stat = Aop(FW,AD, eps*m0,rm) #Rm += e A m0

} else m=0

first = .true.; # begin iterations —

do iter = 1,niter {
if (present (Wop)) call chain0(Wop,Fop,AJ,ZP,dm,rd,td)
else stat = Fop(AJ,ZP,dm, rd) #dm = (WF)’Rd
stat = Aop(AJ,AD,dm, eps*rm) #dm += e A’Rm
if (present(Jop)){ tm=dm; stat=Jop (FW,ZP,tm,dm)} #dm = J dm
if (present (Wop)) call chain0(Wop,Fop,FW,ZP,dnt,drd , td)
else stat = Fop (FW,ZP,dm, drd) #dRd = (WF) dm
stat = Aop(FW,ZP, eps*dm,drm) #IBRm = e A dm
stat = stepper(first , m,dm, r,dr) #ot=dm; R+=dR
if(stat ==1) exit # got stuck descending
if (present (mmov)) mmov(:,iter) = m(:size(mmov,1)) # report ———

if (present (rmov)) rmov(:,iter) = r(:size(rmov,1))

if (present(err)) err(iter) = dot_product(rd,rd)

if (present (verb)){ if(verb) call solver_report(iter ,m,dm,rd,rm)}
‘first=.false.

rd
rm (: size (resm))

if (present(resd)) resd
if (present(resm)) resm
}
}

After all the definitions, we load the negative of the data into the residual. If a starting
model myg is present, then we update the data part of the residual ry = Fmg — dzand we
load the model part of the residual r,, = Amg. Otherwisg{we begin from a zerd model
mgy = ﬁnd thu;&he model part of the residual ry, is also Jero. After this initialization,
subroubifte solvel’_reg() begins an iteration loop by first computing the proposed model
perturbation Am (called g in the program) with the adjoint operator:

Am — [F A*] {rd} (3.16)

T'm

Using this value of Am, we can find the implied change in residual Ar a@

A[rd} e {F]Am (3.17)
Yiny A

Aecike 7
and the last thing in the loop is to use thg’optimization step function stepper () to choose

the length of the step size and how much of the previous step to include.

An example of using the new solver is subroutine invint1. I chose to implement the
model roughening operator A with the convolution subroutine tcail (Which has transient
end effects (and an output length equal to the input length plus the’filter length). The
adjoint of subroutine tcail() suggests perturbations in the convolution input (not the
filter).

86 CHAPTER 3. REGULARIZATION IS MODEL STYLING

invers linear interp..r90

module invint { # invint — INVerse INTerpolation in 1-D.
use lintl
use tcail
use cgstep-mod
use solver_reg.mod

contains
subroutine invintl(niter, coord, dd, ol, dl, aa, mm, eps, mmov) {

integer , intent (in) :: niter # iterations
real , intent (in) :: ol, dl, eps # axis, scale
real , dimension (:), pointer :: coord, aa # aa is filter
real , dimension (:), intent (in) ::odd # data
real , dimension (:), intent (out) :: mm # model
real , dimension (:,:), intent (out) :: mmov # movie
integer 11 nreg # size of Am
nreg = size(aa) + size(mm) # transient
call lintl_init(ol, dl, coord) # interpolation
call tcail_init(aa) # filtering

call solver_reg(m=mm, d=dd, Fop=lintl_lop, stepper=cgstep, niter=niter, &
Aop=tcail_lop, nAop = nreg, eps = eps,mmov = mmov, verb=.true o)
call cgstep.close()

}

Figure 3.11 shows an example for a (1,—2,1) filter with ¢ = 1. The continuous curve
representing the model m passes through the data points. Because the models are computed
with transient convolution end-effects, the models tend to damp linearly to zero outside the
region where signal samples are given.

Figure 3.11: Sample points and M\ {ﬂ m (\ m /],\
estimation of a Contlnuous func- \J/
tion through (them.) VIE

liin/. im1-2+190}

To show an example where the result is clearly a theoretical answer, I prepared another
figure with the simpler filter (1, —1). When we minimize energy in the first derivative of
the waveform, the residual distributes niformly between data points so the solution
there is a straight line. Theoreticallynit should be a straight lingAbecause a Stralght line
has a vanishing second derlvatlvéné that condition arises by differentiating by x*, the
minimized quadratic form x*A*Ax, and getting A*Ax = 0. (By this logic, the curves
between data points in Figure 3.11 must be cubics.) The (1, —1) result is shown in Figure

3.12. %m W-W

The example of Figure 3.12 has been a useful test case for me. See it again in

later chapters. What I would like to show you here is a movie showing the convergence to
Figure 3.12. Convergence occurs rapidly where data points are close together. The large
gaps, however, fill at a rate of one point per iteration.

3.5, PRECONCEPTION AND CROSS VALIDATION 87

Figure 3.12: The same data M

samples and a function through

that minimizes the energy in A\
the first derivative. VIEW V/ \V
iin/. im1-1a90

3.4.1 Abandoned theory for matching wells and seismograms

Let us consider theory to construct a map m that fits dense seismic data s and the well data
w. The first goal 0 ~ Lm — w says that when we linearly interpolate from the map, we
should get the well data. The second goal 0 ~ A(m —s) (where A is a roughening operator
like V or V?) says that the map m should match the seismic data s at high frequencies but
need not do so at low frequencies. ‘

Lm-—-w
A(m —s)

0

G (3.18)

Qo

Although (3.18) is the way I originally formulated the well-fitting application, I aban-
doned it for several reasons: First, the map had ample pixel resolution compared to other
sources of error, so I switched from linear interpolation to _binning. Once I was using bin-
ning, I had available the simpler empty-bin approaches. m have the further advantage
that it is not necessary to experiment with the relative weighting between the two goals
in (3.18). A formulation like (3.18) is more likely to be helpful where we need to han-
dle rapidly changing functions where binning is inferior to linear interpolation, perhaps in
reflection seismology where high resolution is meaningful.

3.5 PRECONCEPTION AND CROSS VALIDATION

Fir?\we first look at data d. Thenawe think about a model m, and an operator L to link the
modél and the data. Sometimeg;tzle operator is merely the first term in a series expansion
about (mg,dp). Thepgwe fit d ? do ~ L(m — my). To fit the model, we must reduce the
fitting residuals. Realizing that the importance of a data residual is not always simply the

size of the residual but is generally a function of it, we conjur (topic for later chapters)
a weighting function (which could be a filter) operator W. defines our data residual:
ry = W[L(m = l’l’lo) = (d - do)] (319)

Nextawe realize that the data might not be adequate to determine the model, perhaps
because dur comfortable dense sampling of the model ill fits our economical sparse sampling
of data. Thunge adopt a fitting goal that mathematicians call “regularizatiog.’l and we
might call a “rr?odel style” goal or more simply, a quantification of our preconcept{on of the
best model. We express by choosing an operator A, often simply a roughener like a
gradient (the choice again a topic in this and later chapters). It defines our model residual
by Am or A(m — my), say we choos@

= Am (3.20)

'm

5t

Wwv

o

88 CHAPTER 3. REGULARIZATION IS MODEL STYLING
Breanes

In an ideal world, our model preconception (prejudice?) would flot conflict with mea-
sured data, but real life is much more interesting than that. Si conflicts between data
and preconceived notions invariably arise re why we pay for data acquisition)awe
need an adjustable parameter that measures our “bullheadednes%how much we inténd
to stick to our prec%ceived notions in spite of contradicting data. This parameter is gen-
erally called.epsilon 6,because we like to imagine that our bullheadedness (prejudice?) is
small. (In mathematica, ¢ is often taken to be an infinitesimally small quantity.) Although
any bullheadedness seems like a bad thing, it must be admitted that measurements are
imperfect too. Thuz\as a practical matter/,we often find ourselves minimizin

min = rq-rqy + € Iy (3.21)

and wondering what to choose for e. I have two suggestions: My simplest suggestion is to
choose € so that the residual of data fitting matches that of model styling. Thus*@

V Im Tm

My second suggestion is to think of the force on our final solution. In physics, force is
associated with a gradient. We have a gradient for the data fitting and another for the
model styling: :

ge = L"W'ry (3.23)
gn = A'r, (3.24)
We could balance these forces by the choic@
e = /B84 (3.25)
gm ' 8m

Although we often ignore € in discussing the formulation of an application, when time
comes to solve the problem, reality intercedes. Generally, rqy has different physical units
than ry, (likewise gq and gm)@,nd we cannot allow our solution to depend on the accidental

choice of units in which we express the problem. I have had much experience choosi
but it is only recently that I boiled it down to the @bovd two suggestions. Normallyal also

try other values, like double or half those of the @bov¢ choices, and I examine the sclutions
for subjective appearance. If you find any insightful examples, please tell me

M Computationally, we could choose a new ¢ with each iteration, but it is more expeditious
t

o freeze ¢, solve the problem, recompute €, and solve the problem again. I have never seen
a case more than one repetition was necessary.

People who work with small applications (less than about 103 vector components) have
access to an attractive theoretical approach called.‘cross—validation.’ . Simply speaking, we
could solve the problem many times, each time omitting a different da{; value. Each solution
would provide a model that could be used tg predict the omitted data value. The quality of
these predictions is a function of € rovides a guide to finding it. My objections to
cross validation are two-fold: First] @ know how to apply it in the large applications
like we solve in this book (I should think more about it); and second, people who worry
much about ¢, perhaps first should think more carefully about their choice of the filters W
and A, which is the focus of this book. Notice that both W and A can be defined with a
scaling factor wh«icb—i%ke scaling e. Often more important in practice, with W and A Awe
have a scaling factor that need not be constant but can be a function of space or spa{ial
frequency within the data space and/or model space.

A

a@p No¥

3.5. PRECONCEPTION AND CROSS VALIDATION 89

EXERCISES: p& oK

1 Figures 3.173.4 seem ;(;(?(polate to vanishing signals at the side boundaries. Why

is that so, and what be done to leave the sides unconstrained in that way?

2 Show that the interpolation curve in Figure 3.2 is not parabolic as it appears, but cubic.
(mINT: First show that (V2)* V2u = 0.)

3 Verify by a program example that the number of iterations required with simple con-
straints is the number of free parameters.

4 A signal on a uniform mesh has missing values. How should we estimate the mean?

5 It is desired to find a compromise between the Laplacian roughener and the gradient
roughener. What is the size of the residual space?

6 Like the seismic prospecting industry, you have solved a huge problem using binning.
You have computer power left over to do a few iterations with linear interpolation. How
much does the cost per iteration increase? Should you refine your model mesh, or can
you use the same model mesh that you used when binning?

7 Nuclear energyAhaving finally reached its potentialAhas dried up the prospecting indus-
tries so you find yourself doing medical imaging (or earthquake seismology). You
probe the human body from all sides on a.dense regular mesh in cylindrical coordinates.
Unfortunatelyayou need to represent your data in fourier space. There is no such thing
as a fast ‘ﬁoul?{g" transform in cylindrical coordinates, and slow fourier transforms are

Wully slow. Your only hope to keep up with your competitors is to somehow do your
FT in cartesian coordinates. Write down the sequence of steps to achieve your goals

using the methods of this chapter.
N
o |

90

CHAPTER 3. REGULARIZATION IS MODEL STYLING

Chapter 4

The helical coordinate

For many year;ﬁ,t has been true that our most powerful signal-analysis techniques are in one-
dimensional sp?xce, while our most important applications are in multifdimensional space.
"The helical coordinate system makes a giant step towar overcoming"ﬁﬁis difficulty.

Many geophysical map estimation applications appear to be multidimensional, but actu-
ally@are not. To see the tip of the iceberg, consider this example: On a two-dimensional

0/0(0]|0
; . 0111110
cartesian mesh, the function o110
010010
1121
has the autocorrelation | 2 | 4
1121

Likewise, on a one-dimensional cartesian mesh,

thefunction|1|1\O|0|~~-|0‘1|1]

hastheautocorrelation|1|2|1IO‘---|0|2|4|2|0|~~|1|2|H.

Observe the numbers in the one-dimensional world are identical with the numbers in the
two-dimensional world. This correspondence is no accident.

4.1 FILTERING ON A HELIX

Figure 4.1 shows some two-dimensional shapes that are convolved together. The left panel
shows an impulse response function, the center shows some impulses, and the right shows
the superposition of responses.

A surprising, indeed amazing, fact is that Figure 4.1 was not computed with a two-
dimensional convolution program. It was computed with a one-dimensional computer pro-
gram. It could have been done with anybody’s one-dimensional convolution program, either
in the time domain or in the fourier domain. This magical trick is done with the helical

[y

coordinate system.

91

92 CHAPTER 4. THE HELICAL COORDINATE

-l _

A 1= A (convolve) B

Figure 4.1: Two-dimensional convolution as performed in one dimension by module

helicon [VIEW] |hlx/. diamond90

A basic idea of filtering, be it in one dimension, two dimensions, or more, is thafyou
have some filter coefficients and some sampled data; you pass the filter over the data; &t each
location you find an output by crossmultiplying the filter coefficients times the underlying
data and summing the terms.

The helical coordinate system is much simpler than you might imagine. Ordinarily, a
plane of data is thought of as a collection of columns, side by side. Instead, imagine the
columns stored end-to-end, and then coiled around a cylinder. @ s the helix. Fortran
programmers wili Tecognize that fortran’s way of storing 2-D arrays in one-dimensional
memory is exactly what we need for this helical mapping. Seismologists sometimes use the
word “supertrace” to describe a collection of seismograms stored “end-to—enm

Figure 4.2 shows a helical mesh for 2-D data on a cylinder. Darkened squares depict a
2-D filter shaped like the Laplacian operator Oz, + 9yy. The input data, the filter, and the
output data are all on helical mesheg&all of which could be unrolled into linear strips. A
compact 2-D filter like a Laplaciardo{r? a helix is a sparse 1-D filter with long empty gaps.

S&g Mes output from filtering can be computed in any order, we can slide the
filter coil over the data coil in any direction. The order that you produce the outputs is
irrelevant. You could compute the results in parallel. We could, however, slide the filter
over the data in the screwing order that a nut passes over a bolt. The screw order is the
same order that would be used if we were to unwind the coils into one-dimensional strips
and convolve f@ across one another. The same filter coefficients overlay the same data
values if the 2-D coils are unwound into 1-D strips. The helix idea allgws us to obtain the
same convolution output in either of two ways, a one-dimensional way%\;a two-dimensional
way. I used the one-dimensional way to compute the obviously two-dimensional result in
Figure 4.1.

4.1.1 Review of 1-D recursive filters

Convolution is the operation we do on polynomial coefficients when we multiply polyno-
mials. Deconvolution is likewise for polynomial division. Oftery{hese ideas are described

)

and

4.1. FILTERING ON A HELIX 93

Figure 4.2: Filtering on a helix. The same filter coefficients overlay the same data values
if the 2-D coils are unwound into 1-D strips. (Mathematica drawing by Sergey Fomel)

i hlx/. sergey—heliﬂ

as polynomials in the variable Z. Take X (Z) to denote the polynomialcoeﬁicients
are samples of input data, and let A(Z) likewise denote the filter. The convention I adopt
here is that the first coefficient of the filter has the value +1, so the filter’s polynomial is
A(Z) =14+a1Z +apZ*+- . To see how to convolve, we now identify the coefficient of Z*
in the product Y (Z) = A(Z)X(Z). The usual case (k larger than the number N, of filter
coefficients) i

Na

Yy = mk+Zai:r;k_i (4.1)
i=1

Convolution computes yj from xj/yhereaghdeconvolution (also called back substitution)
does the reverse. Rearranging (4.1)Awe ge

J

Na ‘
Tk = Yk— D ik (4.2)
=l

where nowgwe are finding the output xy from its past outputs xx—; and iaerz.?he present
input y,. We see that the deconvolution process is essentially the same as the convolution
process, except that the filter coefficients are used with.gpposite polarity; and@are
applied to the past outputs instead of the past inputs. #s why deconvolution must be
done sequentially while convolution can be done in parallel.

94 CHAPTER 4. THE HELICAL COORDINATE

4.1.2 Multidimensional deconvolution breakthrough
Speat

1al division) can ur{do convolution (polynomial multiplication). A
magical property of the helix is that we can consider 1-D convolution to be the same as 2-D
convolution. is a second magical property: We can use 1-D deconvolution to undo
convolution, whether that convolution was 1-D or 2-D. Thus, we have discovered how to
undo 2-D convolution. We have discovered that 2-D deconvolution on a helix is equivalent
to 1-D deconvolution. The helix enables us to do multidimensional deconvolution.

Deconvolution (polyno

Deconvolution is recursive filtering. Recursive filter outputs cannot be computed in
parallel, but must be computed sequentially as in one dimension, namely, in the order that
the nut screws on the bolt.

Recursive filtering sometimes solves big problems with astonishing speed. It can prop-
agate energy rapidly for long distances. Unfortunately, recursive filtering can also be un-
stable. The most interesting case, near resonance, is also near instability. There is a large
literature and extensive technology about recursive filtering in one dimension. The helix
allows us to apply that technology to two (and more) dimensions. It is a huge technological
breakthrough.

In 3- e simply append one plane after another (like a 3-D fortran array). It is easier
to code t ?m to explain or visualize a spool or torus wrapped with string, etc.

4.1.3 Examples of simple 2-D recursive filters

Let us associate z- and y-derivatives with a finite-difference stencil or template. (For sim-
plicityﬂgake Az = Ay =1)
)

)
i (4.3)

/4) I
. — (4.4)

Convolving a data plane with the stencil (4.3) forms the z-derivative of the plane. Con-
volving_a.dafa plane with the stencil (4.4) forms the y-derivative of the plane. On the
other @ deconvolving with (4.3) integrates data along the z-axis for each y. Likewise,
deconvo Vin'g with (4.4) integrates data along the y-axis for each z. NGXWQ look at a fully
two-dimensional operator (like the cross derivative Ouy).)

A nontrivial two-dimensional convolution stencil isC.D

0[—1/4
| —1 (4.5)
—1/4|-1/4

We wﬁonvolve and deconvolve a data plane with this operator. Although everything

is shown on a plane, the actual computations are done in one dimension with gquations

(4.1) and (4.2). Let us manufacture the simple data plane shown on the left in Figure 4.3.

Beginning with a zero-valued plane, we add in a copy of the filter (4.5) near the top of the

frame. Nearby,.gdd another copy with opposite polarity. Finallwdd some impulses near
1

)

4.1. FILTERING ON A HELIX 95

ng the one-dimensional gquation (4.2). Notice that deconvolution turns the
to an impulse, while it turns the impulses into comet-like images. The use of

Figure 4.3: Tllustration of 2-D deconvolution. Left is the input. Right is after deconvolution
with the filter (4.5) as preformed by by module polydivﬁVlEW hlx/. wrap90

The filtering in Figure 4.3 ran along a helix from left to right. Figure 4.4 shows a second
filtering running from right to left. Filtering in the reverse direction is the adjoint. After
deconvolving both ways, we have accomplished a symmetrical smoothing. The final frame
undoes the smoothing to bring us exactly back to where we started. The smoothing was
done with two passes of deconvolutionfand it is undone by two passes of convolution. No
errorsg no evidence remain;{f any of thé boundaries where we have wrapped and truncated.

N

(input/filter)/filter’

Figure 4.4: Recursive filtering backwardj?(leftward on the space axis) is done by the adjoint
of 2-D deconvolution. Hergtwe see that 2-D deconvolution compounded with its adjoint is

exactly inverted by 2-D convolution and its adjoint. VIEW/| |hlx/. hback90

Chapter 5 explains the important practical role to be played by a multidimensional
operator for which we know the exact inverse. Other than multidimensional Fourier trans-
formation, transforms based on polynomial multiplication and division on a helix are the
only known easily invertible linear operators. ‘

In seismology we often have occasion to steer summation along beams. Such an impulse
response is shown in Figure 4.6.

actuef

96 CHAPTER 4. THE HELICAL COORDINATE
\’J}' »
Figure 4.5: A/simple low-order 2- -
D filter @ inverse contain§ plane
waves of two different dips. One of-V

@ is spatially aliased. |VIEW
hlx/. waves90

input input/filter

Of special interest are filters that destroy plane waves. The inverse of such a filter creates M%
plane waves. Such filters are like wave equations. A filter that creates two plane waves is #
illustrated in figure 4.5.

-

inmput input /filte1 (ilmput filter) “filte1r’

8 . ith
Figure 4.6: -A simple low-order 2-D filter thﬂ‘AS’Q: !nverse times its inverse adjoing)i;/approx—

imately a dipping seismic arrival.
. “db“ 1
&

wh %

4.1.4 Coding multidimensiona onvolution

pAnously
Let us unroll the filter helix see?{'n Figure 4.2ﬁ.nd see what we have. Start from the idea that
a 2-D filter is generally made from a cluster bf values near one another in two dimensions
similar to the Laplacian operator in the figure.. We see that in the helical approach, a 2-D

filter is a 1-D filter containing some long intervals of zeros. The intervals are t the

length of a 1-D seismogram. &pﬂlox/' M

Our program for 2-D convolution with a 1-D convolution program, could convolve with
the somewhat long 1-D strip, but it is much more cost effective to ignore the many zeros,
which is what we do. We do not multiply by the backside zeros, nor do we even Store
in memory. Wherea;km ordinary convolution program would do time shifting by a code !:‘
line like iy=ix+lag, Module helicon ignores the many zero filter values or{backside of the A
tube by using the code iy=ix+lag(ia)Awhere a counter ia ranges over the nonzero filter
coefficients. Before operator helicon is invoked, we need to prepare two lists, one list con-
taining nonzero filter coefficients £1t (ia), and the other list containing the corresponding
lags lag(ia) measured to include multiple wraps around the helix. For example, the 2-D

4.1. FILTERING ON A HELIX 97

"

Laplace operator can be thought of as'the 1-D ﬁltex@

|1|0|~-7|o|1[—4|1[0|'-.|0|ﬂ — helical boundaries [1|—-4[1] (4.6)

The first filter coefficient in gquation (4.6) is +1 as implicit to module helicon. To apply
the Laplacian on a }QOO x 1000 mesh requires the filter inputs:
)

]
i lag(i) £1t(i)

1 999 1.
2 1000 -4,
3 1001 1;
4 2000 1.

Herguye choose to use “declaration of a type”, a modern computer language feature that
is absent! from Fortran 77. Fortran 77 has the built in complex arithmetic type. In module
helixgwe define a type filter, actually, a helix filter. After making this definition, it with 1 S
e use by many programs. The helix filter consists of three vectors, a real valued vector
of filter coefficients, an integer valued vector of ﬁlt::ﬁags, and an optional vector that has
logical values “.TRUE.” for output locations that sl not computed (either because of
boundary conditions or because of missing inputs). The filter vectors are the size of the
nonzero filter coefficients (excluding the leading 1.)while the logical vector is long and
relates to the data size. The helix module allocates and frees memory for a helix filter. By
default, the logical vector is not allocated but is set to null with the nullify operator and
ignored. This directive is used by the compiler for optimization. When the logical array is
unneede%it is neither allocated nor accessible. -

definition for helix-type filters.r90

module helix { # DEFINE helix filter type
type filter {
real , dimension(:), pointer :: flt # (nh) filter coefficients
integer , dimension(:), pointer :: lag # (nh) filter lags
logical , dimension(:), pointer :: mis # (nd) boundary conditions
}
contains
subroutine allocatehelix(aa, nh) { # allocate a filter
type(filter) :: aa
integer :: nh # count of filter coefs (excl 1)
allocate (aa%flt (nh), aa%lag(nh)) # allocate filter and lags.
nullify (aa%mis) # set null pointer for "mis”.
aa%flt = 0. # zero filter coef values
}
subroutine deallocatehelix(aa) { # destroy a filter
type(filter) :: aa
deallocate (aa%flt , aa%lag) # free memory
if (associated(aa%mis)) # if logicals were allocated
deallocate (aa%mis) # free them

For those of you with no Fortran 90 experience, the “4” appearing in the helix module
denotes a pointer. Fortran 77 has no pointers (or everything is a pointer). The C, C++,

98 CHAPTER 4. THE HELICAL COORDINATE

and Java languages use “.” to denote pointers. C and C++ also have a second type-ef'i'
pointer denoted by “->”. The behavior of pointers is somewhat different in each language.
Never-the-less, the idea is simple. In module heliconagou see the expression aalflt(ia).
It refers to the filter named aa. Any filter defined By the helix module contains three
vectors, one of which is named f1t. The sec ¢ a@n}& of the f1t vector in the aa
filter is referred to as aa%f1t (2)Awhich in thelexample refers to the value 4.0 in the

center of the léplacian operator.” For data sets like WOO points on the 1-axis,
this value 4.0 occurs after 1000 lags, thus aa%lag(2)=1000. U Ale (YR QLYE p=

Our first convolution operator tcail was limited to one dimension and a particular
choice of end conditions. With the helix and Fortran 90 pointers, the operator helicon is
a multidimensional filter with considerable flexibility (because of the mis vector) to work
around boundaries and missing data.

helical convolution.lop

module helicon { # Convolution, inverse to deconvolution.
Requires the filter be causal with an implicit ”1.” at the onset.
use helix
type(filter) :: aa
#% _init(aa)
#o -lop (xx, yy) 5
integer iy, ix, ia .
if (adj) # zero lag
XX += yy
else
yy += xx
do ia = 1, size(aa%lag) {
do iy = 1 + aa%lag(ia), size(yy) {
if (associated(aa%mis)) { if(aa%mis(iy)) cycle}
ix = iy — aa%lag(ia)

if(adj)

xx(ix) += yy(iy) = aa%flt (ia)
else

yy(iy) += xx(ix) * aa%flt (ia)
¥

}

The code fragment aa’lag(ia) corresponds to b-1 in tcai 10

Operator helicon did the cgnvolution job for Figure 4.1. As with tcail the adjoint of

filtering is filtering backward ich means unscrewing the helix. ‘?"

The companion to convolution is deconvolution. The module polydiv is essentially the
same as polydivijfbut here it was coded using our new filter type in module helipyhich
'w‘l’ﬂ’éimp'l_ig' our mény future uses of convolution and deconvolution. Although convdlution
allows us to work around missing input values, deconvolution does not (any input affects
all subsequent outputs), so polydiv never references aa)mis(ia).

helical deconvolution.lop

module polydiv { # Helix polynomial division
use helix

integer i nd

type(filter) 11 aa

real , dimension (nd), allocatable :: tt

4.2. KOLMOGOROFF SPECTRAL FACTORIZATION 99

#% -init (nd, aa)
#6 -lop (xx, yy)
integer ia, ix, iy

tt = 0.
if(adj) {
do ix= nd, 1, -1 { R
tt(ix) = yy(ix) ; .
do ia = 1, size(aa%lag) { _
iy = ix + aa%lag(ia); if(iy > nd) next
tt(ix) —= aa%flt (ia) * tt(iy)
}
}
XX += tt
} else {
do iy= 1, nd {
tt(iy) = xx(iy)
do ia = 1, size(aa%lag) {
ix = iy — aa%lag(ia); if(ix < 1) next
tt(iy) —= aa%flt(ia) * tt(ix)
}
}
yy += tt
}
}

4.2 KOLMOGOROFF SPECTRAL FACTORIZATION

Spectral factorization addresses a deep mathematical problem not solved by mathematicians
until 1939. Given any spectrum |F(w)]|, find a causal time function f(t) with tgig spectrum.
A causal time function is one that vanishes at negative time ¢ < 0. We s mix spectral
factorization with the helix idea to find many applications in geophysical image estimation.

The most abstract method of spectral factorization is of the Russian mathematician
A.N.Kolmogorofl. I include it hergsbecause it is by far the fastest, so much so that giant
problems become practicayquch as the solar physics example coming up.

Given that C(w) fourier transforms to a causal function of time, it is next proven that

-
e¢ @urier transforms to a causal function of time. Its filter inverse is e~¢. Grab yourself
a cup of coffee and hide yourself away in a quiet place while you focus on the proof in the

next paragraph. P

2
A causal function ¢, vanishes at negative 7. Its Z transform @'(Z) = ¢o +c1Z + VAR
VA i ... with Z = €2 ig really a Fourier sum. Its squaré C(Z)? convolves a causal

with .@, o it.is causal. Each power of C'(Z) is causal, e =14+C+C?%/24- -, a
sum of ¢a als, is causal. The time-domain coefficients for e¢ could be computed putting
polynomials into power series or faster by Fourier transforms. The wavelet e has inverse
e~C also causal. A causal with a causal inyerse is said to be “minimum phaMThe filter
1—Z/2 with inverse 14 Z/2+ 224+ - ‘\The delay filter Z° has the noncausal inverse
Z 75 is not (output before input). '7. NP 4

The next paragraph defines “Kolmogoroff spectral factorizatiomt his)arises in appli-
cations where one begins with an energy spectrum |r|? and factors it into an re'® times its
conjugate. The inverse fourier transform of that re'® is causal.

100 CHAPTER 4. THE HELICAL COORDINATE

Relate amplitude 7 = r(w) and phase ¢ = ¢(w) to a causal time function c,.

|7“|ei¢ — eln]r|eiq§ — nlrl+ie — ec0+ch+ch2+C3Z3+--- — eszoc-,—Z" (47)

il St
Given a spectrum r(w)/)we il find a filter with that spectrum. Smﬂ??"(w) is a real even

function of w, so is its logarithm. Let the inverse Fourier transform of In |r(w)| be u,, where
u, is a real even function of time. Imagine a real odd function of time v,.

|r|ei¢ = ¢t lr|l4+ip 627(u7+vT)ZT Bﬂ,c (48)

The phase ¢(w) transforms to v.. We can assert causality by ;‘13024 ngﬁ that ur+v, = a..éb
(= ¢;) for all negative 7. deﬁnes v, at negative 7. Si v, is odd, it ism/zi/
positive lags ted. More simply, v, is created when u, is multiplied by a step function of size

2. This causal exponent (cg,cy,--+) creates a causal filter |7"|ei‘¢S with the specified spectrum

r(w).

We easily manufacture an inverse filter by changing the polarity of the c.. This filter is
also causal by the same reasoning. Thu;&hese filters are causal with a causal inverse. Such

filters are commonly called “minimum p&xasm 25

: 2 ation arises in a variety of contexts. Here(ﬁr:e: Rain drops showering
on a tin roof create for you a signal @ spectrum you can compute, but what would be
the wavelet of a single drop? Spectral factorization givefif. Divide this wavelet out from
the data to get a record of impulses, one for each rain drdp (theoretically!). The boiling

surface of the sun is coming soon.

7

4.2.1 Kolmogoroff code

subroutine kolmogoroff(n, cx) # Spectral factorization.
integer i, n # input: cx = amplitude spectrum
complex cx(n) # output: cx = FT of min phase wavelet
do i= 1, n

cx(i) = clog(cx(i))
call ftu(-1., n, cx)

do i= 2, n/2 { # Make it causal changing only the odd part.
cx (i) = cx(i) * 2.
cx(n-i+2) = 0.
¥

call ftu(+1., n, cx)
do i= 1, n.

cx(i) = cexp(cx(i)) !
return; end

Everyone has their own favorite fourier transform code, so why am I offering mine? Because
you MUST get the scale factors correct. Few worries if you accidentally replace e by 2¢°,
because your humble plotting program might do that. Butj\if you accidentally replace e¢
by €2¢, you have squared it!)

subroutine ftu(signi, nx, cx) # Fourier transform

4.2. KOLMOGOROFF SPECTRAL FACTORIZATION 101

complex fourier transform with traditional scaling (FGDP)
-
/ :
1 nx signi*2xpixi*(j-1)*(k-1)/nx
cx(k) = -—-————- * sum cx(j) * e
scale j=1 for k=1,2,...,nx=2%*xinteger

#
scale=1 for forward transform signi=1, otherwise scale=1/nx
integer nx, i, j, k, m, istep
real signi, arg
complex cx(nx), cmplx, cw, cdel, ct
i=1; while(i<nx) i=2%i
if(i !=nx) call erexit(’ftu: nx not a power of 2’)
do i= 1, nx

if (signi<0.)

cx(i) = cx(i) / nx

=iy k=i ’
do i= 1, nx {

if (i<=j) { ct = cx(j); cx(j) = cx(i); cx(i) = ct }

m = nx/2
while (j>m && m>1) { j = j-m; m = m/2 } # "&&" means .AND.
j=Jjm
}
repeat {
istep = 2%k; cw = 1.; arg = signi*3.14159265/k
cdel = cmplx(cos(arg), sin(arg))
dom=1, k {

do i= m, nx, istep :
{ ct=cwkcx(i+k); cx(i+k)=cx(i)-ct; cx(i)=cx(i)+ct }
cw = cw * cdel

}
k = istep
if (k>=nx) break

}

return; end .

The\ftu fast Fourier transform code abevés/ a restriction that the data length must be
a power of 2. Zero time and frequency are the first point in the vector, then positive times,
then negative times.

It is a*:(ercise for the student to show that a complex-valued time function has a positive
spectrum that is norﬂﬂmmetrical in frequency/@ut it may be factored with the same code.

_/)
4.2.2 Constant Q medium

From the absorption law of a material, spectral factorization yields its impulse response.
The most basic absorption law is the constant @ model. According to it, for a downgoing
wavesthe absorption is proportional to the frequency w, proportional to time in the medium
z/v, dnd inversely proportional to the “quality” @ of the medium. Altogetheptthe spectrum
of a wave passing through a thickness z wi changed by the factor e~ lwi 2 e~ lwl(z/v)/Q
This frequency function is plotted in the top line of Figure 4.7.

The middle function in Figure 4.7 is the autocorrelation giving on top the spectrum
e~ @IT The third function is the factorization. An impulse entering the medium comes out
with this shape. There is no physics in this analysis, only mathematics which assumes the

: thet

ond

102 CHAPTER 4. THE HELICAL COORDINATE

spectrum(omega) m
Teeoe

autocorrelation(t)

R T‘Fmﬂoﬂnc

factor(t)
2 //{ mwMTTT TTTITTTeesre

Figure 4.7: Autocorrelate the bottom signal to get the middle @FT is the top. Spectral
factorization works the other way, from top to bottom. lhlx/ futterman|

broadened pulse is causal with an abrupt arrival. The short wavelengths are concentrated
near the sharp cornepavhile the long wavelengths are spread throughout. A physical system
could cause the pulsg to spread further (effectlvely by an additional all-pass filter), but
physics cannot make it more compact.

All distances from the source see the same shape, but stretched in proportion to distance.
The apparent @ is the traveltime to the source divided by the width of the pulse.

4.2.3 Causality in two dimensions

Our foundations, the basic convolution-deconvolution pair (4.1) and (4.2) are applicable only
to filters with all coefficients after zero lag. Filters of physical interest generally concentrate

oefficients near zero lag. Requiring causality in 1-D and concentration in 2-D leads
to shapes/)quch as these:

h ¢ 0 h ¢ 0
p d 0 p d 0
q e 1 = q e + 1
s f a s f a (4.9)
u g b u g b
2 — D filter == variable + constrained

where a, b, ¢, ..., u are coefficients we wi’?—f;nd by least squares.

The complete story is rich in mathematics and in concepT@ but to sum up, filters fall
into two categories according to the numerical values of their coefficients. There are filters
for which squations (4.1) and (4.2) work as desired and expected. These filters are called

“minimum phas There are also filters for which (2) is a disaster numerically, the

feedback process diverglng to infinity.
éﬁua{'(o W

4.2. KOLMOGOROFF SPECTRAL FACTORIZATION 103

Divergent cases correspond to physical processes that are not simply described by initial
conditions but require also reflective boundary conditiongAso information flows backwardg;
i.er?‘nticausally. Equation (4.2) only allows for initial conflitions.

I oversimplify by trying to collapse an entire book (FGDP) into a few sentences by
saying here that for any fixed 1-D spectrum there exist many filters. Of these, only one has
stable polynomial division. That filter has its energy compacted as soon as possible after
the “1.0” at zero lag.

Which side of the little rectangular patch of coefficients we choose to place the 1.0 is
rather arbitrary. The important matter is that as a matter of principle, the 1.0 is expected
to lie along one side of the little patch. We never pud the “1” at the corner of a patcha.
because that would be excluding locations near the “1_that could be correlated with it. It
is important that beyond the 1.0 (in whatever direction that may be),.,ghe filter coefficients
must be ze ecause in one dimension, these coefficients lie before zeto lag.

4.2.4 Causality in three dimensions

3

The top plane in Figure 4.8 is the 2-D filter seen in gquation (4.9). Geometrically, the three-
dimensional generalization of a helix, Figure 4.8 shows a causal filter in three dimensions.
Think of the little cubes as packed with the string of the causal 1-D function. Under the
“1” is packed with string, but none above it. Behind the “1” is packed with string, but
none in front of it. The top plane can be visualized as the area around the end of the 1-D
string. Above the top plane are zero-valued anticausal filter coefficients. This 3-D cube is@

Figure 4.8: A 3-D causal filter at the
starting end of a 3-D helix. |VIEW

like the usual Fortran packing of a 3-D array with one confusing difference. The starting
location where the “1” is located is not at the Fortran (1,1,1) location. Details of indexing
are essential, but complicated, and found near the end of this chapter.

ot

. ke

’,0“‘ w ~—ghows time in kiloseconds (Ks). We's oup 15 cycles ing Ks,which is 1 cycle in G?f-&ok /;"
T G

104 CHAPTER 4. THE HELICAL COORDINATE

4.2.5 Blind deconvolution and the solar cube

An area of applications that leads directly to spectral factorization is “blind deconvolution.”
Hereawe begin with a signal. We form its spectrum and factor it. ‘We could simply inspect
the ﬁ!ter and interpret it, or we might deconvolve it out from the original data. This topic
deserves a fuller exposition, say for example as defined in some of my earlier books. Here/g_
we inspect a novel example that incorporates the helix.

/] .

Solar physicists have learned how to measure the seismic field of the sun surface. I@/ IS
chaotic. If you created an impulsive explosion on the surface of the sun, what would the
response be? James Rickett and I applied the helix idea along with Kolmogoroft spectral
factorization to find the impulse response of the sun. Figure 4.9 shows a raw data cube
and the derived impulse respongse. The sun is hugghso the distance scale is in megameters
(Mm).g The United States is S'Mm wide. Vertical’motion of the sun is measured with a
vide ameraﬂike device that measures vertical motion by an optical deppler shift. From
an acoustic/seismic point of view, the surface of the sun is a yery noisy place. The figure

333¢ec) T hugkt‘he sun seems to oscillate vertically with @ a ?)Aninute period. The top
plane of the rdw data in Figure 4.9 (left panel) happens to have a sun spot in the center.
The data analysis here is not affected by the sun spo}eo please ignore it.

2

» >

2061

(s) awny

(sy) omn
2002

2062
01

o 40 80 120 160 200 -147.64 -47.639 52.361

distance (Mm) distance (Mm)

Figure 4.9: Raw seismic data on the sun (left). Impulse response of the sun (right) derived

by Helix-Kolmogoroff spectral factorization. |[VIEW| |hlx/. solar

The first step of the data processing is to transform the raw data to its spectrum. With
the helix assumption, computing the spectrum is virtually the same thing in 1-D space as in

v
¥ 2

4.3. FACTORED LAPLACIAN == HELIX DERIVATIVE 105

3-D space. The resulting spectrum was passed to Kolmogoroff spectral factorization code,
a 1-D code. The resulting impulse response is on the right side of Figure 4.9. The plane we
see on the right top is not lag time 7 = 0; it is lag time 7 = 2 Ks. It shows circular rings,
as ripples on a pond. Later lag times (not shown) would be the larger circles of expanding
waves. The front and side planes show tent-like shapes.

The slope of the tent gives the (inverse) velocity of the wave (as seen on the surface of
the sun). The horizontal velocity we see on the sun surface turns out (by Snell’s law) to be
the same as that at the bottom of the ray. On the front face at early timesswe see the lov%
velocity (steep) wavefrontspand at later times we see the faster waves. @{ is because the
later arrivals reach more dezaply into the sun.

Look carefully, and you can see two (or even three!) tents inside one another. These
“inside tents” are the waves that have bounced once (or more!) from the surface of the
sun. When a ray goes down and back up to the sun surface, it reflects and takes off again
with the same ray shape. The result is that a given slope on the traveltime curve can
be found again at twice the distance at twice the time. Very close to t = 0 see horizontal
waveforms extending only a short distance from the origin. These are electromagnetic waves
of essentially infinite velocity.

4.3 FACTORED LAPLACIAN == HELIX DERIVATIVE

I had learned spectral factorization as afethod for single seismograms. After I learned it,
every time I saw a positive function wonder if it made sense to factor it. When total
field magnetometers were invented, I found it as a way to deduce vertical and horizontal
magnetic components. A few pages baCWou saw how to use factorization to deduce the
waveform passing through an absorptive medium. Themwe saw how the notion of “impulse
response” applies not only to signals, but allows use o?f;,ndom noise on the sun to deduce
the 3-D impulse response there. But the most useful application of spectral factorization
so far is what comes next, factoring the Laplace operator, -V2. TIts iourier transform
—((ikz)? + (iky)?) > 0 is positiv@o it is a spectrum. The useful tool w@l} uncover I dub

the “helix derivativw W
The signal@
| =

is an autocorrelation functionpbecause it is symmetrical about the “4,” and the Fourier
transform of —V? is —((iks)? y ey)% = O/Which is positive for all frequencies (kz, ky).
Kolmogoroff spectral-factorization gives this wavelet h:

v* = [CIO[[O[I[A[I[0[[0[-1] (@10

h = [1.791[—651] .044]—024] [--[-.044]-.087 [—.200 [—.558] (4.11)

In other words, the autocorrelation of (4.11) is (4.10).@13 not obvious from the numbers
emselveshbecause the computation requires a little work, but dropping all the smaller
numbers allows you a rough check.

In this book section onlyal use abnormal notation for bold letters. Here h, r are signals,
while H and R are images, Reither being matrices or vectors. Recall from chapter 1 that a
filter is a signal packed into a matrix to make a filter operator. =

106 CHAPTER 4. THE HELICAL COORDINATE

Let the time reversed version of h be denoted h*. This notation is consistent with
an idea from Chapter 1 that the adjoint of a filter matrix is another filter matrix with a
reversed filter. In engineeringfit is conventional to use the asterisk symbol “¥” to denote
convolution. Thus, the idea t}zat the autocorrelation of a signal h is a convolution of the
signal h with its time reverse (adjoint) can be written as h* xh =h+h* =r.

Wind the signal r around a vertical-axis helix to see its two-dimensional shape R:

==,
4
-1

r — helical boundaries | —1 -1 (4.12)

p 3

This 2-D image (which can be packed into a filter operator) is the nggative of the finite-

difference representation of the Laplacian operator, generally denoted, 2 = 8%27 + 5%27. Now
for the magic: Wind the signal h around the same helix to see its -dimensional shape]@
1.791 | —.651 | —.044 | —.024
H = —.044 | —.087 | —.200 | —.558 Ge13)

In the representation (4.13)awe see the eiﬁzc'ients diminishing rapidly away from maximum
value 1.791. My claim is t lat the -dimensional autocorrelation of (4.13) is (4.12). You
ter when the numbers were all ones. You can check it again in a few
you drop the small values, say 0.2 and sr%r.

Physics on a helix can be viewed the eyes of Thatrices and numerical analysis.
is not easvAbecause the matrices are so huge. Discretize the (z,y)-plane to an N x M
arra}y\and ack the array into a vector of N x M components. Likewisefpack the Laplacian
operator O, + Oyy into a matrix. For a 4 x 3 plane, that matrix is showJ in gquation (4.14).
) -

4 -1 o
=g & =1 -1 -
-1 4 -1| - =1
: 1. 4| B - 1] -
=T = | 4 -1 =3
. -1 - -1 4 -1 . - -
- V2 = . - o (4.14)
wedllff -1 4| h -)
-1 - Bl & -1 -
o -1 4 -1 -
-1 . o R |
i -1 4]

L

e |
The
wher

dimensional matrix of coefficients for the Laplacian operator is shown in (4.14),
on a cartesian space, h = 0, and in the helix geometry, h = —1.

(A similar parti-

tioned matrix arises from packing a cylindrical surface into a 4 x 3 array.) Notice that the
partitioning becomes transparent for the helix, h = —1. With the partitioning thus invisi-

analytical approach,

simultaneous equations

factorization.

ble, the matrix simply represents -dimensional convolutio
-dimension

med we have an alternative

Fourier ;[?ansform. We' often need to solve sets of

ith a matfix similar to

1

(4.14). The method we use is triangular

4.4. HELIX LOW-CUT FILTER

107

Although the autocorrelation r has mostly zero values, the factored autocorrelation a

has a great number of nonzero terms. Fortunately

the middle) so truncation (of the middle coefficien
you a larger matrix, but all I can do is to pack the signal a into shifted columns of a lower

triangular matrix A like this:

seem to be converging rapidly (in
!) seems reasonable. I wish I could show

1.8 7
-6 1.8
~ LB
. ~6 18
—6 —.2 ~6 18
= —2 S, —6 LB
A= —6 =2 ~6 18 (4.15)
6 —.2 -6 1.8
oy - ~6 1.8
= =2 ~-6 1.8
. —6 —2 -6 18
I -~ —3 ~6 18 |

If you will allow me some truncation approximations, I now claim that the ‘L’a.placian rep-
resented by the matrix in equation (4.14) is factored into two parts =V2 = A*A/\which
are upper and lower triangular matrices whose product forms the autocorrelation geen in
(4.14). Recall that triangular matrices allow quick solutions of simultaneous equations by
backsubstitution/A: is what we do with our deconvolution program.

Spectral factorization produces not merely a causal wavelet with the redquired auto-
correlation. It produces one that is stable in deconvolution. Using H in -dimensional
polynomial division, we can solve many formerly difficult problems very rapidly. Consider
the Laplace equation with sources (Poisson’s equation). Polynomial division and its reverse
(adjoint) gives us p = (q/H)/H/Awhich means we have solved V?p = —q by using
polynomial division on a helix. I}sing the coefficients shown, the cost is feurteenm®
multiplications (because we need to run botms) per mesh point. An example is shown
in Figure 4.10. b 4

Figure 4.10 contains both the helix derivative and its inverse. Contras to the z-
or y-derivatives (doublets) andnverses (axis-parallel lines in the (z,y)-plane). Simple
derivatives are highly directionalawhereasgthe helix derivative is only slightly directional
achieving its meagre directionalitf entirely’ from its phase spectrum.

4.4 HELIX LOW-CUT FILTER
I o

Singe the autocorrelation of H is H**H = R = —V? is a second derivative, the operator H
must be something like a first derivative. As a geophysicist, I found it natural to compare
the operator a% with H by applying to a local topographic map. The result shown in

Figure 4.11 is that H enhances drainage patternS/)QVherea}a% enhances mountain ridges.

o

108 CHAPTER 4. THE HELICAL COORDINATE

£ ;
imlmput ilj])kl.t/l‘ilter (imput filter) filte

Figure 4.10: Deconvolution by a filter whose autocorrelation is the twe-dimensional Lapla-
cian operator. Amounts to solving the Poisson equation. Left is q; Middle is q/H; Right is

(q/H)/H*. [VIEW] |hlx/. lapfac90

| A
The operator H has c%ilaﬁties and differences with the familiar gradient and
divergence operators. In “dimensional physical space, the gradient maps one field to
two fields (north slope and east slope). The factorization of —V? with the helix gives us
the operator H that maps one field to one field. Being a one-to-one transformation (unlike
gradient and divergence),the operator H is potentially invertible by deconvolution (recursive
filtering). /7

I have chosen the name “helix derivative” or “helical derivative” for the operator H. A
flag pole has a narrow shadow behind it. The helix integral (middle frame of Figure 4.10)
and the helix derivative (left frame) show shadows with an angular bandwidth approaching
180°.

Our construction makes H have the energy spectrum k% + k;, so the magnitude of the

Fourier transform is ,/k2 + k2. It is a cone centered and with value zero at the origin. By

contrast, the components of the ordinary gradient have amplitude responses |k;| and |ky|.

M cawoe

The rotationally invariant cone in the Fourier domain gontrasts sharply with the nonro-
tationally invariant function shape in (z, y)-space. The difference must arise from the phase
spectrum. The factorization (4.13) is nonunique i causality associated with the helix
mapping can be defined along either z- or y-axes; thu%t.he operator (4.13) can be rotated
or reflected.

that are lines of zero across the (kg, ky)-plane.

In practicghwe often require an isotropic filter. Such a filter is a function of k, =
K2+ k; It could be represented as a sum of helix derivatives to integer powers.

If you want to see some tracks on the side of a hill,,you want to subtract the hill and
see only the tracks. Usually, however, you doi’d have a very good model for the hill. As an
expedienNou could apply a low-cut filter to rethove all slowly variable functions of altitude.

In ghapter) Ihye found the Sea of Galilee in Figure 1.3 to be too smooth for viewing pleasure/ﬁ-

so we made the roughened versions in Figure|1.6, a -dimensional filter that we could
apply over the z-axis or the y-axis. In Fourier pacgisuchia filter has a response function of

)
" S

4.4. HELIX LOW-CUT FILTER 109

600 800 1000 1200 1400 1600 1800 2000

oos 009 oco4 oog 006 o0o0OoT1

oov

600 800 1000 1200 1400 1600 1800 2000

[e]el] oo9 oco4 oos ooe [eloYe R

oov

600 800 1000 1200 1400 1600 1800 2000

[eJe}=] oo4 oos oo6 oooTt1

0oos

oov

Southward slope

Figure 4.11: Topography, helical derivative, slope south. |VIEW lilx/ . helocut90

/y?

110 CHAPTER 4. THE HELICAL COORDINATE

ks or a function of k,. The isotropy of physical space tells us it would be more logical to
design a filter that is a function of k2 + kg In Figure 4.1};@6 saw that the helix derivative

H does a nice job. The Fourier magnitude of its impulse rzsponse is kr = (/kZ + k2. There

is a little anisotropy connected with phase (which way should we wind the helix, on x or
y?) Rbut it is not nearly so severe as that of either component of the gradient, the two
components having wholly different spectra, amplitude |kz| or |ky|.

4.4.1 Improving low-frequency behavior

It is nice having the 2-D helix derivative, but we can imagine even nicer 2-D low-cut filters.
In i lonfwe designed a filter with an adjustable parameter, a cutoff frequency.
In 1-Dawe compounded a first derivative (which destroys low frequencies) with a leaky
integraﬁon (which undoes the derivative at all other frequencies). The analogous filter
in 2-D would be —V?2/(~V? + k2), which would first be expressed as a finite difference
(=Z7142.00 - Z)/(—=Z71 +2.01 — Z) and then factored as we did the helix derivative.

We can visualize a plot of the magnitude of the 2-D Fourier transform of the filter
8quation (4.13). It is a 2-D function of k; and ky/@nd it should resemble k, = \/k2 + k2.

The point of the cone k, = (/k2 + kg becomes rounded by the filter truncatiomso k, does

not reach zero at the origin of the (kg, ky)-plane. We can force it to vanish at ZeI/O frequency
by subtracting .183 from the lead coefficient 1.791. I did not do that subtraction in Figure
4.1%vhich explaing the whiteness in the middle of the lake. I gave up on playing with both
ko and filter lengt@and novx/rq_nerely play with the sum of the filter coefficients.

)

km km
A98 200 202 Q04 206 208 210 212 M98 200 =02 204 206 208 R10 212
) o

sz
z2se

w3
¥ 8¥v
Iy

ove vy [2

ovz

feRa¥
o¢€g

Filled and d/dx Filled and helix deriv

Figure 4.12: Galilee roughened by gradient and by helical derivative. hlx/. helgal

4.4. HELIX LOW-CUT FILTER 111

4.4.2 Filtering mammograms

50 100 150 200 250 300 950 400 450 500 50 100 150 200 250 300 $50 400 450 500

Figure 4.13: Mammogram (medical
X-ray). The cancer is the “spoked
wheel.” (I apologize for the inability
of paper publishing technology to ex-
hibit a clear grey image.) The tiny
white circles are metal foil used for
navigation. The little halo around a
circle exhibits the impulse response

of the helix derivative.

mammogram helix derivative

I prepared a half dozen medical X-rays like Figure 4.13. The doctor brought her young
son to my office one evening to evaluate the results. In a dark roomgl would show the
original X-ray on a big screen and then suddenly switch to the helix’derivative. Every
time I did this, her son would exclaim “Wow!” The doctor was not so easily impressed,
however. She was not accustomed to the unfamiliar image. Fundamentally, the helix
derivative applied to her data does compress the dynamic range making weaker features
more readily discernible. We were sure of this from theory and various geophysical
examples. The subjective problem was her unfamiliarity with our display. I found that
I could always spot anomalies more quickly on the filtered display, but then I would feel
more comfortable when T would discover those same anomalies also present (though less
evident) in the original data. Thinking this through, I decided the doctor would likely have
been more impressed had I used a spatial low-cut filter instead of the helix derivative. {i
would have left the details of her image (above the cutoff frequency) unchange%lterm
only the low frequencies, thereby allowing me to increase the gain. e AL

Firsta] had a problem preparing Figure 4.13. It shows shew&?he application of the
helix délivative to a medical X-ray. The problem was that the original X-ray was all
positive values of brightnesgiso there was a massive amount of spatial low frequency present.
Obviouslysan z-derivative 01’ a y-derivative would eliminate the low frequency, but the helix
derivative did not. This unpleasant surprise arises because the filter in 8guation (4.13) was
truncated after a finite number of terms. Adding up the terms actually displayed in equation
(4.13), @ sum to .18 hereay&heoretically the sum of all the terms should be zero. From
the ratio of .183/1.791%gve can s)ay the filter pushes zercx‘:frequency amplitude 90% of
the way to zero value. ‘Nhen the image contains very much zerof‘frequency amplitude,
is not good enough. Better results could be obtained with more coefficients, and I did use
more coefficients, but simply removing the mean saved me from needing a costly number of

112 CHAPTER 4. THE HELICAL COORDINATE

filter coefficients.

A final word about the doctor. As she was about to leave my officggghe suddenly asked
\% witettrer4 had scratched one of her X-rays. We were looking at the helix Herivativeyend it did
seem to show a big scratch. What should have been a line was broken into a string of dots.
I apologized in advance and handed her the original film negativegiywhich she proceeded
to inspect. “Oh,” she said, “Bad news. There are calcification nodules along the ducts.”
Soathe scratch was not a scratch, but an important detail that had not been noticed on
the’ original X-ray. Times have changed since then. NowadayWammography has become
digital and appropriate filtering is defaulted into their presentettion.

In preparing an illustration for here, I learned one more lesson. The scratch was small,
so I enlarged a small portion of the mammogram for display. The very process of selecting a
small portion followed by scaling the amplitude between maximum and minimum darkness
of printer ink had the effect enhancing the visibility of the scratch on the mammogram
NOW/Figure 4.14 shows it to be perhaps even clearer than on the helix derivative.
)

900 1000 1100 1200 1300 80O Q00
|

1000 1100 1200 1300

0091
0091

0002
00%2 0002

00%2

0082
0082

zoomed and rescaled mammogram

Figure 4.14: Not a scratch. Reducini/the (z,y)-space range of the illustration allowed

boosting the gain, thus making the nonfscratch more prominent. VIEW]| |hlx/. scratch

4.5 SUBSCRIPTING A MULTIDIMENSIONAL HELIX

Basic utilities transform back and forth between multidimensional matrix coordinates and
helix coordinates. The essential module used repeatedly in applications later in this book
is createhelixmo@\/'e begin here from its intricate underpinnings.

Fortran77 has a concept of a multidimensional array being equivalent to a ene-dimensional
array. Given that the hypercube specification nd=(n1,n2,n3,...) defines the storage
dimension of a data array, we can refer to a data element as either dd(i1,i2,i3,.. D)
or dd(i1 +n1*(i2-1) +ni1*n2*(i3-1) +...). The helix says to refer to the multidimen-

4.5. SUBSCRIPTING A MULTIDIMENSIONAL HELIX 113

sional data by its equivalent eme-dimensional index (sometimes called its vector subscript

or linear subscript). w'{' MQW

The filter, however, is a much more complicated story theén the data: First/we require
all filters to be causal. In other words, the Laplacian doe fit_very well, sinde it is intrin-
sically noncausal. If you really want noncausal filters, you wﬁs{efed to provide your own
time shifts outside the tools supplied here. Second, a filter is usually a small hypercube, say
aa(al,a2,a3,...) and would often be stored as such. For the helizawe must store it in a
special offe-dimensional form. Either way, the numbers na= (al,a2,a3,.. .) specify the
dimension of the hypercube. In cube form, the entireﬁgube could be indexed multidimen-
sionally as aa(il,i2,...) or it could be indexed ene-dimensionally as aa(ia,1,1,...)
or sometimes! aa(ia) by letting ia cover a large range. When a filter cube is stored in its
normal “tightly packed” form/Ehe formula for computing its ene-dimensional index ia i

)

ja = i1 +al*(i2-1) +al*a2*(i3-1) +

When the filter cube is stored in an array with the same dimensions as the data, data(nl,n2,n3,...),
the formula for ia i .

ia = il +n1*(i2-1) +nl*n2*(i3-1) + ... }L}z "’W

The fortran compiler knows how to convert from the multidimensiongl cartesian indices

to the lifear index. We wiﬂfdeed to do that, as well as the converse. jModule cartesian

contains two subroutines that explicitly provide us the transformations between the

linear index i and the multidimensional indices ii= (i1,i2,...). The two subroutines
have the logical names cart2line and line2cart.

helical-cartesian coordinate conversion.r90

module cartesian { # index transform (vector to matrix) and its inverse
contains
subroutine line2cart(nn, i, ii) {
integer , dimension(:), intent(in) :: nn # cartesian axes (nl,n2,n3,...)
integer , dimension(:), intent(out) :: ii # cartesn coords (il,i2,i3,...)
integer , intent(in) :: i # equivalent 1-D linear index
integer ;. axis, nl23
nl23 =1
do axis = 1, size(nn)

ii(axis) = mod((i-1)/n123, nn(axis)) + 1
nl23 = nl123 * nn(axis)

}
}
subroutine cart2line(nn, ii, i) {
integer , dimension(:), intent(in) :: nn, ii
integer :: i, axis, nl23
n123 = 1; i =1
do axis = 1, size(nn) {

1
i=1i +é/ii(axis)—1)xnl23

! Some programm)‘i‘ g minutia: Fortran77 does not allow you to refer to an array by both its cartesian
coordinates and byitd linear subscript in the same subroutine. To access it both ways, you need a subroutine
callyor you dimension it as data(ni,n2,...)/%and then you refer to it as data(id,1,1,...). Fortran90
follows the same rule outside modules. Where *hodules use other modules, the compiler does not allow you
to refer to data both ways, unless the array is declared as allocatable.

114 CHAPTER 4. THE HELICAL COORDINATE

nl23 = nl23 * nn(-axis)

b

v

The fortran linear index is closely related to the helix. There is one major difference,
however, and that is the origin of the coordinates. To convert from the linear index to

e, helix lag coordinate, we need to subtract the fortran linear index of the “1.0” wirtch—

usually taken at center= (1+al/2, 1+a2/2, . 7 , 1). (On the last dimension, there
is no shiftapkecause nobody stores the volume of zero values that would occur before the
1.0.) The tartesian module fails for negative subscripts. Thusfwe need to be careful to
avoid thinking of the filter’s 1.0 (shown in Figure 4.8) as fhe origiﬁ of the multidimensional

coordinate system although the 1.0 is the origin in the erfe-dimensional coordinate system.

Even in “dimension (see the matrix in gquation 1%1) to define a filter operatopye
need to know not only filter coefficients and a filter length, but wéalso ’the
data length. To define a multidimensional filter using the helix idea, besides the properties
intrinsic to the filter, we also need to know the circumference of the helix, i.e., the length
on the l-axis of the data’s hypercube as well as the other dimensions nd=(n1,n2,...) of
the data’s hypercube.

Thinking about convolution on the helix, it is natural to think about the filter and data
being stored in the same way, that is, by reference to the data size. ould waste so
much space, however, that our helix filter module helix instead stores the filter coefficients
in one vector and thei¥ Tags in another. The i-th coefficient value of the filter goes in
aa%flt (1)ﬁnd the i-th lag ia(i) goes in aa¥lag(i). The lags are the same as thejortran
linear indek except for the overall shift of the 1.0 of a cube of data dimension nd. Our
module for convolution on a helix, helicon has already an implicit “1.0” at the filter’s zero
layso we do not store it. (It is an error to do so.)

Module createhelixmod allocates memory for a helix filter and builds filter lags along
the helix from the hypercube description. The hypercube description is not the literal
cube seen in Figure 4.8 but some integers specifying that cube: the data cube dimensions
nd, likewise the filter cube dimensions na, the parameter center identifying the location
of the filter’s “1.0”, and a gap parameter used in a later chapter. To find the lag table,
module createhelixmod first finds the fortran linear index of the center point on the
filter hypercube. Everything before that Fas negative lag on the helix and can be ignored.
(Likewise, in a later chapte Ne see aﬁ arameter that effectively sets even more filter
coefficients to zero so thei lags ca ignored ") ThepAit sweeps from the center point
over the rest of the filter hypercube calculating for a data-sized cube nd, the ’fprtran linear
index of each filter element. -

constructing helix filter in N-D.r90

module createhelixmod { # Create helix filter lags and mis
use helix
use cartesian

contains
function createhelix(nd, center, gap, na) result(aa) {
type(filter) i aa # needed by helicon.

integer , dimension(:), intent(in) :: nd, na # data and filter axes
integer , dimension (:), intent(in) :: center # normally (nal/2,na2/2,...,1)
integer , dimension (:), intent(in) :: gap # normally (0, 0, 0,...,0)

ackst

4.5. SUBSCRIPTING A MULTIDIMENSIONAL HELIX 115

integer , dimension(size(nd)) s # cartesian indexes
integer :: nal23, ia, ndim, nh, lagOa,lag0Od
integer , dimension (:), allocatable:: lag

nh= 0; nal23 = product(na); ndim = size(nd)

allocate(lag(nal23)) # filter cube size
call cart2line (na, center, lagOa) # lag0a = index pointing to the ”1.0”
do ia = l1+lagla, nal23 { # ia is fortran linear index.
call line2cart(na, ia, ii) # ii(ia) is rtran array indices.
if (any(ii <= gap)) next # ignore some locations
nh = nh + 1 # got another live one.
call cart2line(nd, ii, lag(nh)) # get its ,f'ortran linear index
r
call cart2line(nd, center, lag0d) # lag0d is center shift for nd_cube
call allocatehelix(aa, nh) # nh becomes size of filter on helix.
aa%lag = lag (l:nh) — lag0d; # lag = fortran_linear_.index — center
aa%flt = 0.0; deallocate (lag) .. .
t ’ . ..
} : -

~.

Near the end of the codelyou see the calculation of a parameter 1ag0d. ’@S the count of
the number of zeros that a data-sized éortran array would store in a filter cube before the
filter’s 1.0. We need to subtract this shift from the filter’s Eortran linear index to get the
lag on the helix. e

A filter can be represented literally as a multidimensional cube like equation (4.9) shows
us in two dimensions or like Figure 4.8 shows us in three dimensions. Unlike the helical
form, in literal cube form, the zeros preceding the “1.0” are explicitly presen}uo lag0 needs
to be added back in to get the 'ﬁgrtran subscript. To convert a helix filter ba to ﬁortran’s
multidimensional hypercube cube (n1,n2,...) is module box: "

Convert helix filter.r90

module box { # Convert helix filter to hypercube: cube(na(l),na(2),...)
use helix
use cartesian

contains
subroutine boxn(nd, center, na, aa, cube) {
integer , dimension (:), intent(in) :: nd, center, na # (ndim)
type(filter), intent (in) :: aa
real , dimension(:), intent(out) :: cube
integer , dimension(size(nd)) £ !
integer it j, lagOa, lag0d, id, ia
cube = 0. . # cube=0
call cart2line(na, center, lagOa) # locate the 1.0 in the na._cube.
cube(lagla) = 1. ' # place it.
call cart2line(nd, center, lag0d) # locate the 1.0 in the nd._cube.
do j = 1, size(aa%lag) { # inspect the entire helix
id = aa%lag(j) + lag0d # index = helix_lag + center_d
call line2cart(nd, id, ii) # ii(id) = cartesian indices
call cart2line(na, ii , ia) # ia(ii) = linear index in aa
cube(ia) = aa%flt (j) # copy the filter coefficient
}

}

The box module is normally used to display or manipulate a filter that was estimated in
helical form (usually estimated by the least-squares method).

116 CHAPTER 4. THE HELICAL COORDINATE

The inverse process to box is to convert a jprtran hypercube to a helix filter. For@
we have module unbox. It abandons all zero-valued coefficientsaguch as those that should Y
be zero before the box’s 1.0. It abandons the “1.0” as well, becsfxse it is implicitly present
in the helix convolution module helicon@

Convert hypercube filter to helix.r90

module unbox { # helixfilter aa = cube(al,a2,...)
use helix
use cartesian

contains
function unboxn(nd, center, na, cube) result(aa) {
type(filter) i1 aa
integer , dimension(:), intent(in) :: nd, center, na # (ndim)
real , dimension(:), intent(in) :: cube # cube(al,a2,...)
logical , dimension(size(cube)) it keep # keep(al*xa2x...)
integer , dimension(size(nd)) ST # (ndim)
integer ;. ic, lagOa, lag0d, i, h

call cart2line(na, center, lagOa)
call cart2line(nd, center, lag0d)

keep = (abs(cube) > epsilon(cube)) # epsilon is a Fortran intrinsic
keep(lagla) = .false. # throw away the 1.0.
call allocatehelix(aa, count(keep)); h =10
do ic = 1, size(cube) { # sweep cube
if(keep(ic)) { h =h+ 1 # only the keepers
call line2cart(mna, ic, ii) # ii(ic)= indices on na
call cart2line(nd, ii, 1) # i © = index on nd
aa%lag (h) = i — lag0d # lag = index — center
aa%flt (h) = cube(ic) # copy coefs.
} :
}
}

}

An example of using unbox would be copying some numbergsuch as the factored laplaman
in ﬁquatlon (4.13) into a cube and then converting it to a Rdlix. -

A reasonable arrangement for a small 3-D filter is na=(5,3,2) and center=(3,2,1).
Using these arguments, I used createhelixmod to create a filter. I set all the helix filter
coefficients to 2. Thenal used module box to put it in a convenient form for display. After
this conversion, the cobfficient aa(3,2,1) is 1, not 2. Finally, I printed it:

0.000 0.000 0.000 0.000 0.000
.000 .000 .000 2.000 .000
2.000 2.000 2.000 2.000 2.000
2.000 2.000 2.000 2.000 2.000
.000 .000 .000 2.000 .000
2.000 2.000 2.000 2.000 2.000

o
O
-
N

N
N
N
N

Different data sets have different sizes. To convert a helix filter from one data size to
another, we could drop the filter into a cube with module cube. ThenAwe could extract it
with module unbox specifying any data set size we wish. Insteadawe lise module regrid
prepared by Sergey Fomelpwhich does the job without reference to ah underlying filter cube.
He explains his regrid mbdule thus:

4.6. INVERSE FILTERS AND OTHER FACTORIZATIONS 117

Imagine a filter being cut out of a piece of paper and glued on another paper,
which is then rolled to form a helix. wS

We start by picking a random point (leg call it rand) in the cartesian grid
and placing the filter so that its center (the leading 1.0) is on top of that point.
rand should be larger than (or equal to) center and smaller than min (nold,
nnew), otherwise the filter might stick outside the grid (our piece of paper.)
rand=nold/2 will do (assuming the filter is small), although nothing should
change if you replace nold/2 with a random integer array between center and
nold - na.

The linear coordinate of rand is h0 on the old helix and h1 on the new helix.
Recall that the helix lags aa%lag are relative to the center. Therefore, we need
to add ho to get the absolute helix coordinate (h). Likewise, we need to subtract
h1 to return to a relative coordinate system.

Convert filter to different data size.r90

module regrid { # convert a helix filter from one size data to another
use helix

use cartesian

contains

subroutine regridn(nold, nnew, aa) {

integer , dimension (:), intent (in) nold, nnew # old and new helix grid
type(filter) aa
integer , dimension(size(nold)) ii
integer :: i, hO, hl, h
call cart2line(nold, nold/2, hO) # lag of any near middle point on mnold
call cart2line(nnew, nold/2, hl) # lag on nnew
do i = 1, size(aa%lag) { # forall given filter coefficients

h = aa%lag(i) + hO # what is this?

call line2cart(nold, h, ii) #

call cart2line(nnew, ii, h) #

aa%lag(i) = h — hl # what is this

4.6 INVERSE FILTERS AND OTHER FACTORIZATIONS

Mathematics sometimes seems a mundane subject, like when it does the “accounting” for
an engineer. Other timeght brings unexpected amazing new concepts into our lives. "@ is
the case with the study of causality and spectral factorization. There are many little-known,
amazing, fundamental ideas heréome merely named, one worked through to results.

Start with an example. Consider a mechanical object. We can strain it and watch it
stress or we can stress it and watch it strain. We feel knowledge of the present and past
stress history is all we need to determine the present value of strain. Likewise, the converse,
history of strain should tell us the stress. We could say there is a filter that takes us from
stress to strain; likewisepanother filter takes us from strain to stress. What we have here is
a pair of filters that are’mutually inverse under convolution. In the Fourier domain, one is
literally the inverse of the other. What is remarkable is that in the time domain, both are
causal. They both vanish before zero lag 7 = 0.

118 CHAPTER 4. THE HELICAL COORDINATE

not
Not all causal filters have a causal inverse. The best known name for ohe that does
is “minimum-phase filter.” Unfortunately, this name is not suggestive of the fundamental
property of interest, “causal with a causal (convolutional) inverse.” I gould call it CCL
An example of a causal filter without a causal inverse is the unit de operatcﬂ—&‘vith
Z-transforms, the operator 1 If you delay something, you cai’y get it back without
seeing into the future, which you are not allowed to do. Mathematically, 1/Z cannot be
expressed as a polynomial gctually, a cenvergent infinite series) in positive powers of Z.

Physics books dof’ tell us where to expect to find transfer functions that are CCI.
I think I know why @ d Any causal filter has a “sharp edge” at zero time lag
where it switches from non responsiveness to responsiveness. The sharp edge might cause
the spectrum to be large at infinite frequency. If so, the inverse filter is small at infinite

ne wac.e.s

frequency. Either way, one of the two filters is unmanageable with Fourier transform theoryAs

which (you might have noticed in {ho mathematical fine print) ‘rgnulres signals (and spectra,),
to have finite energy widiche ns the function must get rea all in that immense space
on the t-axis and the w axis. It is impossible for a functlon to be small and its inverse
be small. These imponderables become manageable in the world of Time Series Analysis
(discretized time axis).

4.6.1 Uniqueness and invertability

Interesting questions arise when we are given a spectrum and find/ourselvgs asking how to
find a filter that has that spectrum. Is the answer unique? WeW see not/ Is there always
an answer that is causal? Almost always, yes. Is there always an answer that is causal with
a causal inverse (CCI)? Almost always, yes.

Let us have an example. Consider a filter like the familiar time derivative (1, —1)sexcept
let us down weight the —1 a tiny bit, say (1, —p) where 0 << p < 1. Nowpéhe ﬁlter‘tl —p)
has a spectrum (1 — pZ)(1 — p/Z) with autocorrelation coefficients (—p;1 + p 2 —p) that
look a lot like a second derivative, but it is a tiny bit bigger in the middle. Two different
waveforms, (1, —p) and its time reverse both have the same autocorrelation. In principle,

spectral factorization could give us both (1, —p) and (p, —1)Abut we always want only the
one that is CCI/whlch is the one we get from Kolmogoroff he bad one is weaker on its
first pulse. Its ?nverse is not causal. are two expressions for the filter inverse to

(p, —1), the first divergent (filter cooﬁiments at infinite lag are infinitely strong), the second
convergent but nm&'causal.

1 1

—7 = ;(1+Z/p+Z2/p2-l~-‘-) (4.16)
1 ; —1

o7 = 7 Qe ZEsz) (4.17)

(Please multiply each equation by p — ZI?nd see it reduce to 1 = m

We begin with a power spectrumpand our goal is to find a CCI filter with that spectrum.
If we input to the filter an infinite sequence of random numbers (white noise]\e should
output something with the original power spectrum.

We easily inverse Fourier transform the square root of the power spectrum getting a
symmetrical time function, but we need a function that vanishes before 7 = 0. On the

W

4.6. INVERSE FILTERS AND OTHER FACTORIZATIO/S . M 119
w

&

other hand, if we already had a causal filter with the corréct spectr, pAye could manufacture
many others. To do sgAall we need is a family of delay/operatorsyto ‘convolve aith. A pure
delay filter does not chgnge the spectrum of anything™pame for frequency-dependent delay
operators. Here is an example of a frequency-dependlent delay operator: Firspa nvolve

spe "”{"‘/‘f““"‘-

with (1, d then deconvolve with (2,1). Both these have the same amplitude)spectrum A~

so thei ratio has a unit amplitude (and nontrivial phase). If you multiply (1+22)/(2+ Z)
by its Fourier canjugate (replace Z by 1/Z)the resulting spectrum is 1 for all w.
wok 2. e

Anything whese nature .imelay is deat},l to CCI. The CCI has itg energy as close as
possible to 7 = 0. More formally, my first book, FGDP, proves " the CCI filter has
for all time 7 more energy between ¢t = 0 and t = 7 than any other filter with the same
spectrum.

Spectra can be factorized by an amazingly wide variety of techniques, each of which
gives you a different insight into this strange beast. can be factorized by factoring

olynomial bs?%nsertiﬁg power series into other power series, solving_least squares
0/‘,.) problems, Moy taking logarithms and exponentials in the Fourier domain cqded most of
(\ n still find 11 somewhat mysterious. &—

o

5

Theorems in Fourier analysis can be interpreted physically in two different ways, one as
givey'the other with time and frequency reversed. Sor example, convolution in one domain
amounts to multiplication in the other. If we express the CCI concept with reversed
domains, instead of saying the “energy comes as quick as possible after 7 = QA we would
say “the frequency function is as close to w = 0 as possible.” In other words, it i8 minimally
wiggly with time. Most applications of spectral factorization begin with a spectrum, a
real, positive function of frequency. I once recognized the opposite case and achieved minor
fame by starting with a real, positive function of space, a total magnetic field /HZ + H?2

measured along the x—axi@xd I reconstructed the magnetic field components H, and H,
that were minimally wi n space (FGDP @ '

y wigg (w‘ //)\.‘Owb,b(g‘.

= N

Ce-
4.6.2 Cholesky decomposition ’SP&

Conceptuallygthe simplest computational method of spectral factorization might be “Cholesky
decompositioﬂ.” For example, the matrix of (4.15) could have been found by Cholesky fac-
torization of (4.14). The Cholesky algorithm takes a positive-definite matrix Q and factors
it into a triangular matrix times its transpose, say Q = T*T.

It is easy to reinvent the Cholesky factorization algorithm. To do so, simply write all the
components of ' ar matrix Tpand then explicitly multiply these elements times
ranspose matrix T*. You wilefind you have everything you need to recursively
build the elements of T from the elements of Q. Likewis?ipr a 4 x 4 matrix, etc.

.)
The 1 x 1 case shows that the Chole* algorithm requires square roots. Matrix elements

are not always numbers. Sometimes are polynomialy‘euch as Z-transforms. To avoid
square rootgfhere is a variation of the Cholesky method. Ia this variation, we factor Q into
Q= T*D’Jj&vhere D is a diagonal matrix.

Once a matrix has been factored into upper and lower triangles, solving simultaneous
equations is simply a matter of two back substitutions: (We looked at a special case of back
substitution with equation (1.22).) For example, we often encounter simultaneous equations

L

Vol

120 CHAPTER 4. THE HELICAL COORDINATE

of the form B* Bm = B*d. Suppose the positive-definite matrix B* B has been factored
into triangle form T* Tm = B*d. To find mpwe first backsolve T* x = B*d for the vector
X. Thenﬁwe back golve Tm = x. When T ﬁappens’to be a band matrix, then the first
back substitution is filtering down a heliwnd the second is filtering back up it. Polynomial
division is a special case of back substitution. & that

Poisson’s equation V?p = —q requires boundary conditions, which we can honor when
we filter starting from both ends. We cannot simply solve Poisson’s equation as an initial-
value problem. We'could insert the laplace operator into the polynomial division program,
but the solution would diverge. - :

Being a matrix method, the Cholesky method of factorization has a cost proportional
to the cube of the size of the matrix. Because our applications are very largerand because
the Cholesky method does not produce a useful result if we stop part way to completion, we
look further. The Cholesky method is a powerful methodabut it does more thah we require.
The Cholesky method dges not require band matrices, ye)t these matrices are what we very
often find in applicatior (}y_ve seek methods that take advantage of the special properties
of band matrices.)

4.6.3 Toeplitz methods

Band matrices are often called Toeplitz matrices. In the subject of Time Series Analysis
are found spectral factorization methods that require computations proportional to the
dimension of the matrix squared. can often be terminated early with a reasonable
partial result. Two Toeplitz methods, the Levinson method and the Burg methodaare
described in my first textbook, FGDP. Our interest is multidimensional data sep&so, the
matrices of interest are truely huge and the cost of Toeplitz methods is proportiona’l to the
square of the matrix size. Thus, before we find Toeplitz methods especially useful, we may
need to find ways to take advantage of the sparsity of our filters.

EXERCISES:

1 Observe the matrix (1.4) whieh corresponds to subroutine tcai/lLWhat is the matrix
corresponding to helicoxL;? .

Chapter 5

Preconditioning

In Chapter 1'we developed adjoints and in Chapter 2 we developed inverse operators.

Logically, corvect solutions come only through inversion. 'Real life, however, seems nearly

the opposite. (This)is puzzling but intriguing. It seems an easy path to fame and profit

would be to go beyond adjoints by introducing some steps of inversion. It is not that

J:/\L ‘3L% easy. Images contain so many unknowns. Mostl)f ‘we cannot iterate to completion and need

\,«J)\-““i = concern ourselves with the rate of convergence. ‘Often necessity wil} 1imitf?{ us to a handful
%,ﬁ’\/{}\{iﬁw v of iterations where in principh?s\millions or billions are fequired. /L '

When you fill your car with gasoline, it derives more from an adjoint than an inverse.
Industrial seismic data processing relates more to adjoints than to inverses though there is
a place for both, of course. It cannot be much different with medical imaging.

First consider cost. For simplicity, consider a data space with N values and a model (or
image) space of the same size. The computational cost of applying a dense adjoint operator
increases in direct proportion to the number of elements in the matrix, in this case N2.
To achieve the minimum discrepancy between modeled data and observed dat (inversion)
theoretically requires N iterations raising the cost to N B, /0 Mi”/

Consider an image of size m x m = N. Continuing, for simplicity, to assume a dense
matrix of relations between model and data, the cost for the adjoint is ‘}(Whereas,ﬁthe cost,
for inversion is m8. We'l consider computational costs for the year 20 0,)but notié’ing that
costs go as the sixth power of the mesh size, the overall situation will not change much in
the foreseeable future. Suppose you give a stiff workout to a powerful machine; you take
an hour to invert a 4096 x 4096 matrix. The solution, a vector of 4096 components could
be laid into an imagé of sizel64 x 64 = 26 x 26 = %996, Here is what we are looking at for
costs:)

adjoint cost | (m x m)? | (512 x 512)* (2929)2 | 236
inverse cost | (m x m)3 (64 x 64)3 | (2626)3 | 2%6

These numbers tell us that for applications with dense operators, the biggest images that
we are likely to see coming from inversion methods are 64 x 64%,\\yherea§/‘those from adjoint
methods are 512 x 512. For comparison, your vision is comparable to yo{lr computer screen
at 1000 x 1000.

ﬂ. l“

A ,
121

122 CHAPTER 5. PRECONDITIONING

Figure 5.1: Jos greets Andliew,
“Welcome back Andrew” from the
Peace Corps. At a resolution of
512 x 512, this picture is the
same as the resolution as the paper
it is printed od,jor the same as your
viewing screen, if you have scaled it

up to 50% of screen size. |VIEW
pre/. 512x512

HE B4c o...

Web http://sep.stanford.edu/sep/jon/family/jos/gifmovie. html holds a movie blinking be-
tween Figures 5.1 and 5.2.

This cost analysis is oversimplified in that most applications do not require dense oper-
ators. With sparse operators, the cost advantage of adjoints is even more pronounced sinee:
for adjoints, the cost savings of operator sparseness translate directly to real cost savings.
The situation is less favorable and more muddy for inversion. The reason that Chapter 2
covers iterative hods and neglects exact methods is that in practice iterative methods
are not run to @heoreticzﬂ completioryhut@run until we run out of patience. But
that leaves hanging the question of what b{ercen of theoretically dictated work is actually

necessary. If we struggle to accomplish merely one percent of the theoretically required
work, can we hope to achieve anything of value?

Cost is a big part of the story, but the story has many other parts. Inversion, while
being the only logical path to the best answer, is a path littered with pitfalls. The first

“C%o

pitfall is that the data is rarely able to determine a complete solution reliably. Generally/}\

there are aspects of the image that are not learnable from the data.

When I first realized that practical imaging methods in with wide industrial use amounted
merely to the adjoint of forward modeling, I (and others) thought an easy way to achieve
fame and fortune would be to introduce the first steps towardg“inversion along the lines of
Chapter 2. Although inversion generally requires a prohibitive number of steps, I felt that
moving in the gradient direction, the direction of steepest descent, would move us rapidly in
the direction of practical improvements. @tumed out to be optimistic. It was too slow.
But thenyI learned about the conjugate gradient method that spectacularly overcomeg a
well-knowh speed problem with the method of steepest descent. I came to realize it
was still too slow. I learned %ﬁ:ﬂby watching the convergence in Figure 5.8A{Phi%l me to
the helix method in Chapter 4. Here (Vy%){ see how it speeds many applicatgons.

We™ also come to understand why the gradient is such a poor direction both for steepest
descent and? conjugate gradients. An indication of our path is found in the contrast

2

whuck

5.1. PRECONDITIONED DATA FITTING 123

Figure 5.2: Jos greets Andrew,
“Welcome back Andrew” again. At
a resolution of 64 x 64/the pixels are
clearly visible. From fz{y\t_he pictures
are the same. From n'e{ar, examine

their glasses.

HF BRL 5.

m = (A*A)7'A*d (5.1)
i Am = A*d (5.2)

)
@/differ by the factor (A*A)~!. This factor is sometimes called a spectrum/and in some

sifuationspit literally is a frequency spectrum. Our updates do not have the /spectrum of
the thing We are trying to build. No wonder it’s slow! Here w/e? find for many applications

between an exact solution and the gradient.

that “preconditioning” with the helix is a better way.

5.1 PRECONDITIONED DATA FITTING

Tterative methods (like conjugate-directions) can sometimes be accelerated by a change of
variables. The simplest change of variable is called a “trial solution’| Formally, we write

the solution asU

m = Sp y (5:3)
where m is the map we seek, columns of the matrix S are “shapes” L’hjﬁjve lilé} and
coefficients in p are unknown coefficients to select amounts of the favored shapess” The
variables p are often called the “preconditioned Variable% It is not necessary that S be an
invertible matrix, but we’i¥see later that invert-ability is helpful. Inserting the trial solution
m = Sp into 0 ~ Fm —d gives(;’_/‘

0 2 Fm — d (5.4)
0 ~ FSp — d (5.5)

We pass the operator F'S to our iterative solver. After finding the best fitting p, we merely
evaluate m = Sp to get the solution to the original problem.

We hope this change of variables has saved effort. For each iteration, there is a little
more work: Instead of the iterative application of F and F;\we have iterative application
of FS and S*F*. ‘)

124 CHAPTER 5. PRECONDITIONING

Our hope is that the number of iterations decreasesabecause we are clevergfor because
we have been lucky in our choice of S. Hopefully, the lextra work of the preconditioner
operator S is not large compared to F. If we should be so lucky that S = F~!, then we
get the solution immediately. Obviously we would try any guess with S =~ F~!. Where I
have known such S matrices, I have often found that convergence is accelerated, but not by
much. Sometimeghit is worth using F'S for a while in the beginnin@)ut latepait is cheaper
and faster to use only F. A practitioner might regard the guess o
like the guess of the initial model my.

as prior’ information,

For a square matrix S, the use of a preconditioner should not change the ultimate solu-
tion. Taking S to be a tall rectangular matrixjreduces the number of adjustable parameters,
changes the solution, gets it quicker, but loweir_esolution.

5.1.1 Preconditioner with a starting guess

We often have a starting solution mg. You might worry that you could not find the starting
preconditioned variable pg = S~ 1mglecause you did not know the inverse of S. We solve
this problem using a shifted unknown m.

0 ~ Fm-d typical regression
0 ~ Fm+my)—d Define m = m + mg
0 ~ Fm+Fmg-d
0 ~ Fm-d Defines d
Implicitly define p by m = Sp.
0 ~ FSp-d You iterate for p.
m = Sp from your definition
m = m+mg Got the answer.

which solves the problem never needing S™!. Unfortunately, as we wél?—;e later, this

conclusion is only valid while there is no regularization. \‘f'\jju » w‘_(—«(‘a
5.1.2 Guessing the preconditioner W

W .
We are tasked with coming up with “trial solution pretty vague assignment.

Some kind of a scaling, smoothing, or shaping transformation S of some mysterious “pre-
conditioned space” p should represent the model m we seek. We begin by investigating
how the shaper S alters the gradient.

m = Sp introduces S, implicitly defines p
Am = SAp consequence of the above
Am = F'r gradient is adjoint upon residual

O~r = Fm-d residual in terms of m
r = F(Sp)—-d residual in terms of p

~r = (FS)p-d reordering calculation
Ap = (FS)'r gradient is adjoint upon residual
Ap = S*F*r reordering

Am = (SS*)F*r recalling Am = SAp

5.2. PRECONDITIONING THE REGULARIZATION 125

We may compare the gradient Am with and without preconditioning.

Am = Frr original
Am = (SS*)F*r with preconditioning transformation
¢ .
aloo \ Gorsotics s
When thé first vanishes, the second wi#¥ When the second vanishes, the first will provided
(SS*Wif a nonsingular matrix. As our choice of S is quite arbitrary, it is marvelous the

freedoln we have to monkey with the gradient.

Remember that r starts off being —d. Compare the (SS*) scaled gradient to the analytic
solution.

Am = (SS*) F*r modified gradient
m = (F*F)"!F*d analytic solution

Mathematicallyawe see it would be delightful if (SS*) were something like (F*F)“rlfbut we
rarely have ideas how to accomplish We dophowever, have some understandirg of the
world of images, and understand wheré on the infage we would like iterations to concentrate
first, and what spatial frequencies are more relevant than others. If we cannot go all the
way, as we cannot in giant imaging problems, it is important to make the important steps
early.

5.2 PRECONDITIONING THE REGULARIZATION

The basic formulatiory/of a geophysical estimation proble;n consists of setting up two goals,
one for data fitting and the other for model shaping. ‘'With two goals, preconditioning is
somewhat different. The two goals may be written as:

0 Fm-d (5.6)
0 ~ Am

X

which defines two residuals, a so-called “data residual” and.?jmodel residual” that are
usually minimized by conjugate-direction, least-squares methods.

To fix 1de%s, let us examine a toy example. The data and the ﬁrst three rows of the -
matrix are random numbers truncated to integers. The model 'foughemng operator
Aisa ﬁrsf;@lﬁ’erencmg operator times 100. r~

oL)
yl,.l.vv
B
4

126 CHAPTER 5. PRECONDITIONING

d(m) F(m,n) iter Sum(lgradl)
-100. 62. 18, 2. 75. 99. 45. 93. -41. -156. 80. 1 69262.0000
-83. 31. 80. 92. -67. 72. 81. -41. 87. -17. -38. 2 19012.8203
20. 3. -21. 58. 38. 9. 18. -81. 22. -14. 20, 3 10639.0791
0. 100.-100. 0. 0. 0. 0. 0. 0. 0. 0. 4 4578.7988
0. 0. 100.-100. 0. 0. 0. 0. 0. 0. 0. 5 2332.3352
0. 0. 0. 100.-100. 0. 0. 0. 0. 0. 0. 6 1676.6978
0. 0. 0. 0. 100.-100. ©0. 0. 0. 0. O. 7 622.7415
0. 0. 0. 0. 0. 100.-100 0. 0. 0. 0. 8 454.1242
0. 0. 0. 0. 0. 0. 100.-100. 0. 0. 0. 9 290.6053
0 0. 0. 0 (0]8 0. 0. 100.-100. 0. 0. 10 216.0749
0. 0. 0. 0. 0. 0. 0 0. 100.-100. 0. 11 1.0488
0. 0. 0. 0. 0. 0. 0. 0. 0. 100.-100. 12 0.0061
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 13 0.0000 :l ()
Z Brcanesc
ightmost column shows the sum of the absoh;ci‘c\?és of the gradiént. Notice
3- 1teration the gradient suddenly plunges. $i there are unknowns and

onjugate-gradient theoryttells us to expect the exact

is the first miracle of conjugate gradients. Failure to
e 11th step is aprecision issue that could be addressed
(not shown) does not approach zero.
1rteen linear equations defeat the adjustabld coefficients.

10 atfusd

5.2.1 The second miracle of conjugate gradlents ’W WW S

The second miracle of conjugate gradients is exhibited behw. The data and data fitting
matrix are the same, but the model damping is simplified.

d(m) F(m,n) iter Sum(|gradl|)

-100. 62. 18. 2. 75. 99. 45. 93. -41. -15. 80. 1 69262.0000

-83. 31. 80. 92. -67. 72. 81. -41 87. -17. -38. 2 5486.2095
20. 3. -21. b58. 38. 9. 18. -81 22, -14. 20. 3 2755.6702
0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4 0.0012
0. 0. 100. 0. 0. 0. 0. 0. 0. 0. 0. 5 0.0011
0. 0. 0. 100. 0. 0. 0. 0. 0. 0. (018 6 0.0006
0. 0. 0. 0. 100. 0. 0. 0. 0. 0. 0. 7 0.0006
0. 0. 0. 0. 0. 100. Qs 0. 0. 0. 0. 8 0.0005
0. 0. 0. 0. 0. 0. 100. 0. 0. 0. 0. 9 0.0005
0. 0. 0. 0. 0. 0. 0. 100. 0. 0. 0. 10 0.0012
0. 0. 0. 0. 0. 0. 0. 0. 100. 0. 0. 11 0.0033
0. 0. 0. 0. .0. 0. 0. 0. 0. 100. 0. 12 0.0033
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 13 0.0000

LJ

Even though the matrix is full-rank, we see the residual drop about § decimal places after the
third iteration! This convergence behavior is well knowg in the computational mathematics
literature. Despite its practical importance, it doesh"-gg em to have a name or identified
discoverer. Sq,I call it the “second miracle.” Wb.%

&
Practitioners usually dom# like the identity operator for model]/ aping. Generallmhey
prefer to penalize wiggliness. For practitioners, the lesson of the second miracle of conjﬁgate
gradients is that we have a choice of many iterationsfjor learning to transform independent

5.2. PRECONDITIONING THE REGULARIZATION

127

L)
a'f W%l m%
variables so me regularization operator becomes an identity maftrix. Basically, such a

transformation reduces the iteration count from something the size of the model

. space to something the size of the data space. Such a transformation is called
\

= preconditioning.:{ W H M“EZ?
More generally, the model goal 0 &~ Am introduces a roughening operator like a gradient,
a Laplacian, or in ghapter 74a Predi tﬁ)n— rror Filter (PEF). Thugghe model goal is usually a

filter, unlike the d.a‘,.ta—ﬁttin& goal involves all manner of ge&metry and physics. When
the model goal is a ﬁlte}its inverse is also a filter. Of courseﬂhis includes multidimensional
filters with a helix.))

The preconditioning transformation m = Sp gives u@

0

FSp—-d X
0 .

Ao (5.8)

Q2

The operatoi‘ A is a rou ney\while S is a smoother. The choices of both A and S are
somewhat subjective. suggests bhuj we eliminate A altogether by defining it to be
proportional to the inverse of S, thus AS = I. The fitting goals becom:

FSp—-d
ep

0

: (5.9)

R

which enables us to benefit from the “second miraclm After finding p, we obtain the final
model with m = Sp. ‘

olution m is likely to come out smootpd_)ecause, we, typically over-sample axes of
physical quantities. We typically penalize roughﬁess in it by our choice of a regularizaton
operato means the precondioning variable p typically has a wider frequency band-
width thén p. In chapter Me il} see how to make the spectrum of p come out white
(tending to flat spectrum). “| ?

5.2.2 Importance of §caling

wsS owr
Another:éimple toy example shows us the importance of scaling. We use the same example
as /Qxcept 2 we make the diagonal penalty function vary slowly with location.

!

d(m) F(m,n) iter Sum(|gradl)

~300. 62. 18. 2. 53, b9, 22. 37. -12. -3. 8 1 42484.1016

=83 31. 72. T74. -47. 43. 40. -16. 26. -3. -4 2 8388.0635
20. 3. -19. 46. 27. B 9. -32 Te =8 2 3 4379.3032
0. 100. 0. 0. 0. 0 0. 0 0, 0. 0 4 1764.9844
0. 0. 90. 0. 0. 0 0. 0. 0. 04 0. 51 868.9418
0. Q. 0. 80. 6 0 0. 0. 0. 0. 0. 6 502.5179
0. 0. 0. 0. 70. 0 0. 0. 0. 0. _O. 7 450.0512
o 0. 0. 0. 0. 60 0. 0. 0. Qs 0. 8 185.2923
0. 0. * 0. 0. 0. 0. 50. 478 0. 0. 0. 9 247.1021
0. 0. 0. 0. 0. 0 0. 40. 0. 0. 0. 10 338.7060
5 9 0. 0. Qs 0. 0 0. 0. 30. 0. ¢ 8 11 " 119.5686
0, 0. 0. 0. 0. 0 0 0. 0. 20. 0. 12 34,3372
04 0. Q. 0. 0. 0 0. 0. Qs 0. 10. i3 0.0000

128 ; CHAPTER 5. PRECONDITIONING

We observe that solving the same problem for the scaled variables has required a severe
increase in the number of iterations required to get the solution. We,lost the benefit of the

second CG miracle. Even the rapid convergence predicted for the 107/th iteration is delayed
until the lﬁth.]

Another curious fact may be noted here. The gradient does not decrease monotonically.
It is known theoretically that the residual does decrease monotonically, but the gradient
need not. I did not show the norm of the residual, because I wanted to display a function
that vanishes at convergence, and the residual does not.

5.3 YOU BETTER MAKE YOUR RESIDUALS IID!

In the statistical literature is a concept that repeatedly arises, the idea that some gtatistical
variable‘:‘s are IID, namely Independent, Identically Distributed. In practiceawe™ see many
randomjlooking variables, some much closer than others to IID. Theoreticaﬁly, the ID part
of IID means the random variables come from Identical probability Density functions. In
practice, the ID part mostly means the variables have the same variance. The “I” before
the ID means the variables are statistically Independent of one another. Neighboring
values should not be positively correlated, meaning low frequencies are present. In the
subject area of this book, signals, images, and volumes, the “I” before the ID means
tvheé/ i Z ave all freqUéncies present in roughly equal amounts.
T words the “I” means the statistical variables have no significant correlation in time
or space. Chapter 7 gives a method of finding a filter as a model styler (regularizer) that
accomplishes this goal. IID random variables have fairly uniform variance in both physical
space and in Fourier space.

IID random variables have uniform variance in both physical space and Fourier space.

In a geophysical projec},it is important the residual between observed data and modeled
data is not far from IID. To raw residualgawe should apply weights and filters to get IID
residuals. We minimize sums of squares of pesiduals. If any residuals are small, thei¥Squares
are.tiny, so such regression equatioii are effectively ignored. We would hardly ever want

Consider echo seismograms. \] get weak at late time. Sgteven with a bad fi Y e
L between real and theoretical seismograms is necessarily ‘weak at late times” We
donitwant the data at late times to be ignored. Somwe boost up the residual there. We choose
W to be a diagonal matrix that boosts late timed in the regression 0 & r = W(Fm - d

An example with too much low (spatial) frequency in a residual might arise in a topo-
graphic study. It is not unusual for the topographic wavelength to exceed the survey size.
HereAwe should choose W to be a filter to boost up the higher frequencies. Perhap
Shoulh contain a derivative or a Laplacian. If you set up and solve a data ﬁlodeling problem
and then find r is not IID, you should consider changing your W. Chapter 7 i
provides a systematic approach to whitening residuals.

Nowplet us include regularization 0 ~ Am and a preconditioning variable p. We have
our datalfitting goal and our modelBtyling goal?)the first with a residual rq in data space,
the second with a residual r,, in model space.” We have had to choose a regularization

of

5.3. YOU BETTER MAKE YOUR RESIDUALS IID! 129

operator A = S~! and a scaling factor e. SV" ces

This system of fwo tegressions could be pécked into one; the’two residual vectors stacked
on top of each othgrflikewise the operators F and el. The notion seems to apply to this
unified syste gives us a clueffow we should haveshosen the regularization operator
A. Not only ,sadou d rg be IID, but also should r within a scale €, r, = p. Thu§kthe
preconditioning variable is not simply something to speed computational convergence./It is
a variable that should be IID. If it is not coming out that way, we should consider changing
A. Chapter 7 addresses the task of choosing an ./}Qso ‘-ha??ryn comes out IID.
y

7
We should choose a weighting function (and/or operator) Whso data residuals are IID.
We should also choose our regularization operator A = 1/@0 the preconditioning
variable p comes out IID.

5.3.1 Choice of a unitless epsilon

The parameter epsilon e strikes the balance between our data-fitting goal and our model-
-

styling goal. These two regression systems typically have differing physical uni

numerical value of € is accidental, for example comparing milliseconds to mete

0 ~ ry=W(FSp—-d) : (5.12)
0 ~ rp=c¢p (5.13)

The numerical value of ¢ is meaningless before we learn to express the idea in a unitless
(dimensionless) manner. Without pretending we are doing physics, let us use some of the
language of thermodynamics, a physical field that does deal with equilibria and random
fluctuations. Define an energy ratio u and a volume ratio v that can be used to bring € to
unitless form. Naturally, the square roots ariseji)ecause we will-be minimizing quadratic

functions of residuals.)
. rg-rq
u = energy ratio =
p-p
. n
v = volume ratio = Td
Tip

Can we really think of “volume” as related to the number n, of components in the model
space? Perhaps. Likewise the data space? Less likely. Anduis the energy measure really
an appropriate one? Maybe. What is the goal of these spéculative thoughts? The goal
is to give you a starting numerical value fo say € = 1. Your final guide is your own
experimental experience. Try either one of:

0 = r;y = €extrinsic U P (5,14>
0 = r;,» = Eintrinsic (U,/U) p (515)

130 CHAPTER 5. PRECONDITIONING

54 THE PRECONDITIONED SOLVER
P ions '
Summing up thj"ideasr%, we start from fitting goals(D

0 Fm — d
0 Am

Q

(5.16)

and we change variables from m to p using m = A_11')

0
0

Fm —d = FA™! p - d
Am = I P

Q

'5 (5.17)

Preconditioning means iteratively fitting by adjustin the p variables and then finding the
model by using m = A~'p. Youl/notice th de be}eg

aﬁws for common additional
features, a weighting function on the data re dual?iﬂ\l r a starting po, arl-k:? 'Eiz

masking constraints J on p, and scaling the regularization by an e.

A new reusable preconditioned solver is the module solver-prc. Likewisethe modeling
operator F is called Foptand the smoothing operator A1 is called Sop. Detadls of the code
are only slightly different from the regularized solver solver-reg.

Preconditioned solver.r90

module solver_prc.mod{ #0=W ((FSJp-4d)
use chain0_mod + solver_report.mod # 0 = I)
logical , parameter, private :: AJ = .true., FW = .false.
logical , parameter, private :: AD = .true., ZP = .false.

contains

subroutine solver_prc(m,d, Fop, Sop, stepper, nSop, niter ,eps &
; Wop, Jop ,p0,rm0, err , resd ,resm ,mmov, rmov, verb) {
optional :: Wop,Jop,p0,rm0,err ,resd ,resm ,Mmov, rmov , verb
interface { # begin definitions ———————
integer function Fop(adj,add,m,d){real::m(:),d(:);logical::adj,add}
integer function Sop(adj,add,m,d){real ::m(:),d(:);logical ::adj,add}
integer function Wop(adj,add,m,d){real::m(:),d(:);logical::adj ,add}
integer function Jop(adj,add,m,d){real::rn(:),d(:);logical::adj,add}
integer function stepper(first ,m,dm,r,dr) {

real , dimension (:) :: m,dm,r ,dr

logical io first }
real , dimension (:), intent (in) :: d, p0,rm0
integer , intent (in) :: mniter , nSop
logical , intent (in) :: verb
real , intent (in) ;1 eps
real , dimension (:), intent (out) :: m,err, resd,resm
real , dimension(:,:), intent(out) %3 rmov , mmov
real , dimension(size(m)) 0 p , dm
real , dimension(size(d) + nSop), target toor, dr, tt
real , dimension (:), pointer :: rd, drd, td
real , dimension(:), pointer . :: rm, drm, tm
integer it iter , stat
logical i first

rd = r (l:size(d)); rm => r(l+size(d):)

drd => dr(1:size(d)); drm => dr(l+size(d):)

td => tt(l:size(d)); tm => tt(14+size(d):)

if (present (Wop)) stat=Wop(FW,ZP,—d,rd) # begin initialization —————
else rd = —d #Rd = W d

5.5, OPPORTUNITIES FOR SMART DIRECTIONS 131

m = 0.; if(present(rm0)) rm=rmo0 #Rm = Rm0
if (present(p0)){ p=p0 #p = p0
if(present(Wop)) call chain0(Wop,Fop,Sop ,FW,AD,p,rd ,tm,td)
else call chainO (Fop, Sop ,FW,AD,p,rd ,tm)#Rd += WES p0
rm = rm + eps*p #Am += e I p0
} else p=0
first = .true.; # begin iterations —————————
do iter = 1,niter {
if (present (Wop)) call chain0(Wop,Fop,Sop,AJ,ZP,dm,rd ,tm, td)
else call chain0(Fop,Sop,AJ,ZP,dm,rd ,tm) #dm = (WFS) 'Rd
dm = dm + eps#*rm #dm += e [I’'Rm
if (present (Jop)){ tm=dm; stat=Jop (FW,ZP,tm,dm)}#dm = J dm
if (present (Wop)) call chainO(Wop,Fop, Sop ,FW,ZP,dm,drd ,tm, td)
else call chain0(Fop, Sop ,FW,ZP,dm, drd ,tm) #dRd = (WFS) dm
drm = epsx*dm #dRm = e I dm
stat = stepper(first, p,dm, r,dr) #mt=dm; R4+=dR
if(stat ==1) exit # got stuck descending " -
stat = Sop (FW,ZP,p,m) : #n = S‘p

if (present (mmov)) mmov(:,iter) = m(:size(mmov,1)) # report —
if (present (rmov)) rmov(:,iter) = r(:size(rmov,1))

if (present(err)) err(iter) = dot_product(rd,rd)

if (present(verb)){ if(verb) call solver_report (iter ,m,dm, rd ,rm)}
first=.false.

rd
rm (: size (resm))

if (present(resd)) resd
if (present(resm)) resm

}
}

5.5 OPPORTUNITIES FOR SMART DIRECTIONS

Recall the fitting goals (5.10) with weights W being absorbed into the operator F and the
data d.

0 ~ry = Fm—-d = FA™! p-d
0 ~ r, = Am _ I o (5.18)
Without preconditionin?\me have the search directim@
b) :
Ambad = [F* A*] [td } (519)
T'm
and with preconditionin%\vge have the search directior@
)
r
Apgod = | (FATL)* I] [. } (5.20)
m

The essential feature of preconditioning is not that we perform the iterative optimization
in terms of the variable p. The essential feature is that we use a search direction that is a

gradient with respect to p* not m*. Using Am = p,lve have AAm = ApArEh-iﬂ enables us
to define a good search direction in m space.)) y

Amgeod = A 'Apgod = AHAT)Fra+A'rn (5.21)

132 CHAPTER 5. PRECONDITIONING

Define the gradient by g = F*ry ﬂd notice that r,, = p.
)

Amgoa = ANATH)*g+m (5.22)

The search direction (5.22) shows a positive-definite operator scaling the gradient. Each
component of any gradient vector is independent of each other. All independently point
(negatively) to a direction for descent. Obviously, each can be scaled by any positive number.
Nowawe hEve found that we can also scale a gradient vector by a positive definite matri)?

and still expect the conjugate-directien algorithm to descend, as always, to the
“exact” answer in a finite number of steps. is because modifying the search dirgction
with A~1(A~1)* is equivalent to solving a conjugate-gradient problem in p. We"ij see in

Chapter 7, that our specifying A~!(A~1)* amounts to us specifying a prior expectation of
the spectrum of the model m.

5.5.1 The meaning of the preconditioning variable p

To accelerate convergence of iterative methodstwe often change variables. The model-styling
regression 0 ~ eAm is changed to 0 = ep. Exﬁerience shows, however, that the variable p is
often more interesting to look at than the model m. Why should a new variable introduced
for computational convenience turn-out to have more interpretive value? There is a little
theory underlyin Begin fro@

0 ~ W(Fm-d) (5.23)
0 ~ ¢Am (5.24)

Introduce the preconditioning variable p.

0 ~ W(FA 'p-d) (5.25)
0 ~ ¢p (5.26)
Rewrite @as a single regressio
N ry _ WFA~! _ wd
0 = [I } = { 1 P 0 (5.27)

The gradient vanishes at the best solution. To get the gradienfawe put the residual into the
adjoint operator. Thugswe put the residuals (column vector) il (5.27) into the transpose of
the operator in (5.27),)the row ((WFA™1)* l). Finall;g_neplace the =~ by =. Thusa,

0 = (WFA Nrgtery,
0 = (WFA ™)'ry+€p (5.28)

The two terms in Equation (5.28) are identical but oppositely signed. These terms represent
images in model space. This image represents the fight between the data space residual and
the model space residual. You really d gnt to plot this image. It shows the battle of (1)
the model wanted by the datas gains&% our preconceived statistical model expressed by
our model styling goal. That‘q\ hy the preconditioned variable p is interesting to inspect
and interpret. It is not simply a computational convenience. It is telling you what you have
learned from data (that someone has recorded at great expense!).

5.6. INTERVAL VELOCITY 133

The preconditioning variable p*is not simply a computational convenience. This model-
space image p tells us where our data contradicts our prior model. Admire it! Make a
movie of it evolving with iteration.

If I were young and energetic like yoyy I would write a new basic tool for optimization.
Instead of scanning only the space of the?rladient and previous step, it would scan also over
the “smart” direction. hould offer the benefit of preconditioning the regularization
at early iterations while offering more assured fitting data at late iterations. The improved *
module for cgstep would need to solve a 3 x 3 matrix. also be looking for ways to meke@_,
assure all Am directions were scaled to have the prior thodel spectrum and prior.energy

function of space. I !

5.5.2 Need for an invertible preconditioner

It is important to use regularization to solve many examples. It is important to precondition /=
because in practicencomputer power is often a limiting factor. It is important to be able

to begin from a nohzero starting solutionfbecause in nonlinear problemsfthen we must
restart from the result of an earlier solution! Putting all three requirements’to?gether leads

to a little problem. It turns out the three together lead us to needing a preconditioning
transformation that is invertible. Let us see why this is so.

Fm — d

L)
0
0 Am

(5.29)

Qo

First@re change variables from m to u = m — my. Clearly u starts from up = 0, and
m = 1+ my. Thep‘_gur regression pair become@)

’ 0 Fu + (Fm0~d)

0 ~ Au + Amg (5.30)

This result differs from the original regression in only two minor ways, (1) revised data, and
(2) a little more general form of the regularization, the extra term Amg. Con d "h'o 141'

Novy\].et us introduce preconditioning. From the regularizatiog}we see &hi® introduces ”g
the precl)nditioning variable p = Au. Our regression pair becomes:)

0 FAflp + (Fmo - d)

p + Amg

Q

(5.31)

wot

Here is the proFlem: Nowpwe require both A and A1 operators. In 2- and 3-dimensional
space??;e donl$ know very ,many operators with an easy inverse. Indee s why I found
£ =

myself'pushed to come up with the helix methodology of Chapter ecause it provides

invertible operators for smoothing and roughening. & ’ 7 3‘
(€S
o s

5.6 INTERVAL VELOCITY

A bread-and-butter problem in seismology is building the velocity as a function of depth (or
vertical travel time) starting from certain measurements. The measurements are described

WS

CHAPTER 5. PRECONDITIONING

134 0@0‘,} SW'S N
¥ ,

elsewhere\éEme'M). They amount, to measuring the al-o velocity squared

from the surface down to the reflectorddt-tstknown as the

Although good quality echoes may arrfve often, they rarely arrive contimuously for all depths.

Good information is interspersed unpredictably with poor information. Luckibwve can also

estimate the data quality by the “coherency” or the “stack energmm surhmary, what

we get from observations and preprocessing are two functions of travel-time depthg (1) the
integrated (from the surface) squared velocity, and (2) a measure of the quality of the

integrated velocity measurement. Some deﬁnition's:k oAe as/ WUS .
Um Whaeh '

) hote: s ot [5¢
e W5 goy

d is a data vector whose components range over the vertical traveltime depth wsquﬁ VFh‘UEQ—-—‘

component values contain the scaled RMS velocity squared TU%MS / AT/yyhere T/AT
is the index on the time axis.

W is a diagonal matrix along which we lay the given measure of data quality. We wﬁi%;e
it as a weighting function.

C is the matrix of causal integration, a lower triangular matrix of ones.

D is the matrix of causal differentiation, namely, D = C~1.

. w . .
u is a vector whose components range over the vertical traveltime depth 7gjand w-hcsd'

component values contain the interval velocity squared V2ol

From these definitions, under the assumption of a stratiﬁe with horizontal reflectors
(and no multiple reflections)ihe theoretical (squared) interval velocities enable us to define
the theoretical (squared) RMS velocities b

Cu = d (5.32)

In other words, any component of d; measures the integral of a material property from the

surface to the depth of . We wish to find the material property everywhere/\TO}rat“'
Tbe u. If we integrate it from the surface downward with causal integration %ve should
get the measurements d.)

With imperfect data, our data fitting goal is to minimize the residua@
0 ~ W][Cu-d] (5.33)

where W is some weighting functior)kwe J need to choose. To find the interval velocity
where there is no data (where the stéck power theoretically vanishe.s)\vve have the “model
damping” goal to minimize the wiggliness p of the squared interval vglocity u.

' 0 ~ Du = p (5.34)

We precondition these two goals by changing the optimization variable from interval
velocity squared u to its wiggliness p. Substituting u = Cp gives the two goals expressed
as a function of wiggliness p.

~ W|[C%-d (5.35)
~ ep (5.36)

whee)

5.6. INTERVAL VELOCITY- UM 135

u',pﬂemble at later times is'suggested we weaken € at early times and strengthem it later.
Since we wanted to kJep ¢ constant with time,ssd we strengthened W' at early times and

(e
weakened it at later times as you see in thj\pgogiim betow,

é,g

N

(oas)own
2
(sas)puin

s

| =

offset(km) Velooity(km/sec) Amplitude

o4 08 1.2 16 =2 24 28 32 12 14 16 1.8 2 22z 24 26

Figure 5.3: Raw CMP gather (left) ﬂémblance scan (middle), and semblance value used

for weighting function (right). m prc/ clapp

Converting RMS to interval velocity.r90

module vrms2int-mod { # Transform from RMS to interval velocity
use causint
use weight
use maskl
use cgstep-mod
use solver_prc.-mod

contains
subroutine vrms2int(niter, eps, weight, vrms, vint) {

integer , intent (in) i1 niter # iterations
real , intent (in) i1 eps # scaling parameter
real , dimension (:), intent(in out) :: vrms # RMS velocity
real , dimension (:), intent(out) i1 vint # interval velocity
real , dimension (:), pointer ;1 weight # data weighting
integer ;o ost,it ,nt
logical , dimension(size(vint)) :: mask
logical , dimension(:), pointer :: msk
real , dimension(size(vrms)) :: dat ,wt
real , dimension (:), pointer :: wght
nt = size(vrms)

do it= 1, nt {
dat(it) = vrms(it) * vrms(it) =
wt(it) = weight(it)=(1./1it) # decrease weight with time

}

136 CHAPTER 5. PRECONDITIONING

RMS Velocity Interval velocity
o o
3 observed
predicted - - - -
= A A
2 24
g g
o o
v n®
[} o
g i
© @
14 16 18 2 22 24 26 1.6 2 2.4 2.8 3.2
velocity(km/sec) velocity(km/sec)

Figure 5.4: Observed RMS velocity and that predicted by a stiff model with ¢ = 4. (Clapp)

RMS Velocity Interval velocity
QO A oA
observed
predicted - - - -
[=
3 2
) g
(] (]
0 w®
[0} ¢}
2 &
[w
14 16 18 2 22 24 26 16 2 24 28 82
velocity(km/sec) velocity(km/sec)

Figure 5.5 Observed RMS velocity and that predicted by a flexible model with € = .25 @

(Clapp)

5.6. INTERVAL VELOCITY 137

mask = .false .; mask(1) = .true. # constrain first point
vint = 0. ; vint(1) = dat(1)

allocate (wght(size (wt)))

wght=wt

call weight_init (wght)

allocate (msk(size (mask)))

msk=.not . mask

call maskl_init (msk)

call solver_prc(m=vint, d=dat,Fop=causint_lop, stepper=cgstep, niter=niter, &
Sop= causint_lop , nSop=nt, eps = eps,verb=.true.,Jop=maskl_lop, &
pO=vint , Wop=weight_lop)

call cgstep-close ()

st = causint_lop(.false., .false., vint, dat)

do it= 1, nt
vrms(it) = sqrt(dat(it)/it)

vint = sqgrt(vint)

}

5.6.2 Lateral variations

(]
Vi g
The janalysis appears dimensional in depth. Conventional interval velocity esti-

mafion builds a velocity-depth model independently at each lateral location. Herglwe have
a logical path for combining measurements from various lateral locations. We cah change
the regularization to something like 0 &~ Vu. Instead of merely minimizing the vertical
gradient of Velocity\we minimize its spatial gradient. Luckily, we have preconditioning and

the helix to speed t‘le solution. /)\

dk
5.6.3 Blocky models o

Sometimesawe seek a velocity model that increases smoothly with depth through our scat-
tered meastrements of good-quality RMS velocities. Other tinfes, we seek a blocky model.
(Where seismic data is poor, a well log could tell us whethegto choose smooth or blocky.)
HereAwe see an estimation method that can choose the blocky alternative, or some combi-

natidn of smooth and blocky.
’

Consider the ﬁv?ﬁayer model in Figure 5.6. Each layer has unit traveltime thickness (so
integration is simply summation). Let the squared interval velocities be (a,b,c,d, e) with
strong reliable reflections at the base of layer ¢ and layer e, and weak, incoherent, “bad”
reflections at bases of (a,b,d). Thugkwe mgasure V2 the RMS velocity squared of the top
three layers and V.2 for all five layers.QMave no reflection from at the base of
the fourth layer, the velocity in the fourth layer is not measured but a matter for choice.
In a smooth linear fijawe would want d = (c+e)/2. In a blocky ﬁy)mve would want d = e.

Our screen for good reflections looks like (0,0, 1,0, lyﬂ.nd our screen for bad ones looks
like the complement (1,1,0,1,0). We put these screens on)che diagonals of diagonal matrices
G and B. Our fitting goals are:

e at+b+ec (5.37)
5V2 =~ a+b+tctdte (5.38)

Q

138 CHAPTER 5. PRECONDITIONING

.
ad
Figure 5.6: A layere@h model. b
The layer interfaces cause reflections. c
Each layer has a constant velocity in
its interior. [VIEW . S———
4
Z
ug =~ a (5.39)
0 ~ —a-+b (5.40)
0 =~ —-b+ec (5.41)
0 =~ —c+d (5.42)
0 ~ —d+e (5.43)

For the blocky solution, we do not want the fitting goal (5.42). Further explanations await
completion of examples. -

5.7 INVERSE LINEAR INTERPOLATION

Figure 5.7: The input data are |H H |]

irregularly sampled. r W U ll ‘ , ‘ ‘

The first example is a simple synthetic test for 1-D inverse interpolation. The input
data were randomly subsampled (with decreasing density) from a sinusoid (Figure 5.7).
The forward operator L in this case is linear interpolation. We seek a regularly sampled
model that could predict the data with a forward linear interpolation. Sparse irregular
distribution of the input data makes the regularization enforcement a necessity. I applied
convolution with the simple (1, —1) difference filter as the operator D that forces model
continuity (the first-order spline). An appropriate preconditioner S in this case is recursive

causal integration. B’* chnes—

As expected, preconditioning provides a much faster rate of convergence. 8ince iteration
to the exact solution is never achieved in large-scale problems, the results of iterative opti-
mization may turn out quite differently. Bill Harlan points out that the two goals in (5.16)
conflict with each other: the first one enforces “details” in the model, while the second
one tries to smooti@out. Typically, regularized optimization creates a complicated

5.7. INVERSE LINEAR INTERPOLATION 139

Regularization Preconditioning

140 CHAPTER 5. PRECONDITIONING

model at early iterations. At first, the date%ﬁttmg g,oal (5.16) plays a more important role.
Later, the regularization goal (5.16) comes into play and simplifies (smooths) the model as
much as needed. Preconditioning acts differently. The very first iterations create a sim-
plified (smooth) model. Later, the data fitting goal adds more details into the model. If
we stop the iterative process early, we end up with an insufficiently complex model, not an
insufficiently simplified one. Figure 5.8 provides a clear illustration of Harlan’s observation.

Figure 5.9 measures the rate of convergence by the model residual, which is a distance
from the current model to the final solution. It shows that preconditioning saves many
iterations. the cost of each iteration for each method is roughly equal, the efficiency
of preconditioning is evident.

oA

Model Residual Vector Length

B
W+ P
Figure 5.9: Convergence of the & ‘r"g
iterative optimization, measured in Dol 1
terms of the model residual. The “p” £ T
points stand for preconditioning; the ol hm.

“ N

P

points, regularization.

1

!
pre/. schwabl o] i —_
o » m“"“”rrxr
P nm"m"mmmmm
0'7——%(‘ T v 1 T T T T T
0 10 20 30 40 50 60 70 80 90 100
Tterations

The module invint?2 invokes the solvers to make Figures 5.8 and 5.9. We use convolution
with helicon for the regularizatiomtend we use inverse convolution (recursion) with polydiv
for the preconditioning. The code looks fairly straightforward except for the oxymoron
known=aajmis.

Inverse linear interpolation.r90

module invint2 { # Inverse linear interpolation
use lintl
use helicon # regularized by helix filtering
use polydiv # preconditioned by inverse filtering
use cgstep-mod
use solver_reg_mod
use solver_prc_.mod
contains
subroutine invint(niter, coord,ord, ol, dl mm,mmov, eps, aa, method) {
logical , intent (in) method
integer , intent (in) niter
real , intent (in) ol, dl, eps
real , dimension(:), intent (in) ord
type(filter), intent(in) :: aa
real , dimension (:), intent (out) :: mm
real , dimension(:,:), intent(out) :: mmov # model movie
real , dimension(:), pointer coord # coordinate
call lintl_init(ol, dl, coord)

if (method) {

call polydiv.init(size (mm), aa)

call

solver_prc(Fop=lintl_lop, stepper=cgstep,

preconditioning

d=ord,

niter=niter , m=mm,

5.8. EMPTY BINS AND PRECONDITIONING 141

Sop=polydiv_lop , nSop=size (mm), eps=eps, mmov=mmov, verb=.true.)
call polydiv.close ()
} else { # regularization
call helicon.init(aa)
call solver_reg(Fop=lintl_lop, stepper=cgstep, niter=niter, m=mm, d=ord,
Aop=helicon_lop , nAop=size (mm), eps=eps, mmov=mmov, verb=.true.)

}

call cgstep-close ()
}

}

5.8 EMPTY BINS AND PRECONDITIONING

There are at least three ways to fill empty bins. Two require a roughening operator Iywhile
the third requires a smoothing operatorfwhich (for comparison purposes) we denot AL
The three methods are generally equivalent though they differ in significant details.

The original way in Chapter 3 is to restore missing data by ensuring the restored
data, after specified filtering, has minimum energy, say Am ~ 0. Introduce the selection
mask operator K, a diagonal matrix with ones on the known data and zeros elsewhere (on
the missing data). Thugs 0 ~ A(I - K+ K)m or©

) 0 ~ AI-K)m + Amy, (5.44)
where we define my, to be the data with missing values set to zero by my = Km.
A second way to find missing data is with the set of goals@

0

0 (5.45)

2
>
=

and take the limit as the scalar ¢ — 0. At that limit, we should have the same result as
equation (5.44).
o

There is an important philosophical difference between the first method and the second.
The first method strictly honors the known data. The second method acknowledges that
when data misfits the regularization theory, it might be the fault of the dat:y\so the data
need not be strictly honored. Just what balance is proper falls to the numeri}cal choice of
€, a nontrivial topic.

A third way to find missing data is to precondition equation (5.45), namely, try the
substitution m = A~ 1p. -

' KA lp — my

€p
There is no simple way of knowing beforehand what is the best value of e. Practitioners like
to see solutions for various values of €. Of coursesthat can cost a lot of computational effort.
Practical exploratory data analysis is more praématic. Without a simple clear theoretical
basis, analysts generally begin from p = 0 and abandon the fitting goal eIp ~ 0. Implicitly,
they take e = 0. ThepAthey examine the solution as a function of iteration, imagining that
the solution at larger zterations corresponds to smaller €. There is an eigenvector analysis
indicating some kind of basis for this approach, but I believe there is no firm guidance.

0
0

Q

(5.46)

142 CHAPTER 5. PRECONDITIONING

5.8.1 SeaBeam

Figure 5.10 shows an image of deep sea/\wa,ter bottom in the Pacific of a sea-floor spreading
center produced acoustically by a device called SeaBeam. Students here tried all three
methods of filling empty bins on the this data using the laplacian as a regularizer. From an
interpretive point of view, differences among the three methods were minor and as expecte%
7

W only one is shown in Figure 5.10.
) _]

—-113.1 —113 —112.9-112.8—-112.7—-112.6 -113.1 —113 —112.9-112.8—-112.7—112.6

A'_SI—

I I
. s
o &
o ©
=y =~y
= =
= = !
=i g =
© w©

91~
91—

191~
1'91-

April_18_Binned April_18_Laplacian

Figure 5.10: Seabeam data before and after empty bin filling with a 'l‘aplacian.
:

1,000 X
/000
/

model space. Data space is
time goints. Our energy source lies in two d
receivers. All this compounds roughly to %000 to the 5% power, a thousand terrabytes, a
petabyte. Fully convergent solutions needin 1015 iterations of operators is ridiculous, while
more than a handful are nearly so. We think mainly of using only the adjoint. Theory and
experimentation offer some guidance. Remember that adjoints are great, when @ are
unitary (already an inverse). Adjoints can be improved by mgking @ more unitary.
can be made more unitary by finding one good diagonak:'weight g function before
and another after. Recalling “IID,” adjoints are also made more unitary by band matrices
that have the effect of whitening thewoutput. Simple band matrices are the gradient
and the Laplacian. More generally, a compact way to whiten spectra is multidimensional

5.9. GIANT PROBLEMS 143
autoregression, a method expounded in Chapter 7.

5.9.1 A hundred iterations

! Z
Lurking in every giant problem are many problems of smaller sizg. In the largy(écale
seismic imaging problem lie problems of velocity estimation, multiple reflection elimination,

A
and many more.

Envision a large problem feasible in a hundred iterations. Many of my colleagues work
on such problems. Maybe half would also use exotic parallel computer architectures. Thoge
with ample energy an'd ;’ﬁgllectual capacity to tackle such machines are rewarded by speedup
factors of tg-n.to a , rewarded also by a diverse population of industries hiring. This
skill stays in demandibecause new architectures rapidly obsolete earlier generations. The
other half, people like me, have the luxury of software (like in this book) decaying at a slower
pace. leaves us needed time to tune our imaginations to extracting the structure of
more complex problems.

/100

It is a giant leap of faith that we can accomplish something of value with a mere hundreed
iterations in a task that theoretically demands quadrillions. Experience shows that we often
do, and we do so by experimenting with “intuitive” methods. The first I shall call “faking

the epsiloxm /)\'

5.9.2 Faking the epsilon oo Wj 7

, honest or sly, is nice to know. tell
done ignoring (abandoning) the model

Burdened by a problem of oppressive size, any tri
you a trick that is widely used. Many studies a
styling regression (second fitting regression)

0
0

FA-lp — d

‘p (5.47)

Q

we have a numerically poor idea of what epsilon should be, it is nice to be rid of it.
The pragmatic person iterates the data fittin ng regression only, watches the solution as a
function of iteration, and stops when tiredgor (more hopefully) stops at the iteration that

is subjectively most pleasing. The epsilon-faking trick does not really rld things. Bu}J
—?

eliminates the need for scan over epsilon. It also simplifies the coding

L]

Why does this crude approximation seem to work? The preconditioner is based on an
analytic solution (A~! is an inverse) to_the regularization, so naturally, early iterations
tend to already fit the regularization. (] means early iterations are struggling instead to
fit the data. The longer you run though, the betfer the data fit, and the more the actual
regularization should be coming into play. But o@ing research often fails to run that far.

Figure 5.8 shows the idea that early iterations fit the straight lines. are honoring
the preconditioner. At later iterations the data fits better. Why do straight-line solutions
honor the regularization? Refer to the discussion near Figure 3.12.

144 CHAPTER 5. PRECONDITIONING

5.9.3 When preconditioning becomes a liability

Theoretically, preconditioning does not reduce the number of iterations required for an ex-
act solution, but it gets us closer quicke@%ye may hope to omit all the work of the later
iterations. Surprisingly and unfortunate Welzeral of my colleagues have observed later iter-
preconditioning actually slows convergence. Thenawe are better off reverting to
e nopfpreconditioned initial form. Sorry, but I am unable to ffer guidance or any method
to cope with this issue other than your own application-dependent experimentation.

5.9.4 Earthquake depth illustrates a null space

In the dawn of the era of computerized earthquake seismologyAsomeone decided to add
earthquake depth to their catalog. Traditionally, they had solve({ for only three unknowns,
latitude, longitude, and time of source at the source, i.e porigin time. Nowathey would add
a fourth, the depth. They wrote down the 4 x 4 system &f equations and dolved it. Erratic
results. So the ey froze the depth at zero, solved for the old three variableg? pnly then
introducing the depth. Problem solved. (Compared to seismograph separation; zero depth
is an excellent approximation.)

I first understood the earthquake experience as an issue with nqpflinear problems. True
that earthquake travel time is not a linear function of distance, so the nonlinearity could
lead to difficulty. BufAsomething more is going on. When any seismometer is far from
the earthquake, the waves arrive propagating nearly vertically @ curvature and vtz
ray bending). Source depth affects such data in much the same Way as time origin shift.

Thu /] are near a null-space. Whenever near a null space, especially with a nonﬂ‘l’near
problém, a good starting solution is needed. \—’:

5.9.5 The starting solution matters! .
(S

In principle, regularization solves the null-space problem, but that§ only for those people
lucky enough to have applications so small they can afford to iterate to completion. Think
of this trivial 2-D null-space situation: A parabolic penalty on one spatial axis with no
penalty on the other axis. Imagine a house facing nort h/east with a parabolic rain gutter
mounted perfectly horizontally on one edge of the house roof. The null space is anywhere on
the center line along the bottom of the gutter. Anywhere you begin, steepest descent brings
you immediately to the gutter bottom in a location that depends on where you began. Now
tilt the gutter a little bit so the water drips off one end of the rain drain. Ste?epest descent
now overshoots a little so, as we saw in Chapter 2, a tortuous path of rightgangle turning
ensues. (Recall Figure 2.5.) The conjugate direction method quickly solves this trivial 2-D
problem, but in a 150,0£0lﬂ)d' Wsional lake bottom problem, conjugate directions taken only
a few dozen iterations will not do as well. When the dat%cmodeling operator contains a null
space, only the regularization can pull us away from it, and a small number of iterations
may be unable to do the job. Swve need a good starting location.

)

(Necksz

5.9. GIANT PROBLEMS 145

!

Textbook theory may tell uyll;inal solutions are independent oi“éarting location, but

we learn otherwise from nonjlinear problems, and we learn otherwise from linear but
large problems. \“/

5.9.6 Null space versus starting solution

The simplest null-space problem has one data point d emerging from two model points.

i ~ |a b]{”] (5.48)

Y

The null space is any solution that produces no data. You can add an arbitrary amount /3
of the null space getting another solution as good as the first. Here is the full solution.

[H ~ —%[HJrﬂ['ﬂ ' (5.49)

Iterative methods can neither subtract nor add any null space to your initial solution.
It is obvious in this simple caseMbecause the gradient (here the matrix adjoint) dotted '
into the null-space vector vanishes. Suppose a and b are matrice hlle d, ¢, and y ar %
vectors. Although more complicated, something similar happens. u can test M
application involves a null space by comparing the results of various starting solutions.

Other traps arise in the world of images. Rarely are we able to iterate to full complet).pn LA
so we might say, “practically speakmgi;hls application has null spaces For example, if
we know that zero frequency is theoreelcally a null space, we would say, “The null space
contains low frequencies.” We cannot avoid such issues.

The textbook way of dealing with null spaces is to req\iire the researcher to set up model
styling goals (regularizations). emands assumptions from the researcher, assumptions
which are often hard to specify. Luckily /_here is another path to consider. We could choose
the initial solution more carefully. +

In regression (5.48) extended to imagegiwe might hope not to have 1l-space problem
when we begin iterating from (x,y) = (O?O)rbut this is not true. is a pitfallawhich
in an application contextAtook me some years'to recognize. Notice what happens t‘?le first
step you move away frorﬁ (x,y) = (0,0). Your solution becomes a constant 3 times the
gradient. The image extension of (5.48) being @

X A*d
5] - ol31)
AL
If the operators A and B resemble filters, it is pretty clear that x and y will-be correlated, /-
V,&u‘d\ ysically, 49 could be nonsense. We mii ht be trying to discover if and how x and y are

correlated. O?’we might wish to demand be uncorrelated.

I have no general method for you, but offer a suggestion that works for one family of
applications and may be suggestive for others. Tradltlonallwt might happen that y is

)

146 CHAPTER 5. PRECONDITIONING
ignored, effectively taking y = Of‘Ph'a,‘t' happens when the data is better explaine(yﬁ)y Ai
,a.lons’tha v B . Solve ﬁrsl for x aleme. Call it xg. Novy‘deﬁne a new variable X

such that x = xg + %. Introducing your innovative concept (estinfating y) your regression
becomes:

0 ~r = A(x+%X)+By — d (5.51)
0 ~ r = Ax+By-—(d- Axp) (5.52)

Start off from (%,y) = (0,0). Like equation (5.50}4)2he first step leads to@
-

X A*r
5] - far

which is very different from gquation@.w) cause r is very different from d. Although we
may still have an annoying or inappropriate correlation between X and y, it is a lot less
annoying than a correlation between x and y. '

Solve an oversimplified physical problem first. Use its easy solution as the starting
point for your glorious innovation.

Chapter 6

Noisy images, nonﬁ/Gaussian
<L
)

We have characterized images and signals by amplitude in space and_time. Weeyve also
characterized by frequencies. In Chapter 7Awe characterize,by theis multidi-
mensional spectrum. Most often signal amplitudes’ and spectra have & Consistent behavior.
The classic well-behaved signal has a Gaussian statistical density, meaning that signal
may have been built from many independent causes (central limit theorem). When these
characteristics are unchanging, the signal is said to be stationary. M A

)

BuWome imes signals just burst out in unpredictable waysywe are hard pressed to

charactérize. can happen in model space as well as data space. As this is real life, we

\p must have a chmpter to deal with it, a usable theory to deal with it, and a fascinating data
n

.‘ set loaded with- t¢ is the chapter.
Herglwe introduce erratic bursty nois?which is difficult to fit in any statistiv(:bmodel.

To handle ifwe need the robust estimation’procedures introduced here. Heretwe will handle
both bursty)noise and stationary noise at the same time. As has been our th’eme, we Hatake
a path suited to large spaces.

6.1 MEANS, MEDIANS, MODES, AND MEASURES

Norms and penalty functions are positive measures of the size of a vector. For example,
the square root of the sum of the squares of components of a data vector d is called its £
norm denoted ||d||2. We often have a model parameter, here msg, make a residual my — d
from it, and then minimize the squared ¢, norm of the residual
4 N
0 = — (mg — d;)? (6.1)

dms =

It is quick to find the numeric value for the model parameter mzp_z'vhich turns out to be the
arithmetic mean of the data values, mg = % > d;.)

Inspiring this chapter is the £; norm. Minimizing the ¢; norm of the same residualawe

have @)
0

d N
= 3" Ima - dil (6.2)
s

147

148 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

Let us work it out. We need the derivative of the absolute value function. This derivative
is called the signum function, denoted sgn(). It is +1 for positive residuals, —1 for negative
residuals, and undefined for zero valued residuals. S%e,quation (6.2) becomes/ !

, -

N
0 = Y sgn(mi—di) (6.3)

i=1

Equation (6.3) says m; must be chosen so that half the residuals are +1 and the other half
are —1. In other words, m; is the median of the data. The median of the three values
(8,7,921) is 8. The median has shrugged off the huge outlier, the humongous value that
had no business being there. The ¢, norm also enables multivariate model building in the
presence of erratic, bursty noise. A powerful tool!

Yet another average is the “mode.” It is the most commonly occurring value. For
example, in the nurhber sequence (1,1,2,3,5) the mode is ecause it occurs the most
times. Mathematically, the mode minimizes the zero norm bf the residual. Recall that
except for the number zero, any positive number raised to the zero power is +1. Butyzero
raised to any power is zero, so every time mg matches a data valugayou get a zero./ The
minimum penalty goes to the value that matches the most data values. This book finds
little use for the mode. If this book contained a probability density functior}qi_.ve would note
that the mode is at its maximum value. ¥,

~~

0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2

Figure 6.1: Mean, median, and mode. The coordinate is m. Top is the £y, £1, and £y /19 = £y
measures of the scalar m — 1. Bottom is the same measures of the data set m—(1,1,2,3,5).

(Made with Mathematica.) |VIEW

@ and /1 (r) are convex functions (positive second derivative for any component of
r). is fact leads to the triangle inequalities £p(a) + £p(b) > £p(a+ b) for p > 1 and
assures that gradients lead to a unique bottom. Because there is no triangle inequality
for £y, mathematicians would not call it a “norm.” call it a “measure.” Soor}?this
chapter introduces another measure (penalty function] h(r) that is not a norm because

6.1. MEANS, MEDIANS, MODES, AND MEASURES 149

s

ah(r) # h(ar) for « > 0, but it is conve‘);%:lse its second derivative hA”(r) > 0 is

everywhere positive. As with least squares, means we can safely use gradients to find
a unique minimum. Using h(r), the final answer is independent of the initial guess.

6.1.1 Percentiles and Hoare’s algorithm W 3
1
The median is the BWI residuals are ordered from smallest to largest,

the 9(@ percentile is the value with 10% of the values above afid 90% below. At our laba.
the default value for clipging plots of field data is at the 9 percentile. In other words, .
magnitudes above the 9 percentile are plotted at the 99§tht percentile. Any percentile

is most easily defined if the population of values a;, for ¢+ = 1,2,...,n has been sorted into
ordey}c;o that a; < agy1 for all . Then the 9 percentile is ax where k = (90n)/100. Z

We can save much work by using Hoare’s algorithm. It does not fully order the whole
list, only enough of it to find the desired quantile. Hoare’s algorithm is an outstanding
example of the power of a recursive function, a function that call The main idea is
this: We start by selecting a random value taken from the list of numbers. Thelywe split
the list into two piles, one pile all values greater than the selected, the other pile’ all less.
The quantile is in one of these piles, and by looking at thei sizes, we know which one. SqA~
we repeat the process on that pile and ignore the other o{ﬂ‘? one. Eventuallwhe pile size
reduces to one, and we have the answer.)

In Fortran 77 or CAi.t would be natural to split the list into two piles as follows:

)

We divide the list of numbers into two groups, a group below a; and another L{ '0&4
group above aj. This reordering can be done “in place.” Start one pointer at éo a -
the top of the list and another at the bottom. Grab an arbitrary value from
the list (such as the current value of ax). March the two pointers towardg €ach

other until you have an upper value out of order with a; and a lower value out d.o -
of order with a;. Swap the upper and lower value. Continue until the pointers h ! {
merge somewhere midlist. Now you have divided the list into two sublists, one ¢

above your (random) value aj and the other below. Lw

-

Fortran 90 has some higherllevel intrinsic vector functions that simplify matters. When
a is a vector and is a value, a>ak is a vector of logical values that are true for each
component bh.a.t_@?arger than ak. The integer count of how many components of a are
larger than ak is given by the Fortran intrinsic function count (a>ak). A vector containing
only values less than ak is given by the Fortran intrinsic function pack(a,a<ak).

 2n comparisons are expected to find the median of a list of n values.
beb;t Sergey Fomel) for this task is quantile.

q/ percentile.r90
module quantile.mod { # quantile finder. median = quantile(size(a)/2, a)
contains
recursive function quantile(k, a) result(value) {
integer , intent (in) :: k # position in array
real , dimension (:), intent (in) :: a

real :: value # output value of quantile

150 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

integer v
real ioak
ak = a(k)
j = count(a < ak) # how many a(:) < ak
if(j >= k)
value = quantile(k, pack(a, a < ak))
else {
j = count(a > ak) + k — size(a)
if(j > 0)
value = quantile(j, pack(a, a > ak))
else
value = ak
}
}

6.1.2 The weighted mean

The weighted mean m is@
N wid
m = (6.4)
Zizl w} ' .
where w? > 0 is the squared weighting function. @s the solution to the ¢y fitting
problem 0 =~ w;(m — d;); in other words,

1 d
yk((ﬁ- = gm > [wi(m — d))? (6.5)
\/ﬁ N
There is amedlan too. It¥ needed in ¢; line search. But we’} #e taking another
path more suited to image estimation.

6.2 HYPERBOLIC OR HYBRID (4,¢;) MODEL FITTING
[Aere pot
l\{seen many multifvariable applications %ed when least-squares (£3) model fitting

was changed to least absolute values (¢1). I never seexthe reverse. Mathematicians love
¢1. Why not adopt it? Three reasons: (1) They haven’ come up with a large scale solver as
fast and convenient as £5. (2) Tiny residuals vote oppositely at the faintest perturbation. (3)
We have something more suitable here, the hyperbolic penalty function (HPF). Convexity
gives the HPF method a welcome stablhty and convergence not shared by its more primative

forerunner, IRLS [Iterated Reweighted Least Squares M\»O')’\.(T"\ V'V {)M-U‘-Cot‘

Here/;eur conjugate-direction method is merged with Newton iteration to give some
of the useful ¢y characteristics to familiar {9 formulations. e merged method cal
the HYCD method. A hybrid penalty function for residuals 7; has a new paramefer, a

threshold at which ?5 behavior transits to £1. Applications suggest two different thresholds,
one for the data fitting, the other for the model styling (prior knowledge or regularization).
Each fitting goal requires a threshold of residual, let us call it Rqffor the data fitting, and
R, for the model styling. It is always annoying to need to Speciﬁparameters, but these
two parameters, I claim, are a basic part of the application setting, not a requirement of
numerical analysis.

suprecipt

6.2. HYPERBOLIC OR HYBRID (¢,,¢3) MODEL FITTING 151

W’Oﬁ 'mHe %
4 and R,, is quite clear. For a shot gather with abeute
30% of the area saturated with ground roll noise, choose R4 arqund the 7 percentile of

;‘ %he fitting residual. As for the model styling, we often seek models that are black

derivatives are spiky. For blocl @h 0 points longﬁ.he
20 points apart. Thustapetrt % of the residuals should be in
the £9_area while only 5% in the ¢; area alloéving 5% of the spikes to be of unlimited
size. ‘is an R, at the 95" percentile of |ry,| = |emy|. (On early iterationgfyou
might 0mit the model styling by setting ¢ = 0 leaving time to establish an initial m.) 'fhus S
I conclude that in a wide variety of practical examples fitting goals for both data and model ?
need not go far from the usual ¢ norm, but‘ do need to incorporate some residual
values out in the £; zone, possibly far out in it.

A convex penalty function that smoothly transits from £ to £; behavior is the hyperbola.
It is parabolic (¢ like) in the middle, but asymptotes to ¢i-like straight lines. A circle
t2 = 2% + 22 seen in (¢,x) space is a hyperbola with a parameter z. suggests the
penalty function h? = R? + r2pmhere 7 is the residual, R is the threshold parameter, and
(r) is the penalty. CustomarilyAghere is no penalty when the residual vanishes, so
to accommodate that custom (making ho fundamental change)/we subtract the constant
R from h. Thuﬁhe hybrid penalty function promoted here is tHe origin-shifted hyperbola
h(r) = VR? +r? — R. We could call this approach the Hyperbolic method or the Hybrid
method. The word “hybrid” is suggestive of being between ¢; and £y norms, but it is
not so precise a word as “hyperbolimIt may be tempting to call the hyperbolic penalty
function (HPF) the hybrid norm, but actually it is not a norm. Mathematically, norms
satisfy a|r| = ||ar| for a > 0. HPF does not have this property. ?

In practice/the thresholds Ry and R,, are superseded byl their)inverses, Jgains. Upon
application of t)le properly chosen gain to the raw data (or model)aye have new variables in

the neighborhood of unity, and so the penalty function reduces to {2:) =1+ g?r2—-1. The
simpler penalty function is nice, but the real reason to switch from thresholds to gainsdﬁ/
that gains may be time and space variable, and even frequency variable. Many applications
express gain by an operator G or an operator W. More on that later.

6.2.1 Some convex functions and derivatives

.

Consider now some choices for convex functions and their derivatives.

¢ norm = Least Squares:

cC = r%/2 ’ : (6.6)
& = w 6.7
c" 1 > 0 8)
£1 norm:
g = | (6.9
C' = sgn(r) (6.10

152 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

Hyperbolic (or Hybrid) Penalty Function (HPF):

ho = (14+¢)Y2 - 1 (6.12)
W= q/(1+)Y? (6.13)
o= 10+ *>o0 (6.14)

The hyperbolic (or hybrid) penalty function (HPF) is not expressed here as a function
of residual 7, but of scaled residual ¢ = gr. By adjusting the scale g, equations (6.1 14)

can look like either ¢y or ¢ jdepending on the numerical value of gr. fl practice, the factor
‘ /,giﬁszften taken to the inverst of the value of some percentile of residual magnitudes. -HerrCE‘J/‘\W‘ﬁm - A
1 q is 7

nit-free or dimensionless.

Because of the erratic behavior of C” for ¢; (élj our coming use of second order Taylor
series, thesconjugate direction solve examine next/is not intended for use near the {1
limit. Itewd turiiut we can have niaffy residuals at That limit, but not too many (whatever
that means!). Luc ily,(nost applications do not require us to have most residuals near that

VA limit.) ~
0‘} /’_\Eq ion (6.13) plays such & large role in results to come that I give it the name “soft
clip.” Theéyclip function @? arises in graphic display devices a certain brightness

of image is desired. When a physical limit (called “the clip”) is reached, larger values are
replaced by the maximum value. Likewise for minimum values.

data*t*t

e e — AT~

L A NSNS e e e e e T

-y I e R (S e R RS e

()10
1

(urs)1as50
1

2
Time(seconds)

Figure 6.2: Reflection data d before (top) and after (bottom) soft clip h' = #/(d). Clipping

large amplitudes enables small ones to be seen. |[VIEW noiz/. softclip

Equation (6.13) at small |gr| behaves as gfa, namely h/(r) = gr. At large |gr|sit behaves
as 1, namely h/(r) = sgn(r). Over its whole rang*h’ (r) behaves as a clip functl(?n, though
with a soft transition near |gr| = 1. As a demonsttation of the soft clip function, a family
of not untypical seismic reflection signals d shown in Figure 6.2 is passed through h' =
K (d) = h'(d). The intended pleasing result is that large portions of signal of little practical

6.2. HYPERBOLIC OR HYBRID (¢;,¢3) MODEL FITTING 153

interest have become clipped (turned into “soft” rectangle functions) allowing a gain increase
bringing smaller up into view (and up to where data fitting codes ﬁ:?notlce 6

At convergenceMwe find the vanishing of the gradient Am = 0. We soon see the
familiar gradient fn = F*r becomes Am = F*h'(q), the new aspect being that the scaled
residual is now softclipped.

6.2.2 Filtered and gained residuals

The innovation here is that the residual becomes soft%pped, but most applications addi-,
tionally require residuals being transformed to IID by means of gains in ;?sical space and
iQur!ler space embedded in an operator, say G. We could embed t sofUipping constant
7 with the operator G, but the application analyst deal w1th@ separately.
s like the regularization 0 ~ ¢Am having the ¢ embedded into the A.) For the
motnent, viigtake the g part to be embedded in filter/gain part G}laut we may pull it out

later.)

The gained residual g = Y_; gk 7 occurs so often it has several names besides the
“gained residual/.) It may be called the “statistical rgsidugd” or the “sparse residua%(We
have7 used it long enough to know which name will stick.) In summary:

qg = GFm-d) = Gr (6.15)

.

ot

qk

ng,i (Z Fjm; — di) (6.16)

Sorry to introduce a new variable name for an old idea, but to avoid coding bugs, you
will-be seeing/ much less of the residual r and more of the gained and filtered residual
q = Gr.

The following derivation applies to any convex function C. Having little experience in
choice of convex funct10rWe specialize to the notation of the hyperbolic function h(q).
The average penalty measdre for mismatch between theory and data i

h(m) = %Zh(%) (6.17)
=1

Let R'(q;) denote dh/dq evalugted at g;. Define the softclip vector h'(q) by applying h'()
to each component of q is the slope of the penalty function. If the penalty function

were that of least squares, we would have h' = q.
dh(q)

! _ — o= 6.18
K (a) da hi (6.18)

We plan to minimize the average penalty h(g(m)). To change the statistical residual
component g by changing the model component mjﬂve need from equatlon (6.16) the
matrix of derivatives. -

d
—q—k = ng,iFi,j (619)
%

dmj

154 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

-
Viewed as a matrixAdqy/dm; is rectangular with ene Jdimension the size of model space m,
the other dimensiod the size of residual space q. To multiply this matrix by a column vector
the size of mywe write it as GF. To multiply it by a column vector the size of q/(e write
it as F*G*. The search direction becomesé P

7
A = N dh o _ 3 dh dgi.

dmj ’ % qu dmj
@is simply the old normal equations result of chapter 2 that 0 = Am = F*r compli-
¢at€d in appearance by the filter-gain G and the hy'f)‘erbolic penalty r — h/(r).

q\a.f"’

Youth answer when the soft/clipped residual is orthogonal to all the fitting
functions. (g

gy dh ,
=Y == = F'G*h 6.2
. Gmg da (a) (6.20)

6.2.3 Gaining versus weighting

In the ¢ worl ere is no distinction between gaining and weightingpbecause S (wiry)? is
the same as Y, w?r?. With HPE e might choose to distinguish gaining and weighting. We

could minimize this expression t}zat contains both:

h = Zwi h(gi'ri) (6.21)

Both w and g enable us to suppress residuals. Why bother with w? In data fitting the
01 /45 threshold suppresses the giant residuals. In model stylir?-nhe threshold may encourage
chunkier models. Although weights seem largely supplante By gains within a regression,
when we include regularization or have a row of models, scales like epsilon € come into
play again. Epsilon € is a simple weight. An example of a “row of models” is water depth
data as a sum of*{1) tide and (2) location. +0

It seems wonderful that we may choose spatial patterns of weights and gaining functions
quite arbitrarily, and it is well that we no longer need/rely on the primitive expedient of
tapering data near boundaries (falsifying datajs/but I have found this opportunity easily
abused. One day upon minimizing energy in the weighted (down gained) residual of an
image, I discovered all the energy had gone outside the boundaries! I had wished the
residual instead spread throughout the image.

The moral of the story is to view always both weighted and unweighted residuals.

Including model styling (regularization)/‘we minimize the scalar:

min R(G¢(Fm —d)) + € h(Gm) (6.22)
which we often express as two regression set@
~p Qa = Gd(Fm = d) (6.23)

HereNe have introduced the notation that regression equations, normally denoted by =,

when’using the WMM@W{PFﬂre denoted by ~p.

6.3. THEORY FOR HYPERBOLIC FITTER CODE 155

OccasionallWe might add something to the regularization like G,,mq or noise for
geostat. 4dd to the line search, but do not change the gradient. Key to doing our
job is the gradient:

s 0 = Am = F*G% h/'(Gar) + ¢ G5 h/(Gpm) (6.25)

It'8 curious to notice the gradient now twice contains the gain, though once “softene({y‘

6.3 THEORY FOR HYPERBOLIC FITTER CODE

The Wﬁ%&nv so we know that convergence should

be assured even though we are solving this ncé%}near problem. Sc%let us begin with a
simple solver. To avoid clutter, let the gain G be’embedded in the opérator F and data d.

Define a model update direction by the gradient Am = F*G*h/(Gr) = F*G*h/(q). Since™

o to move in thdse directions £ l

ﬁ«(c%c,

q=G(Fm- d)/d;he gained residual update direction is Aq = GFAm. To find the distancj db@ e
no
Meg,

m — m+aAm (6.26)
q «— q+alAq (6.27)

choose the scalar « to minimize the average penalty@
= 1
ha) = N Z h(g; + alg;) (6.28)

It is a eme-dimensional function of . Finding the minimum should not be difficult. We
make a million Taylor series, one for each residual ¢;. Inspect one of The first three
terms of the Taylor series make a parabola tangent to the hyperbola at that residual. Even
if this particular residual lies far out on the asymptote of the hyperbolgllthe residual may
move some distance before its Taylor series becomes a poor fit. Adding t)ogether the many
second order polynomials in ¢, the sum is also a second order polynomial in agp we easily

find the minimum. Let h} and h{ be first and second derivatives of h(q;) 4t ¢;. Thenu_
Bquation (6.28) becomes a familiar least squares problem. 4
A
= 1
ho) = 5 D hit(@Bg)h; + (aAg:)?hi /2 (6.29)
To find «, set dh/da = 0. Then solve for a.
dﬁ !/ AN
0 = - = Z Agihi + a(Ag)hy (6.30)
The Newton method applied to the method of steepest descents is to first find alz\md then
use it to update the residual q and the model m.)
> Agih;
o = - 6.31
2i(Agi)2hy ()
q = qtalq (6.32)

m = m+oalAm (6.33)

Rene,

v

WM CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

156

‘(5
Afte aré not finishedAbecause moving q changes the convex function values and all
its derivatves /(hq, b}, hY). Tﬂe Newton algorithm is simply to iterafe the sequencg (6.31)
to (6.33)/AThis is Newton line search. It is cheap. Eventvallyawe get to the bottom along

the line vge are scanning and are ready for a new line. Thaf’s| when we pay the money to
compute a new Am = F*G*h/(q) and a new Aq = GFAmMA~ is nongtinear steepest
descent. The reliability of the method is assured by the convexigy of the hyperEolic function.

The new result (6.31) for « is closely related to our early result in_chapter 2, gquation
(2.57). Take our current result to the ungained least squares case h =72 /2, h; =7, and
k" = 1peo in guation (6.31), o reduces to the familiar —3; Agiqi / i(Ag)? = o =
—(Ar- rS/(Ar “Ar). Recognizing that r has become h'(q), the new numerator is the same
as the old but for gain and soﬁéclipping, while the new denominator scales each term by
h!. Equation (6.14) says the new denominator scales the larger residuals smaller. A single
infinite residual would merely omit a single term from the denominator reducing it slightly
and increasing « slightly%leaving us concerned only that there not be too many such bad
residuals. With a crazy initial solutiorﬁhere might well be too many bad residuals. Then A~
the residual might grow instead of shrirfking. Seeing thaWe would simply reduce step size,
a — a/2, etc.)

When there is model styling as well as data fitting, the gradient has a_contribution from
each. Either one or both may have i ' HPF?’.‘The distance o in a’f‘“—‘ A[pF
gquation (6.31) is a ratio of sums over data space. Novkwe need to add sums over model
§pace. With the extra terms the result is:)

__ Xiba W(g) + e 3 Ami h(m)
a = Zi(Aqi)Z h'(q) + € Zi(Ami)Q W (my) (6.34)

We are hoping the presence of some residuals out in the ¢; region does not greatly
increase the number of iterations compared to the usual ¢y parabolic penalty function.
Should anyone choose a gain G so large it drives many of the residuals into the £, region,
convergence may be slow. Experience suggests blindly starting with a model my might
force very many iterations, so giving some thought to the starting mg might well be worth
while. @was steepest descent. Now for conjugate directions. ~~

6.3.1 Newton plane search

Herepwe advance from steepest descent to conjugate directions as a method for using the
WHPF “With the original £5 steepest-descent methodawe found
a distance o to move in the direction Am = g = F*r. With the gained h

WPF&@IE direction becomes Am = g = F*G*h'(q).

Extending to the conjugate direction methodithere are two parameters, o and 3, and

2 /T—WG—*L&Q@_W__'-IM(?; gradient vector g.)The other vector is the previous step s.
These vectors may be viewed{in data space or mmd-l-l’ i model space. We witftake linear
combinations of g and s in both spaces and need notation for recognizing and distinguishing

We are following the path we followed in Chapter 2, but now we have the added compli-
cation of hyperbolic penalty. In Chapter 2he code followed directly from equation (2.80).
Similar steps here jlead us heu’t{; gqua’tion (6.43). =

e

6.3. THEORY FOR HYPERBOLIC FITTER CODE 157

As befor;&we adopt unconventlgnal notation. Conventionally in matrix analysugtLower/\
case letters are Vectorywhlle uppwase letters are matrices. But in Fourier analysi wer/C
case letters-become up erA.case upon fourler transformation. ‘Let us handle g an 4 this
way: Keep using bold capltals for operators but nowpuse ordln&ry italic for vectors with
model space being lower}@ase italic and data space being uppewase 1tahs‘§o the familiar
d = Fm becomes D = Fm.)

At @e kth lteramon/\gve .w-l-ﬁ;,pdate the model m with gradient g and previous step s
where

Sk+1 = QkGk + Ok Sk (6.35)

and the scalars o and (3 are yet.to be found. The corresponding change of the residual
in data space is found by multiplying through with GF. Please do not confuse the gain
operator G with vector g going to vector G in data space.

Aq = Sk1=GFspy1 = GF(okgr + Bksk) (6.36)
= a;yGFgi + 0 GF sy (6.37)
Aq(o, 8) = G+ BiSk (6.38)

In standard £ optlmlzatloWe had a 2 x 2 matrix to solve for (a, 3). We proceed here

in the e way with the WWWHPF . :
i same way wi)""’ s e L

So here we are, embedded in a giant multivariate regression where we have a bivariate
regression (two unknowns). From the multivarate regressiopawe are given three vectors in
data space, Gy, Si, and the gained (statistical) residual ;. Our next residual witl-be this
perturbation of the old one. {

¢ = G + aG; + BS; (6.39)

Minimize the average penalty by variation of (c, ﬂ@
- 1
Mo,) =+ D W@+ aGi+pS) (6.40)
Nl z’

Y Let the coefficients (hs, b, hY) refer to a Taylor expansion of h(r) in small values of (a,)

(2R

_———about §;. Each residual of each data point has its own Taylor series fitting the hyperbola
at its own location. Soﬁ,ﬂ residuals that do not move far have a good approximation.
)

h(a, B) = —]lv Z (@) + (aGi+ BSi)hi + (oG + BS;)2h} /2 (6.41)

To find both a and 8 set dh/da = 0 and dh/dB = 0:

0| _ % _ % Gi B! ai en 8S) Y (aG; + BS:) (6.42)
0| = | B | =X | g | TR Z |GG+ S eCi 65)

ag

s a set of two equations for o and 3. We are now at the stage we were back in Chapter
2 with equatlon (2.80) but nowpthe sums include weights h; and h} to manage the HPF.

{;%»2’[(C;)I(G:- Si)} Hg} = - Zh[s] (6.43)

158 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

New here is the presence of ' and h”. On the right A/ is the residual so@lipped. On the left
is a familiar sum, formerly unweighted (because CJ = 1), containing factors h; weakening
the effect of large residuals. As with e /guatlon (6. 34) the summations in gquatlon (6.43)
should include both data space terms and model space terms.

If you have forgotten the inverse of a 2 x 2 matrix, please refer to .equatlon (2.100).

The only difficulties arise when the determinant vanishesawhich here is easy (luckil JA%
understand. Generallyathe gradient cannot point IWW

if the previous move Went the proper distance. e determinant does not vanish ‘;(
because of ill-conditioning. It does vanish when the gradient and previous step are both

tending to zero, i.e /{When the solution ha@a‘otzﬂned. You did more iterations

than required, or da%a and initial model both vanish

As with steepest descent, after updating m « m + ag + s and updating the residuals,

at the new residual locatloryr.he values of (fy Ib ¥) have changed. Thugawe repeat to

update o and (@ a second t1 e orwupore. Dord mess w1t yet! After SOIIIJ iterationgaye

have finished the plane search. It\qgoually cheap. Now 1t‘§$1me to pa,yf@e money (runlchc

operator F*G*) to compute a new g = F*G*h’r%} Now is the timgydefine a new s, how

far we moved since the old place. % s the non/Tinear conjugate direction method. With
h(r) being the hyperbola, I call it the HYCD method.

6.3.2 Code for the hyperbolic fitter

The code for the hyperbolic fitter should closely follow that for cgstep from Chapter 2. It
is easy enough to include the extra weights A’ and A" in the sums. You witf need to find a
way to input or compute the gain G. What should we call the new solver? A good name
might be hycdstep() for Hyperbolic Conjugate Direction Stepper.

6.3.3 Measuring success with the hyperbolic measure

2
I propose the measure of dat%ﬁtting success be defined by@

. . Fitting success = 1—q /d (6.44)

U whath

The me?éure of success at solving the normal equations must be measured in model

space our curious expression q is not appropriate. The normal equations say the

fitting functions are orthogonal to the “hyperbolic residu%amely, 0 = F*h'(q). Taking

the computational success to be measured by the degree of satisfying the normal equations
suggests we measure success by@

Computational success = 1 — avg(F*Gh'(q)) / avg(F*Gh'(d)) (6.45)

but a good question is, “What averaging method should be used in gquatlon (6.45)7” The
¢5 norm? Unfortunately, it can be shown it does not lead to monotonic improvement with
iteration (even though the fitting residual diminishes monotonically with iteration). Thus
it is not an ideal measure of succesé}lever the-less, for the time being, we wittbe using it)
as a measure of success.

&W’U’w

6.4. MIGRATION INVERSION 159

6.4 MIGRATION INVERSION .

prhech

Seismometers cost moneyaso we often fail to have enough is eSEecially true

when theory calls for the‘Z-dimensional@rth surface to be covere(? with¢hem,) In reality /-

there might be tens of thousands on the 2-D surface, but even that is not enough. The
simpler example shown here has merely a line of 16 receivers. A scattering point in the

@rth at (zo,z0) creates a spherical wave moving upward to the seismometers. The wave

)

bouncing from the scatterer is an impulse on the surfacé t?v? = (z — 20)? + (z — zo)?. Here A

the data plane is (t,z) at z = Opand the model plane is (20, 20). An impulse in the model

‘* ‘4 creates a hyperbola in the data ﬁlane. Figure 6.3 shows. @’Ks’uch hyperbolas observed

at\a 16 locations. Our goal is to manufacture the artificial data seen on the right side
of Figure 6.3. Notice on the sparsely sampled data the implied hyperbola tops are usually
missing.

midpoint(m) .

| midpoint(m)
0 200 400 600 800 1000 1200

400 600 800 1000 1200

oy

E A
o »
80 o
-0 - Q
- =
) V)
(<] ©

Data collected Data recons

Figure 6.3: Left: Sparse hyperbola data. Right: Reconstructed.
\,LCM’

There is some magic here in-that a small data space generates a large sharply resolved
model space. The method depends critically on the model space containipg many zeros.
More precisely, model space is mostly small inconsequential values. § 1s not the place
to examine where this assumption would be true in practice. What is important to realize
is ﬁﬁ‘ Model space might really be large but sparsely populated (mostly inconsequential
values) but in realitykwe generally do not know where the small values are and where the
big values should be.
we do not get sparse models in large model spaces without having large data spaces.

Seeing the good results motivates us to examine the theory. Let H be an operator that
copies model i s i data hyperbolas. (Please do not confuse it with the hyperbetic®
PFY H(q).) Depending on various details of the definition of H, its

adjoint is known in industry as downward continuation or demigration. The example here

e

s,

7

is where robust fitting can be useful. With least-squares ﬁttin%

160 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

is called migration/demigration. The fitting goals ar@

0 ~; qu=Hm - d (6.46)
0 ~p Qp= €e¢m) (6.47)

where =~y denotes parabolic fitting, and w-he?gh denotes hyperbolic fitting. For coding
=y is really the same as =~ with a large threshold.

\
When the solution is found, the fitting functions are orthogonal to the so@__c.lipped the
residuals. But those residuals have the model space parts. Recall the fitting functions are
the rows in the [H*, ¢ I] matrix.

0 = Am = H*qg + ch'(em) (6.48)

The vanishing gradient Am is made from two parts whielr must be identical (but for sign).
Ordinaril » might say the final model m battles the data misfit H*qq, but heregwe say the
sof{}lip h/(m) has thrown more of the smaller soldiers into the struggle, morej;ccurately,
less of the burden is now borne by the greatest soldiers. In some physical situations jt may
be said that, “the side lob t shirk the task as £o had allowed ¥ ”

e sai a/\L e side lobes cannot shirk the task as ¢ had allowe)

L
Ordinarilyt.he model struggles to reduce the data misfit. Sof@ipping the model brings
more of thg population (parts of model space) into the task.

6.5 ESTIMATING BLOCKY INTERVAL VELOCITIES

In seismolog)uneasurements are made of the integral through depth of the squared material
velocity. This‘ observation is called the RMS velocity Vrms. The goal is to find the velocity
as a function of depth vﬂﬁelf%alled the interval velocity v = vins. We begin by presuming
'bb.a?’the RMS velocity is measured at a dense uniform sampling of depths. may
be known well at some depths but are measurably poor at most depths. In practice, one
would have and include a weighting function to allow for the variable quality of RMS
velocity with depth. By contrast, the interval velocity squared v, is a model space, so we
may freely take it to be regularly sampled in depth (actually vertical travel-time depth)
that for numerical purposes we have in a vector u. We take the data vector d to contain
depth times VI%MS. The relation of model to data is simply causal integration C.

The physical expression and the algebraic expression are: o
k
; SovP o= KV (6.49)
i=1
Cu = d (6.50)

Because the RMS velocities are noisyAwe must add a regularization. Here/we choose that
to be the depth derivative D,. In alge’braic forrr}JWe have what is called thz Dix problem:
)

] 0 xXp Q¢ = Gd(Cu—d) (651)
0 ~, gn = €¢GpD,u (6.52)

6.6. DEFEATING NOISE AND SHIP TRACKS IN GALILEE 161

A barrel of issues are hidden in the tw6 gains, G4 and G,
so G, is simply a gain, not a ﬁlte . The gain would be
dm up to a level about unity is the £ /¢y threshold T-l-riS'r'ﬁight be done by dividing
the data by the value of some chosen quantile. In other wordgiif you wanted half the gained
residuals in the £; ZOngAyou W uld divide the residuals by their median. Then, in a manner
remniscent of ¢, the ga?n djusted for a suitable number of blocks in the solution. Gy
is also a gain, not a filter. When the analyst has reliable external information about data.

uality G4 would function like the usual weighing function. Where the data quality has
large unexpected errors/ﬂTehypelbohc penalty can catch . The analyst has three scales-
to monkey with, that of Gy, G, and . What rationale for 67 I doérkm\u.r

Real data RMS Vel Inter Vel Result by Hybrid with CD

w
o 7|

Faall
-~

I

22

¢

(s/my)fyo07ap
(s/uy)yro0faf
72

91

91

T T
o 1 2 3 4 o 1 2 3 4

Time(s) Time(s)

Figure 6.4: Left: Input RMS velocity. Right: Output interval velocity, blocky as desired.
(thanks to Elita) FIOIZ/ blockyveJ

The input RMS velocity is in the left panel of Figure 6.4. Irregularities on this function
result from noises in the measurement process. The oscillations at late time are violent.
hey/may not look large, but the negative swings imply a negative vmterval Q;Ll}nch means
an imaginary velocity! This violent behavior results from the impossibility of making mea-
surements this precise. Hyperbolic penalty aids overcoming this large error.

Rock velocity may vary continuously with depth, or rocks may come in fairly homoge-
neous layers. In the layered case, we say the desired model is “blockyg so its derivative
D, u has spikes. The WHFF allows those sp)?.ymhlle the usual
parabolic penalty function suppresses@ What we are demonstratmg n the right side
of Figure 6.4 is that using the HPF enables us to obtain blocky velocity models.

6.6 DEFEATING NOISE AND SHIP TRACKS IN GALILEE
ow Lnich

Sea of Galilee data set exhibits a great number of the problems encountered in real life.
blessingyto learn Only 132,044 pings give rise to its 132,044 depth measurements.
ere reflection selsmologywe would have that many}QOO point seismograms at 1000
recelvers a million times more C?ata' Students have asked, “Why don’t we just hand’edit
out the bad data points?” The answer 18/@6 need an easy warm up for real life when there is

)

quired filtering is done by D, A~
to first bring components]

e

hot

ik,
Rlyge

162 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

far too much data to hand edit. In other words, we wish to think about theories and codes
that work when transported to other environments. The Galilee data set is a marvelous
practice case. There is much, to'learn here. "

Figure 6.5: Geologist view of the
Sea of Galilee. This lake»is below
sea level. Here is the reason. Re-
gional faults continuing southward
into Africa are “left lateral” (stand-
ing on either sidgayou see the other
side moving left).” Perhaps in Fig-

ure 6.13pp0u see lines such as these.
noiz/. gfault

Although the Sea of Galilee is a freshfyater lake, it is below sea-level. It seems to be
connected to the Great Rift (pull-apart) yalley crossing East Africa. The ultimate goal is to
produce a good map of the depth to botto’m, and images useful for identifying archeological,
geological, and geophysical details of the water bottom. In particular, we hope to identify
some ancient shorelines around the lake and meaningful geological features inside the lake.
The ancient shorelines might reveal early settlements of archeological interest or old fishing
ports. The pertinence of this data set to our daily geophysical applications is fouf Yold: (1)
We often need to interpolate irregular data. (Z)I Ehﬂa‘ca has noise bursts of various types.
(3) The data has systematic error (drift) ends to leave data-acquisition tracks in
the resulting image. (4) Results invite an extended model, but that introduces a difficult
null-space problem.

The Galilee data set was introduced in Chapter 3 and recently plotted in Figure 3.10.
Actually, that figure is a view of 2-D model space. One of the ﬁrans I learned (the
hard way) is the importance of viewing all four of the model space, data space, and
residuals in both spaces. Data-space is often larger and more difficult to view than model
space, but in this study it was the key to understanding basic physical phenomena.

O

Be sure to plot data and residuals in both model space and data space. You might

learn from movies of each as iteration prggresses.
Y e than

4 § -)
The raw data (Figure 6.6), is disyribut gflarly across the lake surface. At is 132,044 a’p/dAOKIMQﬁ
triples (z;,yi, 2;), where x; ranges b 12 km, where y; ranges w 20 km, and y

z; is depth in multiples of 10 tm up to ¢ 43 meters. The 10 cm suggests a sense of the

measurement accuracy. The ship surveyed a different amount of distance every day of the
survey. Figure 6.6 displays"‘c.he whole survey as one long track. On one traverse across the
lake, the depth record is U’shaped. A few V%haped tracks result from deep%oer vessel
turnv?,rounds. All depth values (data points) used for building the final map are shown
here. Each point corresponds to one depth measurement inside the lake. In Figure 6.6 the

)

6.6. DEFEATING NOISE AND SHIP TRACKS IN GALILEE 163

long signal is broken into 23 strips of 5718 depth measurements (23 x 5718 = 131, 514). We
have no way to know that sometimes‘the ship stops a little while with the data recorder
running; sometimes it shuts down overnight or longer; but mostlyAit progresses at some
unknown convenient speed. Sol.t,he horizontal axis in data space is & measurement number
that scales in some undocumented way to distance along some unknown track.

© N~ A

b P N A N oM PN N N AN R A

—3

%

it S N P U U N B et
w/w e NIPNEID'S S RSN | 11V W S NUR WS "
w Ul L]
NN NN T T
e NI LS e S T) AANANN ka AN

1000 2000 3000 4000 5000

Measurement number

Figure 6.6: The complete Galilee data space. | VIEW [noiz/ : antoinelJ

6.6.1 Attenuation of noise bursts and glitzhes \ l I*

Let m be an abstract vector conta‘inrw&mponents the watey' depth over a 2-D spatial
mesh. Let d be an abstract vector successive componentsjare depths along the vessel

tracks shown in Figure 6.6. One way to grid irregular data is to minimize the length of the

residual vector rg(m):
0 ~ r, = Gm —-d (6.53)

where G is a geography operator, the adjoint of binning or linear interpolation, the operator
that copies data from a 2-D map to a 1-D data survey track. Hergrq is the data residual,
the modeled data less the observed data. Because we are defining G and not its inverse,we
need not concern ourselves that bins may be’empty or tracks may cross inconsistently.)

Some model-space bins wsﬁﬁé‘ empty. For @ﬁve need an additional “model styling”
ht™m

goal, i.e.,regularization. For simplicitwe mig inimize the gradient.
Y |)
0 ~ry, = Gm —d
0 ~ r, = €Vm (6.54)

164 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

where V = (%, aﬁy)/bnd I, is the model space residual. Choosing a large scaling factor €
wﬁ' tendAto smooth gur entire image, not just the areas of empty bins. We would like € to
be any number small enough that its main effect is to smooth areas of empty bins. When

we get into this further we\see that because of noiss,_s_ome smoothing across the nonempty
bins is desirable | Coun)
Moo

6.6.2 Preconditioning for accelerated convergence

As usuaywe precondition by changing variables so that the regularization operator becomes
an identity matrix. The gradient V in_gquation (6.54) has no inverse, but its spectrum
—V*V, can be factored (-V*V = A* f)linto triangular parts A and A7swhere A here
is typically the helix derivative of Chapter 4. This A is invertible by deconvolution. The
quadratic form m*V* Vm = m*A* Am suggests the new preconditioning variable p = Am.
The fitting goals in Equatlon (6.54) thus becom@

0
0

rqy = GA™!p - d

n o~ cp (6.55)

Qo

with r, the residual for the new variable p. Experience shows that an iterative solution
for p converges much more rapidly than an iterative solution for r@thuggahowing that A
is a good choice for preconditioning. We could view the estimated final map m = A~ lp,
however in practic/e\beca e the depth function is so smooth, we usually prefer to view the

roughened depth p’ ieH we call “the image.”

There is no simple way of knowing beforehand the best value of e. What we have done
here is described at gquation (5.47) in Chapter 5 as “faking the epsilon,” namely, we set
¢ = 0 doing about 50 iterations without it.

west—east, km

200 204 208 212
(] — —
o
@D
=
= 2 —
=3
=
=) . SRy
Hyperbolic penalty function (L2)
west—east, km
200 204 208 212
=

(w) yydaq
02

0¥

Hyperbolic penalty funtion (L1)

<
Figure 6.7: Several east-west cros;agections of the lake bottom (m = A~!p). Top with the
¢5 solution. Bottom with the hyperbolic penalty. |VIEW Eoiz/ . antoiné‘

6.6. DEFEATING NOISE AND SHIP TRACKS IN GALILEE 165

Figure 6.7 shows the bottom of the Sea of Galilee (m = A~!p) with ¢, fitting (top)
and hyperbolic fitting (bottom). Each line represents one east-west transect, transects at
half-kilometer intervals on the north-south axis. Our new robust fitting with the hyperbolic
penalty is a nice improvement over the £o maps. The glitches inside and outside the lake
have mostly disappeared. i

Aithough not visible everywhere in all the figures, topography is produced outside the
lake. Indeed, the effect of regularization is to produce synthetic topography, a natural
continuation of the lake floor surface.

west—east,km west—east km
198 200 202 204 206 208 210 212 198 200 202 204 206 208 210 212
| | | | 1 1 | | | | | 1 |
M) M
(S o
= o

2Se
2se

8¥2
8%2

1444

un{‘g3nos—yiiou
1444

w{'g3nos—yiiou

0¥%2
ove

9€2
92

Hyperbolic penalty function (L2) Hyperbolic penalty function (L1)

Figure 6.8: Estimated p with ¢, norm (left) and with hyperbolic penalty (right). Pleasingly,
isolated spikes are attenuated. Some interesting features are shown by the arrows: AS points
to few ancient shores, O points to some outliers, T points boat tracks, and R points to a
curious feature. Data outside the lake asserts sporadic track location errors suggesting there
may be a few such tracks inside the lake that are not readily apparent. A stray data point

outside the lake has sprayed into the response of the inverse helix derivative. VIEW
Eoiz /. antoine2

Figure 6.8 displays p estimated by least-squares on the left, and by hyperbolic penalty
the right. Introducing the hyperbolic penalty has removed most of the isolated bursts.
Some ancient shorelines in the western and southern parts of the Sea of Galilee are now
casier to identify (shown as AS). We also start to see a valley (or fault?) in the middle of
the lake (shown as R). Data acquisition tracks are mestly north-south lines and east-west

ity

166 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

lines. They are even more visible after the suppression of the outliers.

6.6.3 Abandoned strategy for eliminating ship tracks z

Figure 6.8 shows that vessel tracks could overwhelm fine scale details. Nex
a strategy based on the idea that the inconsistency between tracks comeS mad
different human and seasonal conditions during the data acquisition. Si we have no
records of the weather and the time of the year the data were acquireguae presume the
depth differences between different acquisition tracks must be small dnd relatively smooth
along the super track (track of all tracks).

The unsuccessful strategy to remove the ship tracks was to filter the residual as follows:

0
0

ry = d%(GA_lp —d)

N (6.56)

Q2

where d% is the derivative along the track. The derivative removes the drift (surface ele-
vation?) from the field data (and the modeled data). An unfortunate consequence of the
track derivative is that it creates more glitches and spiky noise at the track ends and at
the bad data points. Several students struggled with this idea with results like you see in
Figure 6.9.

west-east,km
198 200 202 204 206 208 210 212

v |
3
)
)
o
N
3
0 :
R [
R
Figure 6.9: The result of minimiz- TUJ
ing the derivative along the tracks. 2
)
VIEW !noiz/ . antoine8 é:ﬁ |
b
H

ovz

o€z

X0 Minimum d/ds residual

> .
The operatoy/7- is too simple a loxigut filter. We have boosted all the high (spatial) W
frequencies d# fhe residual when all we really sought to do was to remove the ’];/be:gfe‘?(/‘
frequencie: most zero frequency. Recall the low-cut filters from Chapter 2¢ re
filters that would remove only low frequencies leaving higher frequencies alone.”Such filters
are a positive impulse of unit area accompanied by a long negative blob, also of unit area.

6.6. DEFEATING NOISE AND SHIP TRACKS IN GALILEE 167

4
The longer the blob, the v:?gwer e low,\:cut filter. Unfortunately, the longer the blob,
the more nasty spikes it will catchi”After low-cut filtering, the noise bursts would affect a
greater percentage of track. £

_ne z &
We are&ill}/{wiilemma. V&?’need to lowl@u@ﬁlt eliminate the drift from the problem,
m

but we dondt dare lowﬁutﬁ terfbecause it smeaigspike noise out to a much larger region.
The dilemma is resolved by expanding ouf model space to include the drift.

When a signal of a sensible spectrum (either signal or noise) contains noise bursts, it
cannot be filtered; it must be modeled. Modeled noise can then be subtracted.

6.6.4 TUnderstanding the residuals

Examining the discrepancy between observed data and modeled data offers us an opportu-

nity to discover what our data contains that our model does not. It is important to examine

both the residual itself r and the residual in model space G*r. Figure 6.10 shows the fitting

residuals brought back into model space G*r. We are disappointed to see so much noise

around the periphery of the lake, the most likely location of historic disturbance. We would [ﬁ .
like to understand that. We see more noise in the northern half of the laked Bhat-wit-be’

easier to understand. /

(5)

198 200 202 204 206 R08 210 <R12

9GS2

2SSz

s8va

Figure 6.10: Fitting residuals
brought back into model space G*r.
Notice short white horizontal streaks
in the north in the deep water.

VIEW @Z /. antoine7gr

Tve

ove

oeg

Data residual in model space

Figures 6.11 and 6.12 show selected segments of data space. In each figureathe top plot
is the input data d. Next is the estimated noise-free data GH 'p. FinallN}{e residual ry
after a suitable number of iterations. The modeled data in Figure 6.11 shows no remaining
spikes. .

Compare Figure 6.11 showing noise in the south with Figure 6.12 showing noise in the
north. Perhaps in the nortWe depth sounder has insufficient power for deeper water or

)

168 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

. * ’ > Cerd
s =] W}W"Mwmww
= = — ~ - N
_____ B (5)
g . _al W'LAMMW\\ A
el -
= — i g -
o) -
- 4 - 7
= & —
= = - et e ' H I
) E—)‘GUUQ l1le+05 1.0 +-06 -
Measurement number

Figure 6.11: Roughly 10% of the complete data space. (a) Track 17 (input data in the
south) in Figure 6.6. (b) The estimated noise-free data GA™'p. (c) Data residual ry.

VIEW ‘ noiz/. antoinebabd i ® -

Cad
E 5 v
)
)
= + —]
= = - W,WMTWW
= -] A N i]
Figure 6.12: Residuals in the north, otherwise like Figure 6.11 VIEW

| noiz/. antoine6abd I

6.6. DEFEATING NOISE AND SHIP TRACKS IN GALILEE 169

for softer sediments that,might be found in northern water. The northern residual (Figure
6.12) is curiously n n}g/mmetric in polarity. This corresponds to the sparse streaks that

¢« are white (but not black) in Figure 6.10 in deep water. For Gaussian random noise, there

IS awille equal energy in positive errors as in negative errors. That's clearly not the case here.
Simee the hyperbolic penalty behaves somewhat like the £; norm, we notice that a median
can have larger variance on one side of zero than on the other. The plot shows the
larger residuals are up (negative values). If we take the modeled data Gm to be correct and
the observed data wrong, r = Gm —d < 0 says the large measured depths d are exceeding
the real depth Gm. Depth is measured from a seismogram by measuring travel time to the
first strong return. A good explanation is this: When the outgoing signal is not strong or
the water bottom is soft, the first perceived echo return may be later than the weaker first
arrival. The instrument, not seeing the signal until later, reports the water deeper than it
really is.

We notice the white streaks on east-west traverses only, not the north-south traverses.
Perhaps east-west traverses were done with a faster boat causing more noise.

6.6.5 Spikes in the model space!

Looking carefully at Figure 6.12/&/6 discover a spike in the modeled data! Other track
regions not shown show many mobre, some much bigger. Why does the theoretical data
contain spikes? The misplaced data tracks outside the lake suggest there may be misplaced
tracks inside too. Data values on a misplaced track have a consistent systematic error not
as easily dealt with as suppressing isolated spikes. A string of bad data points on a track
can locally overwhelm a crossing good track. How can we fight back? When we see a
continuous string of high residualsuwe have evidence of a misplaced track. Those strings
of residuals tell us to build a Weigﬁting function that is perhaps the inverse of smoothed
residuals. This task is being left for a student exercise. Perhaps the smoothing need be only
a short window. Perhaps a suitable weighting function would be the inverse of quantity 10
cm plus the residual magnitude.

6.6.6 Dealing with acquisition tracks in the image

Having a preliminary map image of the Galilee water bottom and seeing data acquisition
tracks in it, the most obvious hypothesis is that the water surface level was not properly
corrected. The data donor assured us it was, but the tracks seem to tell us otherwise.
Consumption, irrigation, rain, other factors could play a role in apparent surface level
fluctuation during the survey, a survey that took many months, perhaps many seasons. It
might have been helpful had the measurements included day and time of day, but did
not.

There are hypotheses other than water level for tracks in the image. Perhaps the speed
or the loading of the recording boat is an issue. Perhaps accuracy of navigation is an issue.
We seek now to understand the best-fitting surface variation and to model it appropriately
in hopes of best removing survey tracks from the bottom image.

We model the water surface elevation by e(t) = e. Physical functions are smooth, both
the model map m(z,y) = m and the surface elevation e. For regularization m is roughened

170 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

L]

P
with the operator A, typically a helix derivativ(:)nd e is roughened with a low-cut filter,
typically L~! where L is leaky integration.

i
0 ~p, Gm + e — d . (6.57)
0 =~y Am (6.58)
-1
0 ~y L7'e (6.59)
west—east, km west—east, km
198 200 202 204 2086 208 210 212 198 200 202 204 206 208 210 212
| I | I 1 | | | 1 I 1 | ! 1
N N
o o
[} (o)
N [
o 4 o
N N
¥ 2 .
1 &1 28]
& &
o 3
“ @
o Q
£ c
5 5w
=R FR
| 3
I\ N
= g
o f=}
[\ [
0 o
[} [}
Ignoring acquisition drift Fitting drift

Figure 6.13: LEFT: Estimated p without track suppression. RIGHT: Estimated p modeling

tracks to eliminat ‘noiz/ : antoine4‘

Nexy.precondition by transforming tQ rough variables. Let the bottom image be p = Am.
Defirle a white noise variable n so the elevation drift is e = Ln.
actw

We need two epsilon scale factors for the two regularizations. It matters a lot what
their ratio is between the two epsilongwbecause it choice of how much of the
data to push into m versus e. Unfort&nately.th dat eems not to tell us That
choice is forced upon us. For conveniencyale, choose both epsilons e the same thus pushing
the actual epsilon ratio into a scaling factor A, which we may regard as scaling either L or

N

n. ‘
0 ~, GA™'p + \Ln - d (6.60)
0 ~y €p (6.61)
0 ~2 €n (6.62)

6.6. DEFEATING NOISE AND SHIP TRACKS IN GALILEE 171

Structurings a matri@

GA-!)L
0 ~ eI {E} (6.63)
el
we readily recognize the gradient@
/
Ap (TS S I
An| = AT el €p {664
en
Z

where h/(rg) is the sef@clipped data residual.

As described at the end of the preconditioning chapter, Chapter 5, we began here with
e = 0. We soon had a pleasing image of the water bottom p without tracks shown in Figure
6.13. Hooray! Figure 6.13 shows this model enhancement leading to a track-free map.

Although we had a goo@éooking map image in Figure 6.13she two parameters A and the
decay length in the leaky integration operator L could not bd chosen to lead to a plausible
elevation e. cast doubt upon the image. What was unacceptable about e is that it
came out too big, and it strongly mimicked the raw data d. ais bogus. The concept

of this bad result is shown in Figure 6.14/(While we see it in the data analysis in—Fi .
6.15. It says the surface water in the middid of the lake is Gboul a meter higher than at the of/ ‘40)(1

shoreline! The data measures the separation of the bottom of the lake from its top. Most Mﬁ?
of the data went into the bottom}y_vhile the remainder went into the top.
)

[- -
Figure 6.14: For a single lake cross- === ==
. west east
ing/we see the problem to be over-)\ FL __________________
comé that the surface elevation e —\
falsely grows with the depth m. p—

Some of the data d that should

have gone into m has gone into e. -
The depth image is the roughened e
model p. The image p is the rough-

ened depth model m.

6.6.7 Defeating a null-space with a wise starting guess

After some years of frustration,we solved the bulg;{@r!ace problem. We first fit the data
b

without a surface model. To dé thatpave used théyfull-blown theory abcwz,/ but with A = 0.

After thathve activated /\/\’E‘\ﬁ&[workad. Hooray! The theoretical basis for this technique is

172 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

D

E;; ; \/’J\/ AN \//\/\/\f"‘\/\’ N\/\//\/’ VAN N\/‘\ Jfﬂwv N ST //\\V /\/»\m\r/\/\

= b
S \AK?J'
w So—=o0ooo caocoo

OO OO0
Il Mer =11 1rezrivezr i | ISESES TN EE 0

Figure 6.15: Bogus water surface. Water surface curve (b) mimics water depth (a). The
water level e in the middle of the lake cannot possibly be a meter higher than near the
hore. Depth ranges 0/40m. The surface is mostly negative near shorelines averaging

meter in the middle of the lake. |VIEW lnoiz /. antoine6|

explained toward%e end of Chapter 5. This useful technique did not evolve from theory
but arose from the struggle with this real datal

Regularization is not the only way to manage a null space. Choosing your initial
solution carefully can do it too.

6.6.8 Understanding the derived surface elevation
z

The water surface e was coming out far too rough for realistic waterlevel fluctuations. One
way to make it smoother is to lengthen the lag in the leaky integration, but this aggravates
the tracks-in-the-image problem. Another way to smooth it is by replacing L with L* L. The
impulse response of L and of its autocorrelation L* L have about the same length implying
the same spectrum, but their speséﬁ&p@‘very different. The decaying exponential response
in L has a sharp step onset which' must have high frequency that the autocorrelation does
not. The amplitude spectrum of L is 1/ \/wi + w?while that in L* L is its square. After wo
the square drops off much faster. Switching to L*'L made the tracks worse, but it had the
side benefit that it changed our way of viewing e. Serendipity! Formerlyswe had plotted e
as on Figure 6.11 but with it being much smoothemwe were at last inspited to plot it as a
single line across the width of the page. It is showr/in Figure 6.16.

Figure 6.16 has much to tell us. Before seeing it/we had imagined step functions, the
boundaries separating the epochs of soundings. Or perhaps/(,the load in the boat being
changed or shifted. We do see step discontinuities in Figure %5.16, but the function value
betweens far from constant. Some of the blocks are ramp-like. It takes a long time
to survey a lake this size. How many days did the survey take, and how much change
in water level is reasonable? Let’s make some guesses. Depth sounders do not work well
from a speeding))oat. A reasonable speed would be 8 km/hour. We see hundreds of tracks
crossing this 2(%1<m long lake. The ramp-like blocks could correspond to correct water
depth calibration somewhere on the block, but with significant water level drift during that
surveying epoch.

6.6. DEFEATING NOISE AND SHIP TRACKS IN GALILEE 173

FEstimated lalke surface level

(w) ydaq

o 20000 40000 60000 B0000 letO0651.2e+05
Measurement mumber

Figure 6.16: Apparent surface elevation of the entire data set. Notice the scale. Recall

measurement nominal precision is 10 cm = 1/10 meter. |VIEW

Measurements came in integer multiples of 10 cm. It may seem surprising that we
observe e apparently at that precision or even better. The many independent measurements
may be doing their job in canceling the :t}/cm discretization noise.

Spikes in Figure 6.16 might represent short sections of track that are mispositioned. We
are expecting students to fix that by weighting residuals inversely with their variance.

Figure 6.16 also contains short wavelengths. Short on this scale means comparable in
length to a lake crossing. Of course/this is annoying. These short wavelengths may be the
annoying correlation with the geography seen earlier. Theh’l mplitude is only about 20cm /\
which is not large compared with the nominal measurement accuracy of 10fm or the 40"/

Kmetel depth of the lake.

Wind can move lake water from one shore to the opposite supporting altitude variations
on this scale. I do not see how to identify such a model with the available information.

6.6.9 Interpreting model-space residuals and tracks W/\.

From an archeological perspectiv«yﬁhe most interesting part of the lake would be its near
shoreline, those locations affected by human habitation. Unfortunately, e 6.17 shows
our greatest measurement difficulties occur along the shoreline. Figure 6.1 eft) shows the
data residual in model space. We imagine eing random (white) in both data space
and model space. The most striking feature iS7a noisy rim around the lake. I had predicted
a systematic surface error elevation error on the shoreline track. Figure 6.17(yi ht) does
confirm that error, but the modeling now includes the surface and the depth. Even with
both model ﬁ_rehne esiduals dominate the survey residuals. Perhaps the larger noise
on the shoreline 4¢ cause e mechanics of slowing, stopping, and turning the vessel. Or
maybgithe shoreline noise results from irregularity in bottom vegetation.

pec

AdditionallyAwe notice the residual is smaller in the southern half of the lake. Perhaps
that part of the Jburvey was done with better equipment or in better environmental condi-

174 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

198 200 202 204 206 208 210 212 198 200 202 204 206 208 210 212

962
962

o¥e vve 8¥2 2se
vve 8v2 3S3

0¥2

982
9€2

Data residual in model space Data drift in model space

Figure 6.17: LEFT: Data residual brought back into model space G*ry shows measurement
inconsistency near the shoreline and also an interesting haze of white speckles or short
horizontal lines. RIGHT: Surface elevation e brought back into model space G*e. Northern
and southern lake halves evidently used different equipment. Although much is clear on
this fascinating figure, much is without explanation. Especially the large regional elevation,

white to the upper right is unexplained. |VIEW lnoiz /. antoineﬂ

6.6. DEFEATING NOISE AND SHIP TRACKS IN GALILEE

Ww/v

tions. An interesting feature of the residual in the northern half of/the lake is the haze of
short white streaks in the deeper water. The explanation for these/was suggested by Figure
6.12. Oddly, ostl run east-west.

Figure 6.1nght) shows the transformation of elevation e to model space G*e. Mostly
what we see is evidently ship tracks. In the northern half of the lakgAwe particularly notice
what seems to be a superposition of a sparse survey with a dense ohe. We do not wish to
see hints of geography in this spacgjand I do not see any. There are prominent geographic
features»l.)ut they should be explairfable by surveying operational issues we can only guess

at. | M

Tracks might be explained not only by watel)(leve uctuation but by navigation errors.
This data was recorded in the early 1990s before mogdérn GPS navigation. The tracks outside
the lake attest to episodic navigation errors being so, we must expect episodic track
misplacement within the lake. The tiny remaining short tracks in the lake image Figure
6.13 might be explainable that way4 This s the time has come to cut off our efforts
at fully understanding the derived durface model.

A

between successive measurement locations. Normally, is some reasonable number of
tens of meterspbut it occasionally it is a kilometer or/more. ay sometimes have a
valid operationlal explanation, but we have noticed phad it is often associated with residual
spikes. {Chat)is motivation for a weighting function to vanish at such track ends. I believe
there is one place in the lake where the boat made many measurements while not moving,
but I do not recognize the implications.

A few other miscellaneous things appear to be hapEening. We plotted the distance

6.6.10 Lessons learned from Galilee

It is common for geophysical data to be made up additively from two or more models. For
example, two kinds of rock anisotropy imply seismic data affected by two grids, ope grid of
each kind. The relationship may be nonlinear, but to first order, Taylor series wﬂginearize
it. The model-to-data operator F = [A B] is a row. What are the general principles teach-
ing us how to estimate those two model images? Is ‘apparent correlation physical or
statistical, real or apparent? We can thapk Galilee for delivering us this comprehensible ex-
ample of a deep, wide-ranging problemfJand for teaching us that we do not fully understand
it.

It took me twenty years to pull this story together. Any tricks here to help a struggling
seismologist? Reflection seismologists are buried in problems even more subtle with much
more very high/‘é[uality data. Better go back, read here again to see if skills and tricks
learned in this supposedly easy study might help them.

176 CHAPTER 6. NOISY IMAGES, NON-GAUSSIAN

