
INITIAL-VALUE PROBLEMS IN TWO AND THREE 
DIMENSIONS 

There are whole textbooks (for example, References 33 and 34) devoted to solving 
initial-value problems by difference approximations to differential equations. In 
this section we will briefly cover the main ideas. The overall idea in two dimensions 
is that one partitions a computer memory into one or a few two-dimensional grids 
where field variables are represented as functions of two spatial dimensions. Then 
you insert initial conditions, turn on the computer, and see what happens. There 
have been numerous extensive studies devoted to the diffusion equation, but 
far fewer studies have been devoted to the wave equation. The problem with 
modeling the wave equation is that ten points per wavelength is probably not 
enough, and even at that you cannot fit very many wavelengths onto a reasonable 
grid. The energy then propagates rapidly to the edges of the grid where it bounces 
back, whether you want it to or not. One way to ameliorate this kind of difficulty is 
to develop coordinate systems which move with the waves. These coordinate 
systems also facilitate projection of waves from the earth's surface, where they are 
observed, back down into the earth. This kind of projection forms the basis for the 
practical reflection seismic data processing techniques described in chapter 11. 



INITIAL-VALUE PROBLEMS IN TWO AND THREE DIMENSIONS 185 

10-1 CLASSICAL INITIAL-VALUE PROBLEMS IN TIME 

It is easiest to cover fundamentals with the heat-flow equation in one dimension. 
The heat-flow equation is derived from two intuitively obvious equations. The 
first says that a flow H of heat arises from a temperature gradient and is proportional 
to thermal conductivity a. 

The second says the temperature decrease is in proportion to the divergence of 
heat flow H and inversely proportional to the heat capacity C of the material 

The usual procedure is to insert (10-1-1) into (10-1-2) and neglect the derivative of a. 

The usual convention in difference equation theory is that temperature T(x, t) = 
T(k Ax, n At) will be written as Ti where the superscript denotes time. With the 
definition b = a At/2C Ax2 (10-1-3) may be written 

If the temperature Ti  is known at all spatial positions k for some particular time n, 
then (10-1-4) may be used to calculate the temperature for all time. The reader may 
notice that the time derivative is centered at Tif ' I 2  whereas the space derivative is 
centered at Ti. This can cause difficulty. The heat-flow differential equation 
smooths out long spatial wavelengths slowly and shorter wavelengths more 
rapidly. The heat-flow difference equation does the same thing, except that very 
short wavelengths will sense the difference in centering of time and space derivatives. 
The result is that the very short wavelengths will not attenuate at the proper rate 
and they may even amplify. In fact, as Ax is reduced more and more, thereby 
making it possible to contain shorter and shorter wavelengths on the grid, amplifi- 
cation will always occur, thereby ruining the solution. This situation, called 
instability, is described in more detail in all the books on the subject. One might 
hope that centering the time difference by approximating dT/dt by (Ti+' - Tft-')/ 
(2 At) would avoid the instability, but it turns out even worse and creates insta- 
bility for any Ax. The reason is that the heat-flow differential equation is 'first-order 
in time, but using a time difference over two steps creates a difference equation 
which is second-order in time. A second-order equation always has two solutions. 
In this case, one behaves like the heat-flow equation; the other turns out to be an 
oscillating increasing exponential like (I, - 2,4, - 8, . . .) which rapidly overwhelms 
the heat-flow solution. 

These problems may all be avoided with the Crank-Nicolson scheme. It will 
always guarantee stability for any Ax and it can also be applied to the wave equations 



in acoustics, electromagnetics, and elasticity. In th% Crank-Nicolson scheme one 
centers the space difference at Ti+ ' I 2  in the following way: 

An apparent problem with the Crank-Nicolson scheme is that the method 
of getting the n + 1 time level from the iz level is no longer obvious. Bringing all 
the n + 1 terms in (10-1-5) to the left and the n terms to the right, we have 

The right-hand side Di is a known function of Tn. What we have here is a set of 
simultaneous equations for the T"". Writing this out in full, we see why the set is 
called a tridiagonal set of equations 

-b [ 1 + -b 2 (1+2b) zer03[:3 [:I (1 0- 1-7) 

zeros 

It turns out that the simultaneous equations in (10-1-7) may be solved extremely 
easily. As will be shown later there is little more effort involved than in the use of 
(10-1-4). The scientist who wishes to solve partial differential equations numerically 
without becoming a computer scientist is well advised to use the Crank-Nicolson 
scheme. The extra effort required to figure out how to solve (10-1-7) is well rewarded 
by the ability to use any Ax and At and to forget about stability and the biasing 
effects of noncentral differences. 

Now let us consider heat flow in two spatial dimensions. The heat-flow 
equation becomes 

A simple, effective means to solve this equation is the splitting method. One uses 
two different equations at alternate time steps. They are 

dT 2 0 8 ' ~  -- - -- (all y) (10-1-9a) 
at c ax2 

aT 2 d 2 T  - (all X) (10- 1-9b) 
at c ay2 

Each of these equations (10-1-9a) and (10-1-9b) may be solved by the Crank- 
Nicolson method. 

There are much fancier methods than the splitting method, but their trunca- 
tion errors (the asymptotic difference between the difference equation and the 
differential equation) do not go to zero any faster than the truncation error for the 
splitting method. 



FIGURE 10-1 
A grid arrangement for the acoustic U=O 
equation. This arrangement avoids the 
necessity of taking a, or a, over more 
than one interval. It also results in 
(10-1-1 2) being a scalar equation rather 
than a 2 x 2 block matrix equation. 

Now let us see how to formulate the acoustical problem in a Crank-Nicolson 
form. Let u and w denote velocities in the x and z directions. Let P denote pres- 
sure, p denote density, and K denote incompressibility. Acceleration equal to 
pressure gradient gives 

and pressure decreasing with the divergence of velocity gives 

Arranging into a matrix and letting 3, denote djax, etc., we have 

- Kax - Ka, ] = [-,onla X 0 0 ] k] (10-1-10) 
-p-la, 0 0 

The implementation of (10-1-10) by a Crank-Nicolson scheme follows in a direct 
analogy to the implementation of (10-1-3). The principal difference is that we have 
vectors and matrices in (10-1-10) but only scalars in (10-1-3). When the splitting 
method is applied to (10-1-10) we have 

and 

at alternate time steps. When formulating boundary conditions for (10-1-1 la) it 
turns out to be convenient to define P and U on alternate squares of a checker- 
board. See Fig. 10- 1. 
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A final matter of great practical significance is the fast method of solution to a 
tridiagonal set of simultaneous equations like (1 0- 1-6) or (1 0- 1-7). A slightly more 
general set of equations is 

For the heat-flow equation the elements of (10-1-12) are scalars. In other physical 
problems we may have to regard A, B, and C as 2 x 2 matrices, Tas a 2 x 1 vector 
for each k at the n + 1 time level, and Dk as a 2 x 1 vector function of the field 
variables known at the n time level. The method proceeds by writing down another 
equation (Ek , Fk yet unknown) with the same solution Tk as (10-1-12) 

Write (10-1-1 3) with shifted index 

Insert into (10-1-12) 

Rearrange (1 0-1 -1 5) to resemble (1 0- 1-1 3) 

Comparing (10-1 -1 6 )  to (10-1 -1 3) we see that they are the same, so that Ek and Fk 
may be developed by the recursions 

Naturally when doing this on a computer for any case where matrices contain 
zeros, as in (10-1-11), one should use this fact to simplify things. 

Now we consider boundary conditions. Suppose To is prescribed. Then we 
may satisfy (10-1-13) with Eo = 0, Fo = To. Then compute all Ek and Fk . Then if 
TN is prescribed, we may use (10-1-1 3) to calculate successively TN -, , TN - , , . . . , To . 
Another useful set of boundary conditions is to prescribe the ratios r, = To/Tl and 
r, = TN/TN-,. Begin by choosing Eo = r,, Fo = 0. Compute Ek and Fk . Then 
solve the following for TN . From (10-1-14) 

Then compute TN-i, TN-, , . . . as before. ' 
As stated earlier, there are many more details associated with numerical 

solutions to partial differential equations. This chapter has given only the most 
important tricks for initial-value problems. A program to solve tridiagonal simulta- 
neous equations is given in Fig. 10-2. 



SUBROUTINE TRI(A,B,C,N,T,D,E,F) 
DIMENSION T(N) ,D(N) ,F(N) ,E(N) 
Nl=N-1 
E (1)=1.0 
F(1)=0. 
DO 10 I=2,N1 
DEN=B+C*E(I-1) 
E (I)=-AIDEN 

lo F(I>=(D(I>-C*F(I- DEN 
FIGURE 10-2 T (N)=F (Nl) / (1.0-E (Nl)) 
A program to solve tridiagonal simul- DO 20 J=~,NI 

I=N-J taneous equations. A, B, and C are 20 (I) =E ( I) *T (I) 
assumed independent of k and zero- RETURN slope end conditions are used. END 

EXERCISES 

1 Consider solving (10-1-8) by a Crank-Nicolson scheme in two dimensions on a 4 x 4 
grid. This leads to a 16 x 16 set of simultaneous equations for the unknown T';.;tkl. 
What is the pattern of zeros in the 16 x 16 matrix? The difficulty in actually solving 
this set gives impetus to the splitting method. 

2 A difference approximation to the heat-flow partial differential equation is 

utilizing the trial solution Pjn = QneikjAx reduce the equation to a one-dimensional 
difference equation. Write the reduced equation in terms of Z transforms. Does this 
equation correspond to a nondivergent filter for any real values of a ?  for any imaginary 
values of a ?  (Use a Fourier expansion for s.) 

3 Modify the computer program of Fig. 10-2 so that instead of prescribing zero-slope 
end conditions, (10-1-7) is solved. 

4 Write a computer program to solve equation (10-1-6) with b = .5 and initial conditions 
T(l) . . . T(20) = 0.0 and T(21) . T(30) = 1 .O. Use subroutine TRI. 

10-2 WAVE EXTRAPOLATION IN OPTICS 

In geophysics we generally have measurements along a line on the surface of the 
earth (x axis) from which we like to make deductions about earth properties below 
the surface. The first step is often to extrapolate observations at the earth's surface 
in a downward direction. 

Before looking at numerical methods of extrapolating wave fields in space it 
will be valuable to review quickly the methods used in optics to extrapolate waves 
through microscopes and telescopes. An enjoyable, more complete account will be 
found in Reference 35. 

We will take a wave disturbance in two-dimensional cartesian geometry 
p(x, z, t )  given at z, and show how it is extrapolated down the optic axis. Three 
common situations arise in the projection of a beam of light down an optic axis. 
First is the projection of a beam through an aperture or a photographic trans- 
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parency. All that is required for a mathematical description is a transmittance 
function which ranges from 0 to 1 over the aperture or transparency. Taking the 
optic axis to be the z axis and restricting attention to two-dimensional geometry, 
the projection through an absorber T(x) located at 2, + dz/2 is 

The second common situation is projection through a lens, often approxi- 
mated as a "thin lens." Here it is necessary to define a differential delay function 
z(x) which describes the time delay on propagation through the lens of a ray at x 
parallel to the z axis. If the lens is located at z0 + dz/2, convolution of the wave 
field with a delayed impulse is represented as 

p(t, x, zo + dz) = /p(t - s, x, zo)6[s - r(x)] ds 

This time shifting is simply expressed in the frequency domain where the convolu- 
tion (10-2-2a) becomes a product. Then 

P(m, X, zO + dz) = P(a,  X, ~ ~ ) e ~ ~ ~ ( ~ )  (1 0-2-2b) 

The third common situation in optics is the projection of waves across a 
region of empty space. Surprisingly, this is the most difficult of the three projec- 
tions. First we recall the wave equation 

( a,, + a,, - -z a,, p(t, x, 2) = o (10-2-3) 
U l )  

Taking the velocity v to be a constant in time and space, we may use the trial solution 

which reduces (10-2-3) to the ordinary differential equation 

This equation has two solutions, eikzz and e- ikzz, where 

One of these solutions is a wave down the z axis and the other is a wave going up 
the axis. Initial conditions (and the no-backscattering approximation at lenses and 
apertures) enable us to reject one of the solutions, leaving us with 

P(m, k,, z) = P(m, k,, zo)eikz(Z-ZO) 
i (02 /u2  - kx2)l/2(z - zO) (1 0-2-6) 

= P(m, k, , zo)e 

The right-hand side is a product of two functions of k,. It is also the product of 
two functions of co. This means that with the standard tools of Fourier analysis we 



FIGURE 10-3 
Power spectrum in k, for an isotropic distribution of rays from a point source. 
Around 0 = k 90" there is a clustering of rays at k, = i olv .  Power as a function 
of k, will be proportional to dO/(dk,/dO) = dO/(d sin O/dO) = dO/cos 0 = 
[l -(vk,/o)2]-112 do. This result may be compared to the transfer function 
(10-2-7) which has a constant magnitude for - o / v  < k, < wlv. 

could recast (10-2-6) to a convolution in either the time domain or the space 
domain x or both. Converting the " filter" transfer function 

to the space domain will give us an " impulse response" which in this case has the 
physical meaning of the wave field transmitted through a point aperture. A beam 
emerging from a point aperture behaves somewhat like a beam from a point source. 
To recognize the difference, note that the transfer function (10-2-7) has a unit 
magnitude independent of k ,  but, from Fig. 10-3, the spectral magnitude of a 
point source is lower near k,  = 0 and peaks up around k,  = +w/u. This means 
that the aperture function does not radiate isotropically like the point source but 
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FIGURE 10-4 
A snapshot of the wave-equation transfer function. A double Fourier sum of 
exp[i(w2/v2 - k,2)112z] was done over k, and o. We see a display of the (x, z) 
plane at a fixed t. The result is semi-circular wavefronts with amplitude greatest 
for waves propagating along the z axis. Periodicity in x and t results from 
approximating Fourier integrals by sums. 

FIGURE 10-5 
Seismic profile type displays of the wave-equation transfer function. A double 
Fourier sum of (10-2-7) was done over k, and w.  As with a collection of seismo- 
grams, we see the (x, t )  plane for a fixed zo. The hyperbolic arrival times measure 
the distance from a point aperture at (0,O) to the screen (x, zo). Ray theory easily 
explains the travel time, but the slow amplitude decay along the hyperbola, an 
obliquity function, is a diffraction phenomenon not easily computed by analytic 
means, especially far off axis. The obliquity function should not be confused 
with the hash which arises from attempted representation of a delta function on 
a grid. 



FIGURE 10-6 
The real Dart of the exact transfer function. e x ~ ~ i z / ( w ~ / v ~ ) -  kx2z1, plotted 
k, vs. z wsh o taken as constant. The abrupt changein character of thifknction 
occurs at 0 2 / v 2  = kX2, the transition between and evanescence. 

contains more energy near k,  = 0, which is energy directed along the z axis. There 
seems to be no easy analytical procedure for the Fourier transformation of (10-2-7) 
into time and space domains. One of my associates, Philip Schultz, did some 
numerical Fourier transforms to obtain the display's real parts shown in Figs. 10-4, 
10-5, and 10-6. Sample data Fourier transforms induce periodicity in all the 
transformed coordinates. The periodicity is quite apparent, and there has been no 
attempt to suppress it in the figures. 

FIGURE 10-7a 
Fourier transformation by a lens. A sinusoidal oscillation in the x domain results 
from a beam propagating through at some angle. A lens then converts the beam 
to a point in the k, domain. The Fourier transform of a sinusoid is a delta func- 
tion. The shift of the delta function from the optic axis is in proportion to the 
rate of oscillation of the sinusoid. 



(b  
FIGURE 10-7b 
Two lenses separated by twice their focal length can be used to invert an image. 
Two Fourier transforms can be used to reverse a function. 

It is well known that a lens can be used to take a Fourier transform. Actually 
a Fourier transform takes place when a beam is allowed to propagate to infinity. 
The lens just serves to bring infinity back into range. Suppose a monochromatic 
optical disturbance P(x, z, cu) is observed at z, . This function of x may be expanded 
in a Fourier integral of components of the form ~ ( k , ) e ' ~ ~ ~ .  The important thing 
is to recognize that any single component represents a plane wave propagating at 
an angle sin 0 = ukx/cu from the z axis. On propagation to infinity, all these rays 
separate from one another. When they are projected on a screen the largest values 
of k, project farthest from x = 0. Figure 10-7a exhibits this idea where a lens is 
used. That two lenses invert an image is the physical manifestation of the mathemat- 
ical fact that a Fourier transform is not its own inverse. The inverse transform has 
an opposite signed exponential. One can readily verify that transforming twice 
with the same signed exponential just reverses the original waveform. The situation 
is depicted in Fig. 10-7b. 

10-3 NUMERICAL EXTRAPOLATION OF MONOCHROMATIC 
WAVES 

The optical method of wave extrapolation is not valid in materials for which the 
wave velocity v = v(x,  z )  is space variable because then the complex exponential 
function does not turn out to be a valid solution to the wave equation. For this 
reason we will now seek a numerical procedure for extrapolating wave fields which 
does not depend on analytic solutions or any particular velocity distribution. The 
assumption of monochromatic solutions e-i"t reduces the wave equation to the 
Helmholtz equation 

m 

Now let us think about using (10-3-1) to extrapolate P(x, 2,) in the z direction. Say 
we know P at z, for all x. Then we can find P,, by rearrangementUof (10-3-1) 

a2 
Pzz= - T P - P x x  (10-3-2) 

v 
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Given P and Pz for all x at some particular z with the help of (10-3-2) we might 
theoretically expect that we would be able to use a finite differencing scheme to 
obtain P and Pz at z + Az. Actually, a fundamental difficulty is sneaking up on us. 
To understand it, let us assume u is a constant independent of x and that we have 
Fourier transformed the x dependence to kx dependence. Then (10-3-2) becomes 

The behavior of (10-3-3) will be dramatically affected by the sign of the factor 
2 2 -o /v + kx2. If it is positive, we will have growing and decaying exponential 

solutions. If it is negative, we will have nice, sinusoidal, wavelike solutions. Numeri- 
cally the growing exponential solutions will present problems. These growing 
solutions can be kept from getting out of sight if we can start the growing exponen- 
tial function with zero amplitude. This can be arranged by prescribing a certain 
ratio between P and P,. Actually, come to think of it, geophysically we usually 
measure only P anyway and we do not measure Pz , so why not figure out theoreti- 
cally a value of Pz from P which avoids the growing solution? Furthermore, in 
optics the extrapolation of P(x, 2 , )  to P(x, 2,) does not depend on knowledge of 
the derivative P,(x, z,). The wave equation is second order in z and hence has two 
solutions (upgoing and downgoing). Thus two boundary conditions are required. 
In the usual boundary-value problems in physics, solutions are required in the 
intermediate region between zo and z, and the appropriate boundary conditions 
are to prescribe P at zo and P at 2,. How does the optical method succeed in 
avoiding the need for either P, at zo or the need for P at zN? It succeeds because 
one of the two solutions was thrown away when kz was defined by choosing only 
one of two possible square roots. Since one solution is left, only one boundary 
condition is required instead of two. Throwing away one of the solutions amounts 
to making an assumption about the physical situation which may or may not be 
valid. The validity of this assumption is always a matter of degree and depends on 
practical factors. Our present objective is to modify (10-3-2) to build in the common 
optical assumption that we are only trying to describe waves with a component 
along the + z  axis, without building in the common optical assumption of a homo- 
geneous medium. Instead of (10-3-2), which is second order in z and describes 
waves which go in both plus and minus z directions, we would like to have an 
equation which is first order in z and describes only waves in the + z  direction. 
Since geophysically we do not observe Pz ,  a valuable added bonus would be that 
such a first-order equation would require only P(x) as an initial condition, not 
both P and Pz . Geophysically, the " downgoing wave" assumption can often be 
used when we are describing the wave field emitted from active prospecting equip- 
ment, and an " upgoing wave " assumption can often be used to describe subsequent 
observations. Naturally, in any situation, the validity of these assumptions must 
be investigated. To describe a plane wave propagating in the + z direction we may 
write 



Saying that Q ,  is an unknown constant amounts to saying that the wave has un- 
known amplitude and phase. Next we write 

Now, "Q(x, Z) is approximately a constant function of x and z" is a rather fuzzy 
statement which we will proceed to sharpen up. By restricting Q(x, z) to slowly 
variable functions we will be restricting P(x, z) to wave fields which are near to 
plane waves propagating in the z direction. In fact, P might represent plane waves 
propagating at a small angle from the z axis, or it might be a small portion of a 
spherical wave, or it might be the observed backscattered radiation in a seismic 
reflection survey, or on 90" rotation of the coordinate system it might describe 
surface waves. 

The ratio colu occurs often and it is called the spatial frequency of the wave. 
We define 

We also define E as a spatial average of m. 

In a material which is homogeneous m will equal m. With this definition we write 
the wave disturbance as 

Now an additional condition to make Q(x, z) slowly variable with z is that m(x, z) 
be relatively near to m. Let us compute some partial derivatives of (10-3-6) 

p, = Q, eiiiiz (1 0-3-7a) 

Pxx = Qxx eirnz (10-3-7b) 

P, = (Q, + imQ)eiiiiz (10-3-7c) 

P,, = (Q,, + 2iEQ, - E2~)ei i i iz  (10-3-7d) 

Insert (10-3-7b) and (10-3-7d) into (10-3-1) and cancel the exponential, obtaining 

Q,, + Q,, + 2iEQ, + (m2 - m2)Q = 0 (10-3-8) 

Now we make the very important step where we assert that for many applications 
Q is slowly variable and Q,, may be neglected in comparison with 2imQz. Drop- 
ping the Q,, term will be called the parabolic approximation or the paraxial 
approximation. This gives us the desired first-order, hence initial-value, equation 
in z. 

Q,, + 2imQ, + (m2 - m 2 ) ~  = 0 (10-3-9) 

In a homogeneous medium, (10-3-9) reduces to 

Q,, + 2imQz = 0 (1 0-3-10) 
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( a )  ( b )  

FIGURE 10-8 
Graph of acceptable wave numbers to wave equation (a) and to one-way wave 
equation (b). 

Equation (10-3-10) is really of the same form as the heat-flow equation if z is 
associated with time and the heat conductivity is taken to be imaginary. The 
equation is, in fact, known as the Schroedinger equation. It may be solved numeri- 
cally by the means described for the heat-flow equation in Sec. 10-1. Ultimately 
(10-3-10) will be advocated for quite a number of purposes, so before we proceed let 
us take a look at what we have lost by dropping Q,, . To facilitate comparison of 
(10-3-10) to the wave equation, let us convert back from the Q variable to the P 
variable. Rearrange ( I  0-3-6) and form derivatives. 

Q = p,- i l z  (10-3-1 la) 

Qxx = Pxx e 
- i l z  (10-3-1 lb) 

Q, = (P, - i F i ~ ) e - ~ ~ "  (10-3-llc) 

Insert (10-3-1 lb) and (10-3-1 1c) into (10-3-10) and cancel the exponential, getting 
the equation which we will call the one-way wave equation. 

One technique which may be used to solve any partial differential equation in 
cartesian coordinates with constant coefficients is to insert the complex exponential 
e(ik, x + ik, z) . If k, and k, turn out to be real, then this trial solution may be inter- 
preted as a plane wave propagating in the k = (k,, k,) direction. Inserting this 
exponential into both the wave equation (10-3-1) and the one-way wave equation 
(10-3-12) and canceling the exponential, we get two algebraic equations called 
dispersion relations. They are 

These two equations are graphed in Fig. 10-8, a and b. 
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t 
z 

FIGURE 10-9 
Snapshots of the monochromatic wave-equation transfer function. A Fourier 
sum over k,, done over the exact wave-equation transfer function 
exp[i(l - k x 2 ~ 2 / ~ 2 ) 1 ' 2  wz/vl, is displayed (top) in the ( x ,  z) plane for a fixed 
frequency coo. Middle is the same for the 15" approximate transfer function 
exp[i(l - kX2v2/2w2)wz/v]. Bottom is the same for the 45" approximation 

[ " 4w2 - '"2 '" 
exp i - 

v 4w2-kx2v2  
of Exercise 2. 

The physical picture is of waves passing through small apertures which are peri- 
odically spaced along the x axis. 



z 

FIGURE 10-10 
Snapshots of the time-dependent wave-equation transfer function and approxi- 
mations. A double Fourier sum over k,  and w of the functions of Fig. 10-12 
shows the ( x ,  z )  plane at a fixed time. 

The graph for the wave equation is a circle and illustrates what we already 
know, namely that the magnitude of the wave number in an arbitrary direction, 
that is, (kx2 + kZ2)'I2 is equal to the constant o l u .  Such is not the case, however, 
for the one-way wave equation. Here we have only the approximation kX2 + kz2 x 
0 2 / u 2  for small angles 8. Figure 10-8a also illustrates geometrically that (10-3-14) 
is an initial-value problem in z because Fig. 10-8a gives two values for kz corre- 
sponding to any kx , but Fig. 10-8b gives only one value for k, . Figures 10-9, 
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FIGURE 10-1 1 
Seismic profile-type displays of the wave-equation transfer function and two 
approximations to it. Exact, 15" approximate, and 45" approximate forms of the 
wave-equation transfer function were Fourier summed over k, and o. As with 
a seismic profile, we see a display of the (x,  t )  plane for a fixed z. The exact 
solution (top) is a delta function along a hyperbola. The 15" approximation 
(middle) is a parabola. The approximations die out more rapidly with angle than 
the exact solution. 
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FIGURE 10-12 
Monochromatic wave-equation transfer functions displayed in the plane of 
(k,, z). The real part only is shown. Top is the exact transfer function. Note the 
abrupt change to evanescence at 1 k, v/w I = I sin 90" 1 = 1. The exponential decay 
for k, > w/v is perceptible near z = 0. The 15" approximation (middle) and the 
45" approximation (bottom) are all-pass filters and have replaced the evanescent 
region by an interesting design. In order to eliminate a massive amount of short 
horizontal wavelength fuzz in the spatial domain on the previous two figures, 
this evanescent zone was removed with a step function. The implication in a data 
processing application is that occasionally the approximate transfer functions may 
well be augmented by a fan-filter. (See Ref. [36].) 
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FIGURE 10-13 
The dispersion relation for an ideal one- 
way wave equation is a semicircle. 

10-10, 10-1 1, and 10-12 show the wave equation transformation function eikz " and 
approximations eikz ' and Fourier transformations thereof. 

What we really want is a one-way wave equation which has the semicircle of 
Fig. 10-13 for its dispersion relation. The equation for the perfect semicircle is 
given by 

k, = Jm2 - k,2 (10-3-15) 

This of course is the basic relation used for extrapolation in optics. By the bino- 
mial expansion, (10-3-15) may be written 

This expression converges for all 0 < k, < m. 
Now for the sudden flash of insight which enables us to write the partial 

differential equation with this semicircle as its dispersion relation, from (10-3-16) we 
are inspired to write 

Clearly, insertion of the plane wave exp(ikxx + ikzz) into (10-3-17) immediately 
gives the desired semicircular dispersion relation (10-3-16). Thus, the greater the 
angular accuracy desired the more terms of (10-3-17) are required in the calculation. 
As a shorthand we may choose to write (10-3-17) as 

It will be of no help to us, but it turns out that (10-3-18) is the relativistic Schroe- 
dinger equation. 

It is easy to obtain the wave equation from (10-3-18). Just differentiate with 
respect to z 

a,, P = i az(m2 + a,x)'/2~ 

Taking m independent of z, we may interchange the order of differentiation 



/ SOURCE 
I 

X,100 POINTS 1 

FIGURE 10-14 
An expanding monochromatic cylindrical wave. The wavefronts are concentric 
circles of decreasing amplitude. The computation begins with an analytic solution 
at the top of the figure in a 100-point linear grid. Using difference equations, we 
stepped the grid downward, thirty steps making up the whole figure. About six 
complex multiplications are required per point ; this amounts to about five seconds 
of time on our computer. The display is the (x, z) plane, although a multichannel 
seismogram plotter has been used. (From Ref. [3], p. 408.) 

inserting (1 0-3- 18) 

which is the wave equation. 
Figures 10-14, 10-15, and 10-16 show finite-difference solutions to the para- 

bolic approximated wave equation in homogeneous media. 
Next, let us turn to the question of using the parabolic approximation in the 

presence of space variations in material velocity. The exercises go into considerable 
detail on this matter, but we can easily make some improvements over (10-3-9). 
The main idea is to approximate a circle by a parabola; the actual radius of the 
circle does not have anything to do with the approximation. This leads to the 
suggestion that (10-3-12) or (10-3-14) could be used with E replaced by m, as in 
(10-3-17) ; hence (10-3-12) would be 



SOURCE 

FIGURE 10-15 
Like Fig. 10-14, but the left-hand boundary is a rigid wall. Waves may be seen 
reflecting back into the medium from the boundary. The reflected wavefront is 
indicated by the shorter of the two dashed lines. (From Ref. [3], p. 409.) 

FIGURE 10-16 
Expanding cylindrical wave. A theo- 
retical solution was put in at the top 
boundary and extrapolated downward 
with the equation of Exercise 2. The 
wavefronts are not quite circular as they 
would be were it feasible to use 
(10-3-18). Notice also that the theo- 
retical r-lI2 amplitude decay is not 
exhibited for waves about 60" off the 
vertical. Such waves attenuate less 
rapidly because at 60' the phase curve is 
flatter than a circle. (From Ref. [5], 
p. 476.) 



FIGURE 10-17 
Waves impinging on a buried block of 
low-velocity material. Waves enter at the 
top of the block and are completely 
internally reflected from the side of the 
block. This leaves a shadow on the out- 
side of the block. (From Ref. [ 5 ] ,  p. 
474.) 

With (10-3-19) we no longer need to assume that m z 57 so we can now deal with 
a wide range of velocities. Actually, as the exercises will show, the validity of 
(10-3-19) depends also on the approximation that the logarithmic space gradients of 
material velocity are small compared with the logarithmic gradients of the waves. 
In other words, the waves change faster than the material does. 

Figures 10- 17, 10- 18, and 10-1 9 illustrate the propagation of waves in inhomo- 
geneous materials. 

The approximation is evidently best at high frequencies (short wavelengths). 
This approximation is well known in wave theory. Although it is sometimes called 
a ray approximation, the reader should not fear that the theory has degenerated to 
geometrical optics. Actually all the phenomena of physical optics (for example: 
interference, diffraction, and finite size focus) are still present. In fact we need not 
go to the physical optics limit at all. Some of the exercises are examples that 
include the velocity gradients found in lower frequency terms. Whether many or 
none of these terms is important in practice is a question which is particular to each 
application. 

FIGURE 10-18 
A low-velocity block is illuminated from 
the side. There is partial reflection from 
the side of the block and interference 
between wavesentering the block through 
difTerenr faces. (From Ref. [ 5 ] ,  p. 474.) 
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FIGURE 10-19 
Plane waves propagating through a right 45' prism. Waves are incident from the top of the 
page. Shortened wavelength is shown inside the prism. When the waves emerge from the 
prism they are bent toward the right-hand side of the page. As they emerge, their amplitude 
increases because they are compressed into a narrower beam. At the bottom right they 
interfere with waves which have passed along the side of the prism, causing amplitude 
modulation. Curved wavefronts are the result of diffraction from corners of the prism. 
Especially interesting is the diffraction from the upper right-hand corner. This is best seen 
by viewing the figure edge-on from the right-hand edge of the page. The energy for this 
diffraction is removed from the wave along the right-hand vertical edge of the prism. This 
calculation requires ten seconds of computer time on the Stanford IBM 360-67. (From 
Ref. [51, p. 475.) 

I Incident plane wave ( I 

EXERCISES 

1 The variable Q has the practical advantage over P because, being more slowly 
variable with the z coordinate, it may be sampled less densely, thereby conserving 
computational effort. Convert (10-3-19) to an equation in Q by means of (10-3-1 1). 
Compare the result to (10-3-9). Of the two equations, yours and (10-3-9), which do 
you believe to be more accurate ? Why ? 

2 An excellent square root approximation is given by the rational expression 

What "one-way wave equation" is suggested by this approximation? Make a graph 
of the dispersion relation. For selected angles of propagation how does accuracy 
compare to that of (10-3-14)? 



3 The algebraic equation a  + bx + cx2 = 0 has two roots. If b is sufficiently large, we 
may approximate the smallest root with the linear relation a + bx = 0. An improved 
approximation which is still linear in x may be found by substituting x = -a/b back 
into the quadratic 

Define k; = m - kz and substitute k, = m - k: into kx2 + kz2 = m2. Find the smallest 
root for k:. Show that this gives the same partial differential equation as Exercise 2. 

4 Let the velocity u = v(x) # u(x, z) be a function of x and define m = o/v(x). Define 
the operator 

Note that 

(az, + Op2)P = 0 = wave equation + error 

Examine each error term and decide whether it is important (1) at high frequencies 
(collect terms proportional to nth power of wavelength) and (2) at small or large 
angles from the z axis. 

5 Review the section on Sylvester's matrix theorem. How is the square root of a 
matrix analogous to the square root of an operator? 

6 Deduce the " outgoing wave equation" in cylindrical coordinates. 
7 Deduce the " outgoing wave equation " in spherical coordinates. 
8 Exercise 3 gave a good wide-angle approximation but Exercise 4 works for m = m(x). 

To utilize the method of Exercise 3 for m = m(x) it is necessary to note that although 
bx - xb = 0, it is not true that (m ax - ax m)P = 0 unless m # m(x). Salvage the 
method of Exercise 3 by avoiding the use of commutivity as much as possible. 

9 Consider surface waves propagating on the surface of an imperfect sphere. Deduce 
an equation, first-order in 4, the longitude coordinate, second-order in 6, the latitude 
coordinate, for waves beamed roughly along the equator. Assume all quantities are 
independent of the radial coordinate axis. 

10 Modify the program of Sec. 10-1 in Exercise 4 to compute the solution to (10-3-10). 
You will need to review the compiler conventions of complex arithmetic. Also, after 
computing Q(x, z) multiply it by eimz to give P(x, z). Print only the real part of 
P(x, z). A physical interpretation of this result is light behind an edge of an opaque 
screen. Waves diffracted into the shadow zone should have semicircular wave- 
fronts if you have arranged your display to preserve Az = Ax on the output. 

11 Let Z  = eikxAx denote a discretization of the x coordinate. Define A(Z) = 2 a,Zn by 
finding a, such that 

uo + f a n ( z n +  $) = 1kxl for IkXlAxSr  
n =  1 

Show that either solution to 

is a solution to  Laplace's diferential equation Pxx + P,, = 0. These soIations may be 
used for upward and downward continuation. 



10-4 EXTRAPOLATION OF TIME-DEPENDENT WAVEFORMS 
IN SPACE 

In Sec. 10-3 we learned how to extrapolate monochromatic waves in space. To 
extrapolate a time-dependent waveform in space, one could first Fourier transform 
it into monochromatic waves, then extrapolate them as in the previous section, 
and finally Fourier transform back into the time domain. Thus, although this section 
solves, in principle, the same problem as the last section, a direct time-domain 
method will often be preferable for practical reasons. Although a time-domain 
study is necessarily more complicated than one in the frequency domain (all time 
points must be considered together, but each frequency is isolated from the others) 
there is a great deal more understanding to be gained in the time domain, especially 
as regards causality. We will discover that wave-extrapolation procedures are like 
filters (in fact, they are a special kind of multidimensional all-pass filter) and that 
the feedback parts of these filters must be minimum-phase. There are two inde- 
pendent time-domain derivations. 

The first derivation begins by transforming the scalar wave equation 

into a coordinate frame which translates along the z axis at the speed fi which we 
will generally take to equal or exceed u. It does not matter which way energy is 
propagating in the fixed frame; when it is seen in the moving frame it will remain 
stationary or fall backward. The coordinate transformation 

FIGURE 10-20 
Expanding spherical wave in (a) fixed coordinates (left) and in (b) coordinates 
which translate in the z direction with the velocity of the wave (right). 



is depicted in Fig. 10-20 for f i  = v. In the primed frame all waves have a velocity 
component in the plus z' direction. Knowledge of P for present and past time at all 
x' for fixed z' should be sufficient to determine P for present and past values of 
time at (x',  z' + Az') because before anything happens at z' + Az' something has to 
happen at z'. Thus, because of the restriction f i  2 v we anticipate that the linear 
operators which we will develop to extrapolate P in the plus z' direction should be 
causal. Let P' denote the disturbance in the moving frame. We have 

P(x, z, t )  = P'(xf, z', t ') (10-4-3) 

It will be convenient to use subscripts to denote partial derivatives. Obviously, 

Also 

SO 

and 

SO 

P, = P:, and 
(10-4-4) 

P,, = p;,,, 

P,, = 6(6P;rzt + P;,,!) + fip;,,, + P;,, 

= fi2p;,,, + 26P:,,, + Pi,,, ( 1  0-4-6) 

Now we may insert (10-4-4), (10-4-5), and (10-4-6) into (10-4-1) and we obtain 

We will take up the constant velocity case u(x, z)  = 6. The case v # f i  is left for the 
exercises. Our main interest in (10-4-7) is with those waves which propagate with 
approximately the velocity of the new coordinate frame. In the moving frame such 
waves are doppler shifted close to zero frequency. This suggests omitting the 
Pi,,, term from (10-4-7). Thus (10-4-7) becomes 

If we Fourier transform out the time coordinate equation (10-4-8) becomes 
- icoP;, = (V /~ )P:~ ,<  which is identical to the monochromatic equation 

derived in the preceding chapter. Thus, dropping the Pi,,, term is the familiar 
approximation of a circle by a parabola. 
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t" = t - z/v 

FIGURE 10-21 
A point-source at x = 0, z = 0, t = 0. Hyperbolas at left indicate arrival times 
t at z = 0, Az, 2Az. When time is a function of position as given by t" = t - z/v 
the arrival times t" are as indicated on the right. Energy moves in the direc- 
tion of + t", since on a wavefront z = vt cos 8 and we have t" = t - z/v = 
t (1 -  cos 0). 

In solving (10-4-8) in a computer we can take either of two points of view. 
The first point of view is that P' is prescribed initially on a grid over x' and z' and 
then the equation is used for extrapolation in t'. The second point of view is that P' 
is prescribed initially on a grid over x' and t' and then (10-4-8) is used for extrapola- 
tion in z'. 

Before developing a numerical method for the solution to (10-4-8) we will 
derive it by means of an entirely different coordinate transformation. Let us take 
the new coordinate frame fixed in space relative to the old one. However, let a 
different clock be used at each point in space in the new frame. The clocks all run 
at the same speed, but they are initialized in such a way that a plane wave traveling 
in the + Z  direction will have the same arrival time measured at all clocks. (This is 
somewhat like a westward moving jet plane.) The transformation equations are 

A disturbance initiated at (x, z, t) = 0 is depicted in Fig. 10-21. Referencing time 
with respect to the time of the earliest possible ray is a great computational con- 
venience. It means the wave onset does not move off the finite, perhaps short, 
computational grid on which a wave packet has been defined. Define the disturb- 
ance in the new frame by P" where 

P(x, z, t) = PP(x", z", t") (10-4-10) 
Proceeding as before, we obtain 

Pzz = P;,,z,, - 2v- 'P;,,,, + v- 2 ~ j ! t t ,  (10-4-12) 

P,, = q!,,,, ( 2  0-4-1 3) 
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Inserting these into the wave equation (10-4-1) we obtain 

The last term of (10-4-14) is higher-order small for waves traveling at small angles 
from the z axis; this recalls that the solution to the wave equation for waves in the 
+ z direction is an arbitrary function f (t - zlv) = f "(t"). Thus df "ldz" vanishes for a 
wave along the z" axis. Neglecting P~,,,,, we find that (10-4-14) reduces to 

which is the same equation as (10-4-8). Use of e-'"' time dependence in either 
(10-4-8) or (10-4-15) yields the equation (10-3-10) which was developed for extrap- 
olation of monochromatic waves. Another point of view is that we could have 
obtained the time-dependent equations of this chapter by merely replacing - iw in 
the monochromatic equations with 8,. 

Now we develop a differencing scheme for the solution to (10-4-8) or (10-4-15). 
Drop primes. Let j At refer to time. Let n Az refer to the coordinate z. Let 6 
denote a difference operator. Let PJ be a vector at each value of n and j. Running 
down the vector will be values of pressure along the x axis. By using matrix algebra 
we avoid writing a subscript for the x dependence. Let T denote a tridiagonal 
matrix with the negative of the second difference operator -(I, -2, 1) on the 
diagonal. With all these definitions (10-4-8) or (10-4-15) becomes 

Let us define a = v Az At18  AX^. Now we must decide more precisely what first- 
difference approximations to use in (10-4-16). We will use the Crank-Nicolson 
scheme which is equivalent to the bilinear transform. First do centered time 
differencing 

6,(PJ + , - PJ?) = - aT2(P J + , + P,?) 

and then do centered space differencing 

From the point of view of computation we assume the unknown is PJI: and that 
all else is known. Bringing the unknown to the left and the known to the right, we 
have 

For each n and j, the right side collapses to a known vector. The left side is the 
tridiagonal matrix (I + aT) multiplying the unknown vector PJ: :. The solution of 
these equations is extremely simple and may be done as was the heat-flow equation 
in Sec. 10-1. Boundary conditions in x are contained on the ends of T. For z and 
t boilndary conditions it is sufficient to give, at all x, P z o r  all n and Py for all j. 
Other boundary arrangements are possible. 
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A very important question is the one of stability. We will now establish that 
the recursion (10-4-18) is stable for any positive value of a. If eigenvalues and 
eigenvectors of T were known and if all the PS were expanded in terms of the 
eigenvectors of T, then (10-4-18) would decouple into many separate equations, 
one for each of the eigenvalues of T. The eigenvectors of T have components which 
are sinusoidal functions of x. If there are boundaries in x, then a discrete set of 
frequencies is allowed, otherwise there is a continuum. To see this observe that for 
the unbounded case TP is ( - 1, 2, - 1) convolved with eikx Ax giving 

Thus the eigenvalue is 2 - 2 cos kx Ax = (2 sin kx  AX/^)^. Since any eigenvalue 
must be between 0 and 4 it is sufficient to study (10-4-18) where the vector P,? has 
become a scalar P,? function of k,, I is replaced by 1, and T is replaced by T, an 
arbitrary number between 0 and +4. It can be shown that for energy-conserving 
boundary conditions the eigenvalues are also between 0 and 4. Now, suppose P,? 
is known for all j at some particular value of n and we will investigate the stability 
of finding PYi1 for all j. Now, in (10-4-17) bring unknowns to the left. 

The important thing for stability in (10-4-19) is that if we are successively 
increasing j, then the magnitude of the coefficient of Pyz : must exceed that of the 
coefficient of Py". If we are decreasing j, the reverse should be true. The stability 
may be studied by the Z-transform methods discussed in earlier chapters. By the Z 
transform of (10-4-19) we mean that the coefficient of Zj  of 

gives (10-4-19). The filter function for computing P(z)"+' from P(Z)" is 

We note that for positive a and for all T between 0 and 4, the denominator is a 
minimum-phase polynomial. This means that the time recurrence implied by 
(10-4-19) will be stable. The fact that (10-4-21) takes the form of an all-pass filter 
means that the depth recurrence on n will also be stable. 

We have just completed a rather laborious stability proof. The reader will 
undoubtedly discover that his own application involves a slightly different equation, 
perhaps v = v(x, z) or increased angular accuracy. What general advice can be 
given about formulating problems so that they will be stable for extrapolation? 
To begin with, it helps if you have a physical feeling that all of the information must 
be flowing one way. Then, if trouble occurs, it is most likely to be at unsuspected 
values of cu, k, , k,, or ratios thereof. Note that (10-4-15) in Fourier transform 
domain is 
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FIGURE 10-22 
Disturbed plane wave propagating through a homogeneous medium. The first 
arrival of a disturbed plane wave heals itself during propagation. The wave coda 
or trail gets more and more complicated and energetic. In the trail, energy moves 
back away from the first arrival while phase fronts (marked by X) move for- 
ward. Beam-steer signal processing (sum over the x coordinate) enhances the 
first arriving signal but tries to destroy later arriving signals (the trail). Although 
this calculation was done beginning with frame to and ending with frame t 6 ,  
the calculation could be done backwards, starting with t6 and ending with t o .  
After time realignment, beam-steer on frame to could collect all signal energy. 

If we are intending to extrapolate in the z" direction we will be forming essentially 
exp(ik,z") or exp(-ikx2z"/w). The reader should recall all the important facts 
about all-pass filters and spectral factorization. When wave propagation is to be 
modeled by all-pass filters and if the all-pass filters are supposed to be realizable or 
causal, then the phase derivative or group delay should be positive for all frequen- 
cies. We have in this case for the phase derivative 

which is, as required, positive for all o. The fact that it is positive for all o and all 
k, is important. Merely to be positive for values of o and k, of practical interest is 
not enough. If for any value of co or k, the group delay were negative, then the 
time domain extrapolation equations would blow up. 

Finally, let us consider the example depicted in Fig. 10-22. In the first frame, 
a planar wavefront is deformed, as if by propagation through a region of velocity 
which varies periodically in the x direction. In optical terminology, the first frame 
of Fig. 10-22 would represent an impulsive plane wave just after emergence from a 
phase grating. In terms of atmospheric acoustics, the disturbance might arise 
from passage of a plane wave through the periodic circulation cells depicted in 



FIGURE 10-23 
Possible means of producing a disturbed 
plane wave. Incident plane wave at bot- 
tom is altered by a material inhomo- z' 
geneity. For example, circulating air 
cells (center), resulting in the disturbed 
wave at the top. 

zzx 
'" Ill x 

Fig. 10-23. Successive frames in Fig. 10-22 depict the subsequent history of the 
waveform. In optics texts (e.g., Goodman, Reference 35, p. 69) the monochromatic 
solution is usually obtained at infinity. The most obvious development is that the 
energy spreads out as one moves to successive frames. The single pulse of the top 
frame has become an extended oscillatory arrival by the last frame. As time goes on, 
less and less energy is in the first pulse and more and more is in the oscillatory tail. 
Another very notable feature is that after some long time the first arrivals tend to be 
aligned again so that disturbances in a wavefront may be said to heal themselves 
as time goes on. In contrast, the coda (wave tail) develops into a spatially in- 
coherent wave. (This mimics the behavior of most geophysical wave observa- 
tions.) We may note several other less apparent aspects to Fig. 10-22. Although 
energy moves back from the first arrival, a point of constant phase in the wave tail 
(indicated by X) moves forward toward the wave onset. Also the dip, or apparent 
direction of propagation, tends to increase going down a frame. This represents the 
ray interpretation that late arrivals have taken longer ray paths. Also the 4 2  phase 
shift of a two-dimensional focus which causes doublets to form may be seen at A in 
the second frame. 

In order to represent a disturbance of infinite extent in x on a finite computer 
grid, the problem was initialized with a periodic disturbance having zero slope at 
the side boundaries. Zero-slope boundary conditions are then equivalent to 
infinite periodic extension in x. A value of v At Az/Ax2 = a was chosen to give an 
appropriate variation in progressive frames with each frame in Fig. 10-22 repre- 
senting five computational iterations. The solution may be rescaled in several ways 
because of the interdependence of v At, Ax, and Az. 

It might be valuable to consider various data enhancement processes in the 
light of Fig. 10-22. In the process called " beam-steering," observations such as 
those in Fig. 10-22 would be summed over the x coordinate in an effort to enhance 
signal and reject noise. Clearly beam-steering will enhance the first arrival while 
rejecting random noise. It will also tend to cancel signal energy which resides in the 
oscillatory wave tails. If one is really interested in enhancing signal-to-noise ratio 
it would hardly seem desirable to use a processing scheme which cancels signal 
energy. As zf or t" is increased the situation becomes increasingly severe, since 
signal energy moves from the initial pulse toward the oscillatory wave tails. What 
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has often been regarded as " signal-generated-noise" may turn out to be signal in a 
potentially valuable form. One can indeed expect dramatic results if enhancement 
techniques are based on entire waveforms rather than only on the initial pulse. 

EXERCISES 

1 State all the assumptions which must be made to specialize (10-4-7) to 

Derive the analogous equation for the double-prime coordinates. 
2 Find a difference scheme for the equation of Exercise 1 which extrapolates from z' to 

(z' + Az). Show that past time is required if d > v and future time if d < v. 
3 Let a coordinate transformation be defined by 

x ' = x  

Put the scalar wave equation into these coordinates. 
4 Show that if the transformation velocity d in (10-4-9a), (10-4-9b), and (10-4-9c) takes 

any value less than the v in the wave equation, then stable difference equations will 
result . 

5 Consider the difference equation (1 + 6,,/12) a,, P = b 6,,P. For what value of b does it 
reduce to an explicit scheme? Is the time recurrence stable for that value of b ?  

10-5 BEAM COUPLING 

Much of our information about the interior of the earth arises from interfaces 
within the earth which convert downgoing waves to  upgoing waves. In layered 
media a mathematically strict decomposition of disturbances into downgoing 
waves [exp(ik, z)] and upcoming waves [exp( - ik, z)] was possible, but at  present no 
such decomposition has been developed for two- or three-dimensional inhomo- 
geneitr What we have is a collection of ad hoc techniques whose rigorous justifica- 
tion depends on the absence of horizontally propagating or evanescent energy. As a 
practical matter, what we are really interested in is not just the decomposition of 
waves into downgoing and upgoing parts. We are interested in describing the 
interactions between more-or-less collimated beams. In holography, these are the 
incident (or reference) beam and the scattered beam. In global seismology, these 
could be the incident compressional wave beam and the scattered shear wave 
beam. They need not have any particular orientation to each other or to  the vertical. 

The wave-extrapolation techniques described earlier can be used to describe 
beams collimated roughly along the z axis. Now we take up the task of describing 
the interaction between two such beams. For simplicity, these will initially be 
taken to be two more-or-less vertically propagating beams, one going down, the 



other up, interacting at a planar horizontal interface. The technique developed can 
then be applied to a great many less restrictive geometries. The accuracy of results 
in more general geometries is then a practical question whose answer varies from 
one situation to the next. Accuracy limitations come from many sources, which 
include 

I Angular dependence of velocity in the collimated beam which arises from 
Fresnel-like approximations 
2 Neglect of evanescent energy 
3 Possible inability of two collimated-beam equations to describe all 
important beams generated at a complicated interface 
4 Approximation of elastic compressional waves by the scalar wave equa- 
tion. 

The significance of accuracy limitations must be evaluated in terms of accuracy 
of experimental work, required accuracy, and accuracy and cost of competitive 
techniques. Such evaluations are completely beyond the scope of our present 
efforts. 

In this section we will describe only the primary reflected seismic energy in 
reflection seismic exploration. Large-amplitude waves are initiated at the earth's 
surface by means of dynamite or other high-energy sources. These waves penetrate 
into the earth where a small fraction of the energy echoes at weak reflectors and 
gets sent back to sensitive surface geophones. Occasional situations where a 
noticeable amount of energy scatters up and down several times (called multiple 
reflections or just multiples) will be discussed in a later section. For a plane layered 
medium we can use equation (9-3-13). 

1 -1 U "["I=[-" dz D iab ]["I--!>[ D 2 Y  -1 l][D] (10-5-1) 

Because the practical situation which we are trying to describe satisfies the inequality 
U 4 D, we will approximate the lower equation in (10-5-1) by 

Dz = iab D - 1' D (10-5-2) 
2Y 

To get a physical understanding of (10-5-2) which is applicable even when a, b, and 
Y are z-variable, note that the solution to (10-5-2) which can be verified by direct 
substitution, is 

D = Do y- lJ2 exp (J:abdz) i (10-5-3) 

In other words, iab controls the phase (or velocity) of the wave and Y,/ Y controls 
amplitude change. Thus, we can interpret the Yz/ Y term as providing the physical 
effect associated with a transmission coefficient. It often happens that the velocity 
information in ab is approximately known, but the location of interfaces in the 
earth given by discontinuities in Yz/ Y are totally unknown. This means that we 
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need not abandon our calculation of D if we are prepared to admit that its ampli- 
tude errs by the unknown transmission coefficients. 

The basic thrust of Sec. 10-3 was that we can treat nonplanar waves by 
2 2 regarding iab as the square root of the differential operator - (a  /u + a,,). For a 

beam collimated downward along the z axis a first approximation to the square root 
is given by ico/v[l + u2(dXx/2co2)]. With the beam-collimation assumption (azz z 0) 
and the unknown admittance gradient taken as zero, the downgoing wave D can be 
calculated with the equation 

ico iu 
D z = -  D + -  D,, (10-5-4) 

u 2co 

This would more closely resemble the bulk of our earlier work if we assumed 
homogeneous velocity v = fi and then made the transformation D = ~ ' e ~ " "  where 
m = w/v, in which case (10-5-4) would reduce to 

To solve (10-5-4) or (10-5-5) inside the earth it is only necessary to know values for 
D along the surface of the earth (all x, z = 0). In a reflection seismic prospecting 
situation, D could usually be approximated by a delta function at the shot location. 

Now let us turn to the calculation of the upgoing wave U. From the top row 
of (10-5-1) we have 

y z  U,=- iabU--(U-D) (10-5-6) 
2Y 

If we care to neglect the transmission coefficient effect on U while retaining the 
reflection coefficient interaction of U and D, this becomes 

y z  Uz = - iab U + - D (10-5-7) 
2Y 

Because reflection coefficient c is defined as 

we can [for Y(z) differentiable] write (10-5-7) as 

Uz = - iab U - cf(z)D (10-5-8) 

As with the downgoing waves, we can generalize from plane waves to beams with 
the square root approximation, obtaining 

ico iv 
Uz = - - U - - U,, - c'(x, z)D (10-5-9) 

u 2co 

A change of variables to U = U"e-'"" and D = ~'e ' ""  with the homogeneous- 
velocity, inhomogeneous-admittance assumption converts (10-5-9) to 

u:)= -- v/2 
U:, - c'(x, z ) ~ ' e ~ ' " "  (10-5-10) 

- ico 
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FIGURE 10-24 
Two examples of down- and upgoing waves. The two left-hand frames show 
downgoing spherical waves from two different source locations. These waves 
illuminate a dipping interface. At the interface is both an impedance contrast 
and a velocity contrast. Waves of longer wavelength are seen below the interface. 
The right-hand frames show the upcoming waves. They vanish beneath the 
interface. Along the interface, the phase of the upcoming wave equals that of 
the downgoing wave. 

It is important to understand how we can calculate the solution to (10-5-10). 
First of all, D' must have been calculated by some other equation before we start on 
U". In the solution of (10-5-10) we will regard c(x, z)D1 as a source term for the 
generation of U". Now there are two important cases. The first one is data synthe- 
sis. This is called the forward problem. The other case, called the inverse problem, 
is where the data sample U" is given at the earth's surface, z = 0, and the problem 
is to deduce both c(z) and U"(z) as you integrate U" downward. The inverse 
problem is more fully treated in the chapter on seismic data processing. Here we 
will stick to the forward problem. A boundary condition on U" which will enable 
us to use (10-5-9) to find U" everywhere is to prescribe that U" vanishes over all x 
inside the earth at some depth zN which is suitably great, say beneath all detectable 
reflectors. Then (10-5-10) is stepped up from zN to zNW1, tN-2 ,  etc. U" remains 
zero until we come up to the first illuminated reflector; that is, the deepest place 
where both c(x, z) and D' are nonvanishing. At this point, the source term in 



(10-5-10) is turned on and U" becomes nonzero from then on upward. This calcula- 
tion is illustrated in Fig. 10-24. 

The calculation can also be done in the time domain. We have the downgoing 
wave transformation 

and the upgoing wave transformation 

And we have the possibility of expressing U and D in either frames (10-5-1 1) or 
frames (10-5-12) 

U(x, z, t) = Uf(x', z', t') = U"(xn, z", t") (10-5-13a) 

D(x, Z, t) = D'(xt, z', tr) = Dn(x'', z", t") (10-5-13b) 

The chain rule for differentiation gives 

a, D = a,, D' (1 0-5-14a) 

and 

Taking velocity-homogeneous media v = 6, multiplying (10-5-4) and (10-5-9) 
through by - io, and then identifying - i o  with a time derivative, we obtain 

1 
- 
v 

D,, = - -I D,, + - D,, (1 0-5- 16a) 
v 2 

1 
- 
v 

U,, = 1 U,, - - U,, - cr(x, z)D, (10-5-16b) 
v 2 
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Equations (10-5- 16a) and (1 0-5- 16b) are readily converted by means of (1 0-5- 14) 
and (10-5-15) to 

Now (10-5-17a) can be used to compute D' but (10-5-17b) calls for D". Subtracting 
(10-5-12c) from (10-5-1 1 c) we get 

So, using (10-5-13b) we find (10-5-176) can be expressed in terms of D' as 

This time-domain result is the transform of (10-5-10). 

EXERCISES 

I Show that fr[(d/dz) In I] is the reflection coefficient c' as seen from above the interface. 
2 Recall from (9-3-20) that the definition of Y includes k,. This was neglected in the 

derivation of (10-5-10). Improve (10-5-10) to include the implied aD'/Sx terms. 
This improvement allows reflection coefficient to be a function of angle. 

10-6 NUMERICAL VISCOSITY 

Positive numerical viscosity means that the short wavelength deviation of a differ- 
ence equation from a differential equation is such that the short wavelengths tend 
to dissipate as the calculation proceeds. The numerical viscosity may also turn out 
to be negative, causing short wavelengths to amplify rather than attenuate. Whether 
or not there are good scientific reasons to study numerical viscosity, scientists 
often get dragged into this study for several reasons: First, even if differential 
equations do not violate causality there may be instability due to negative viscosity 
in the difference equations. Second, the realities of computer economics (especially 
in a multidimensional problem such as P,, = (u/2)Pxx may require that waveforms 
be sampled with as few points as practicable. Third, when observational data are to 
be processed, as when P(x, t) is to be extrapolated from z, to z, , then the data may 
be inconsistent with certain assumptions upon which the extrapolating equation is 
based. 

For example, suppose that P(x, t) has Fourier transform Pt(kx, cu). Then, 
2 2 since kx2 + kZ2 = w /u , freely propagating waves are characterized by I kx( < w/v 
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FIGURE 10-25 
The relative error at short wavelengths often associated with expressing differ- 
ential equations in difference form. 

so P'(k, , o )  should vanish unless / k, I < olu. In the derivation of P,, = u/2 P,, 
it was further assumed that the waves have small angles of propagation; hence, the 
inequality becomes stronger, I k, 1 < o / u .  Since observational data will certainly 
not satisfy these conditions exactly we have two options. First, we can hope to 
ignore the illegal part of the (k,, o )  space if the data do not have much energy 
there and if our difference equation does not unacceptably amplify it. Second, we 
can modify our difference or differential equations so that there is a controlled 
positive numerical viscosity in the illegal part of the transform space. This kind of 
operation is sometimes called fan-filtering because of the wedge-shaped region of 
attenuation in (o, k,) space. 

The operator a,, has the Fourier transform - kx2. The operator a,, amounts 
to a convolution on the x axis with the coefficients (1, - 2, l)/Ax2 ; thus its Fourier 
transform is [exp(- ik, Ax) - 2 + exp(ik, Ax)]/Ax2. We write this as 

Points per 
wavelength, 
2n/w At 

.rr x 10" 
20.000000 
1 6.000000 
12.000000 
10.000000 
8 .000000 
6.000000 
4.000000 
3.000000 
2.100000 

- - - 2 (1 - cos k, Ax) 
Ax2 

w At or 
k, Ax, 
radians 

2 x lo-" 
0.314159 
0.392699 
0.523599 
0.628318 
0.785398 
1.047197 
1.570796 
2.094395 
2.991992 

The approximation ft, to k, is given by 

Relative 
error of 
(10-6-8) 

o(Io-~") 
-0.000021 
- 0.00005 1 
-0.000159 
-0.000330 
-0.000812 
-0.002613 
-0.01 3849 
-0.0461 11 
-0.203548 

Relative 
error of 
2 tan w At12 

10-'"/3 
0.008272 
0.012968 
0.023218 
0.033675 
0.053325 
0.097645 
0.240396 
0.492833 
1.596763 

* 2 
k, = - sin k, 2 (10-6-2) 

Ax 2 

Relative 
error of 
2 sin k, Ax12 

10-2"/6 
-0.004116 
-0.006434 
-0.01 1449 
-0.016504 
-0.025834 
-0.046109 
-0.104913 
-0.189390 
-0.400123 

The error in the approximation Ex z k, is tabulated in Fig. 10-25. 
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The Crank-Nicolson method amounts to another approximation. Here the 
operator a/at which has the Fourier transform - io is approximated by the bilinear 
transformation. The approximation c3 to co is given by 

Multiplying top and bottom on the right by e-'" " I 2  we get 

o At 
= -2i tan - 

2 
(1 0-6-3) 

This approximation is also tabulated in Fig. 10-25. 
To see how higher-order difference approximations may be built up, we solve 

(1 0-6-2) for ik, getting 

' 2 
ikx = - arcsinh (y) (10-6-4) 

Ax 

Recall the power series for arcsinh 

1 u 3  1 . 3 u 5  1 . 3 . 5 u 7  
arcsinh u = u - - - + - - - - +  . . .  

2 3  2 . 4 5  2 - 4 - 6 7  
(1 0-6-5) 

The inverse Fourier transform of (10-6-4) using (10-6-5) provides a power series 
expansion for 8, in terms of powers of 6,. 

At the present time, reflection seismic data often come close to being under- 
sampled in the horizontal x coordinate. Hence, it is worthwhile to devise a more 
accurate approximation than 6,, to a,, . Squaring (10-6-4) and retaining only the 
first two terms in the arcsinh expansion gives 

where u = iE, 8 4 2 .  Taking the inverse transform we have 

It is most often convenient to use this in the rational form 



By means of a trick, the rational form can be used without going to higher-order 
difference operators. Note that (10-6-8) into a differential equation of the type 
P, = P,, leads to 

The new term a,,, fits on the old computation star and thus amounts to a just 
readjustment of coefficients; that is, hardly any increase in computer costs. Refer- 
ence to Fig. 10-25 shows an astonishing increase in accuracy. On the basis of 
Fig. 10-25 and the acceptable error for some particular application, say 3 per cent, 
one determines a minimum acceptable number of points per wavelength, say 10 
points per wavelength on z and t axes and 3+ points per wavelength on the x  axis. 
Then the useful bandwidth -2n/10 < o At < +2n/10 is markedly less than the total 
bandwidth available (27c is the periodicity interval for transforms of sampled 
data). In this case, the ratio of useful bandwidth to total bandwidth is 115. In 
order to use more of the available bandwidth it is necessary to put up with more 
error or to develop more elaborate difference approximations to differential 
operators. Figure 10-26 depicts the paltry portion of (o, k,) space which is usable. 

For examples of the manipulation of numerical viscosity let us take the 
differential equation P,, = v/2Pxx and modify it to attenuate energy outside the 
usable bandwidth, say where 1 k, Ax]  > nj5. We simply add a term to the right- 
hand side. That is, we modify 

v a , ~  = -- a,, P (1 0-6- 10) 
- 2io 

by judicious choice of an additional term 

To see what numerical value to take for the constant a, we transform the x  co- 
ordinate in (1 0-6-1 1) 

Equation (10-6-12) has the solution 

The imaginary part of the exponeni merely gives the phase angle, which we will 
ignore because we are interested only in magnitude. Let z - zo = d. Then (13-6-13) 
becomes 

i%l .= exp ( - akx2d) (10-6-14) 
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t o  too big 
- 
W 

horizontal 

FIGURE 10-26 
The (w, k,) plane. Field data may be expected to have some energy everywhere 
in the ( 0 ,  k,) plane. Only in the speckled region will our difference equations 
properly simulate the wave equation. Energy with I k, I > I w/v I does not repre- 
sent free waves; it represents either surface waves or errors in data collection 
(often static errors, random noise, or gain not smoothly variable from trace to  
trace). Such energy can mean nothing in a migration program, hence it should be 
rejected by filtering. This may be done by fan-filtering (as in Reference 36) or, as 
is done here, by means of numerical viscosity. Actually, for practical reasons 
one frequently may wish to reject rays outside a certain dip angle. This gives 
the larger fan-filter reject region I k,  1 > I w/v sin(dip) 1 . Although information 
can be carried up to the folding frequency in both w and k,, in practice the use 
of operators of finite length narrows the useful bandwidth. The use of simple 
time-difference operators results in a practical bandwidth restriction to about a 
quarter of the folding frequency. This presents no problem in principle; data may 
be interpolated before processing, or more elaborate (i.e., longer) difference 
operators may be used. 

Now we have to decide how much attenuation is wanted. Say when k,Ax = n/4 
we wish (10-6-14) to imply attenuation to e-l. Thus, for the exponential of 
(1 0-6- 14), we have 

-akX2d= -1 

d 
a(k, Ax)' = 1 



Thus, the term we added to (10-6-10) to get (10-6-1 1) has a coefficient which goes 
to 0 as the squared grid spacing Ax2. Inclusion of this term gives the gaussian 
attenuation function of spatial frequency of (10-6-14). The inclusion of the viscosity 
term seems to add virtually no cost to a computer program. 

Next, let us modify the extrapolation equation so that excessive dips 
[sin (dip) = kv/o] will be attenuated. This is not exactly numerical viscosity 
because we will alter the basic differential equation. It is like numerical viscosity 
in that it is an ad hoc modification intended to correct a certain deficiency. Here 
we modify the differential equation (10-6-10) to read 

To see what numerical value to pick for o o ,  we rationalize the denominator 

v i o  + o0 a , ~ = -  a,, P (10-6- 17) 
2 ( a 2  + oo2) 

Now we may ignore the imaginary part of the right-hand side of (10-6-17) because 
it contributes only the phase of P. Fourier transforming the x coordinate, we have 

There are two cases. We will pick*oo very small so that in the uninteresting case 
where o < oO (10-6-18) reduces to spatial frequency dissipation but in the interest- 
ing case o > o0 (10-6-18) amounts to 

This is obviously attenuation, which is a gaussian function of dip. It is left for the 
exercises to find a numerical choice for coo. 

EXERCISES 

I What value of oo in (10-6-16) will attenuate waves propagating from zl to zz at a 
30" angle from the z axis to e-I times the original amplitude? So that w0 may be said 
to be small, it is necessary to compare it to something with physical dimensions of 
inverse time. Give examples of a situation where oo is small and a situation where it 
is not. 

2 Show that the parameter b in Pz = iv/2w(ax, + b axx,)P may be used to produce a 
viscosity decay of approximate form exp [-bkzz(z - zo)]. This may be useful when 
Az is taken too large. 

3 Consider extrapolation one step in the z direction with the equation P, = -aoZP. 
Insert the bilinear transformation - i o  = 2(1 - Z ) / ( l  + Z )  and deduce that the 
equation cannot be used since a polynomial with a nonminimum-phase divisor results. 



4 Show that the equation P, = a(- 02 At2/2 + io At)P, unlike the equation of Exercise 
3, leads to a causal time-domain filter. (Do the extrapolation in z by the Crank- 
Nicolson method, i.e., the bilinear transform method.) 

5 A given set of data P(x, t )  is believed to satisfy the equation P,, = P,, . It is observed 
that transformed data Q(x, t), where Q(x, t) = P(x, t)eat, fits into a reasonably small 
numerical range so that Q may be represented using integer arithmetic. What differ- 
ential equation does Q satisfy? 


