
MATHEMATICAL PHYSICS 
IN STRATIFIED MEDIA 

In stratified media there are many common mathematical aspects in phenomena 
so physically diverse as acoustics, electromagnetic waves, magnetostatics, gravi- 
tational-elastic spherical resonance, heat flow, gas diffusion, electric current in a 
resistive material, seismic waves, water waves, and atmospheric gravity waves, 
among many others. We will present the general theory and work out some of the 
details for the case of simple acoustics. 

By a stratified medium we mean one in which material properties, compress- 
ibility, conductivity, density, etc., are functions of one spatial coordinate only. 
The usual situation is cartesian coordinates, but when geophysics is done on a 
global scale spherical coordinates may be used. 

9-1 FROM PHYSICS TO MATHEMATICS 

First step: 
The first step is to write down all the basic partial differential equations of classical 
physics which relate to the problem of interest. Do not write down equations con- 
taini~lg second space derivatives which are derived from first-derivative equations. 



Write down the first-derivative equations. Write each component of vector or 
matrix equations. 

In acoustics we have that the gradient pressure p gives rise to an acceleration 
of mass density p. For convenience we restrict motion to the x, z plane. Letting 
u and w represent x and z components of velocity we have 

Another equation which is important in acoustics is the one that states that the 
divergence of velocity multiplied by the incompressibility K yields the rate of 
pressure decrease. 

In (9-1-3) we included a pressure source s. This is something to be externally pre- 
scribed. The quantity s may be a source of chemical energy such as an explosion; 
thus it may vanish everywhere except at  a point. Distributed sources are also often 
of interest; for example, radioactive rocks in a heat-flow model of the earth. To 
be more general, we could also have put momentum sources into (9-1-1) or (9-1-2), 
but the basic principles will be adequately exemplified with a source only in (9-1 -3). 

Second step: 
The wave disturbance variables are taken to be unknown and the material prop- 
erties known. Count equations and unknowns. We have three equations; u, 
kt1, a n d p  are the three unknowns. We take K, p, and s to be known. Notice that 
the equations are linear in the unknowns. Now we make the stratification 
assumption; that is, we assume K and p are functions of depth z only and that 
they are constant in x. Since our linear equations now have constant coefficients 
with respect to x and t, we may always expect sinusoidal solutions in x and t. 
We do not know what to expect of our solutions in the z coordinate because of the 
arbitrary z-dependence of the coefficients K and p. This leads us to step three. 

Third step: 
Fourier transform time and the space coordinates with constant coefficients. 
In other words, we make the following substitution into (9-1-I), (9-1-2), and 
(9- 1-3) 



After substitution, cancel the exponential and obtain 

- icop(z)C7 = - ikxP 

Fourth step: 
Eliminate algebraically the algebraic unknowns. In other words, when you 
examine (9-1-5) you' see terms in aP/dz and d W / a z  but you do not see aU/az. 
This means that U is an algebraic variable which can be eliminated by purely 
algebraic means. We do this by substituting (9-1-5a) into (9-1-5c). 

Fifth step: 
Bring 8/32 terms to the left, bring ali others to the right, and arrange terms into 
a neat matrix form. We have 

a p  
- = iop W az 

and then 

Sixth step: 
Recognize that, no matter the physical problem with which you started, you 
should have a matrix first-order differential equation of the form 

where x is a vector containing the field variables of interest, A is a matrix depending 
on temporal and spatial frequency and on material properties, and s is a (possibly 
absent) vector function of the sources. 

Before we look into techniques of solving (9-1-7) we can immediately deduce 
that in a source-free region the field variables x are smoother functions than the 
material properties. To see this, consider two homogeneous layers in contact. At 
the contact the A matrix has step-function discontinuities. Now let us see whether 
the wave fields in x can have step-function discontinuities. Obviously they cannot, 
since a step discontinuity in x would imply dxldz = co, whereas (9-1-7) in a 
source-free region states that dxldz = Ax and both A and x are supposed finite. 



This does not mean that all field variables are always smooth. The algebraic 
variables eliminated in the fourth step can and often will be discontinuous at  layer 
boundaries. 

EXERCISES 

1 What form does (9-1-7) take for the heat-flow equations? Include radioactive sources. 
[HINT : See equations (10-1-1) and (10-1-2).] 

2 Using Maxwell's equations, V X E = -pH, V X H = J + EE, and Ohm's law, J = aE 
where a is conductivity, set slay = 0 and derive (9-1-7). 

3 In electrostatics the electric field in the ionosphere may be derived from a potential 
Vq5 = -E, the divergence of electrical current vanishes V - J = 0 and Ohm's law must 
have an extra term due to wind (a current source due to differential drag on ions and 
electrons across the earth's magnetic field) J = aE + TV. Assume you know V. What 
form does (9-1-7) take assuming a and T to be scalars? Indicate how the calculation 
proceeds if a and 7 are matrices (assume you have the inverse of any matrix you wish). 

4 In magnetostatics curl H = J and div B = 0, and B = pH. Taking J as given, what is 
the form of (9-1-7)? 

5 This exercise illustrates the linearization of nonlinear problems. For acoustic waves 
in a stratified windy atmosphere we use the trial slutions 

Reduce the partial differential equations to a matrix ordinary differential equation. 
HINT: The horizontal acceleration term is 

d~ au au ax au a t  ---+--+-- - 
dt at ax at a t  at 

with a like term for vertical acceleration. Drop second-order terms in p, 0, and @. 
6 Two equations come from heat flow: (H, , Hz) equals the conductivity u multiplied by 

the negative of the temperature gradient (a,, a,)T. The time derivative of temperature 
multiplied by the heat capacity c equals the negative of the heat-flow divergence 
a, H, + a, Hz gives another equation. Insert the trial solutions 

(a) First derive steady-state equations for and W assuming F and fi vanish. 
(b) Assuming and R satisfy part (a), find equations for and if. 
(c) Repeat (a) and (6) assuming linear temperature dependence of heat capacity and 

conductivity, i.e., 
0 = uo(z) + ul(z)T 

You will have to drop squared terms in F and fi. 



7 Consider a compressible liquid sphere pulsating radially under its own gravitational 
attraction. What is the form of (9-1-6)? 

HINTS: pi; = V p  - pg momentum 
,it p V . v = O  mass 

p + K V . v = O  state 

v . g  = 4ryp  gravity 

9-2 NUMERICAL MATRIZANTS 

A differential equation relates field variables at a point to field variables at  neigh- 
boring points. A matrizant relates field variables at  one depth in a stratified 
material to variables at some other depth. A matrizant may also be regarded as 
the integral of the matrix differential equation (9-1-7). First we will show how to 
get the matrizant of (9-1-7) by numerical means. That is, we will solve the problem 
for arbitrary depth variations in density and in compressibility. Then we will 
come back and develop analytical solutions for the special case of constant material 
properties. We have 

Given X for some particular z it is clear that (9-2-1) may be used recursively to get 
X for any z. For simplicity we may take Az = 1 and use subscripts to indicate the 
z coordinate. Let [I + A(z) Az] be denoted by Q(z) ,  then (9-2-1) becomes 

hence 

hence 

likewise 



So we have in general a numerically determinable matrix M (called the matrizant) 
and a vector T which relates the field variables at  the top of the strata to those on 
the bottom by 

The matrix M is also called an integral matrix. Physical problems present them- 
selves in different ways with different boundary conditions. For the acoustic 
problem discussed earlier X is a two-component vector involving pressure and 
vertical displacement. These are initially unknown at both the top and the bottom 
of the stratified medium. Thus (9-2-3) represents two equations for four unknowns. 
The solution to the problem comes only when two boundary conditions are intro- 
duced. If we are talking about sound waves in the ocean, (simplified) boundary 
conditions would be to prescribe zero pressure at the surface and zero vertical 
displacement at the sea floor. Then these boundary conditions with (9-2-3) would 
be two equations and two unknowns and consequently could be solved for surface 
displacement and bottom pressure. From these, pressure and displacement could 
be determined everywhere. Proper determination of boundary conditions is often 
the trickiest part of a problem; we will return to it for some other problems in a 
later section. 

If portions of the material have constant material properties and contain no 
sources, then it is possible to find an analytical expression for the matrizant. A 
matrizant which takes one across such a layer of constant properties is called, 
appropriately enough, a layer matrix. It may be verified by substitution that 

is the solution to (d/dz)X = AX where 

in a region of space where A is constant with z. Thus, eA('-'O) is the required 
matrizant. The matrix exponential could be computed numerically either by the 
method of (9-2-2) or the method of (9-2-5) or the method of Sylvester's theorem 
described in Chap. 5. In the next section we will see how Sylvester's theorem leads 
directly to the ideas of up- and downgoing waves. 

EXERCISE 

I What is Qk for the improved central difference approximation? 

X(z $ Az) - X(z) = 
AzA[X(z + Az) + X(z)] 

2 



9-3 UP- AND DOWNGOING WAVES 

We have seen a host of examples of how physical problems in stratified source-free 
media reduce to the form 

Where X is a vector of physical variables and A is a matrix which depends on z if 
material properties depend upon z. An important set of new variables in the vector 
V is defined by multiplying the vector of physical variables X by a square matrix R 

where R is the matrix of row eigenvectors of the matrix A. Inverse to R is the 
matrix C of column eigenvectors of A. Premultiplying (9-3-2) by C and using 
CR = I we get the inverse relation to (9-3-2) which is useful to find the physical 
variables X from the new variables V. 

Inserting (9-3-3) into (9-3-1) we obtain 

(CV), = ACV 

CV, = ACV - C,V 

Premultiplying by R and using RC = I we obtain 

VZ = (RAC)V - RC,V (9-3-4) 

Since we have supposed R and C to be row and column eigenvector matrices of A 
we can replace RAC by the diagonal matrix of eigenvalues A, that is, 

V, = AV - RC,V (9-3-5) 

In any region of physical space where the material is homogeneous then A, hence C, 
will be independeat of z and (9-3-5) will reduce to 

But the only matrix in (9-3-6) is a diagonal matrix, and so the problem for the 
different variables in the vector V decouples into a separate problem for each 
component. In wave problems it will be seen to be appropriate to call the compo- 
nents of V upgoing and downgoing wave variables. These variables flow up and 
down in homogeneous regions without interacting with each other. Let us consider 
an example. 

In Sec. 9-1 we deduced that the matrix first-order differential equation for the 
acoustic problem in a region of no sources takes the form 
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where 

The matrix of column eigenvectors C and the matrix of row eigenvectors 
of the matrix of (9-3-7) are readily verified to  be 

It  is also readily verified that the vectors are normalized, namely RC = CR = I 
and that 

The downgoing wave variable D is associated with the iab eigenvalue and the up- 
coming wave variable U is associated with the - iab. We have definitions for up- 
and downgoing waves as 

Of course a row eigenvector may contain an arbitrary multiplicative scaling 
factor if the scaling factor is divided from the corresponding column eigenvector. 
This means that the definition (9-3-12a) is not unique. As it happens, the present 
scale factors give the up- and downgoing waves the physical dimensions of P. 
The physical variables P and W are found from U and D by the inverse relation 



from which we see that the pressure P is the downgoing wave plus the upcoming 
wave and the vertical velocity is bla times the difference. Equation (9-3-5) governing 
the propagation of U and D is 

In any region of space where bla is not a function of z we are left with the 
simple uncoupled equations 

strictly, to justify the definitions of U and D as up- and downgoing waves we 
will have to be sure that the downgoing solution takes the form 

where w and k,  must agree in sign so that constant phase is maintained as both z 
and t  increase. The opposite sign must apply to U .  In other words k, = ab must 
take the sign of w. To see that this happens we take the square root of the product 
of (9-3-8) and (9-3-9). 

For vertically propagating waves we have k, = 0 so that k, = ab specializes to 
k ,  = co(p/l<)'I2. Substituting this value into (9-3-15), we see that the phase angle 
of the exponential is constant if z/ t  = (~ lp) ' " ,  making it clear that the material's 
intrinsic velocity is given by 

Reference to Fig. 9-1 shows that the angle 8 between the vertical and a ray is 
defined by 

sin 0 = - kxv  (9-3-1 8) 
w 

Inserting (9-3-17) and (9-3-18) into (9-3-16) we obtain 

W 
k,  = ab = - cos 8 (9-3-19) 

U 

The time function (9-3-15) is complex. To get a real time function the ex- 
pression (9-3-15) must be summed or integrated to include both positive and nega- 
tive frequencies. Then, as we saw in the chapters on time series analysis, we must 
have D(w) = D(--w). 



j ~ a y  
FIGURE 9-1 
Rays and wavefronts in a layer. The wavelength A,  seen on the x axis and the 
wavelength hz seen on the z axis are both greater than the wavelength h seen along 
the ray. Clearly, h/h, = sin 6 and h/h, = cos 6 so the spatial frequencies k ,  = 

2n-/h, and kZ = 2i7/hz satisfy k x 2  i- kz2  - ( 2 7 ~ / h ) ~  = u 2 / u 2 ,  which, besides being 
the pythagorean theorem (since sin 6 = k ,  ulw),  is the Fourier transform of the 
wave equation. Snell's law that (sin 6) lv  is the same from layer to layer is thus 
equivalent to  saying that k x / w  is the same in each layer. That the spatial fre- 
quency k ,  is the same constant in each layer is essential to the satisfaction of 
continuity conditions at the layer interfaces. 

The quantity bla will turn out to be the material's characteristic admittance Y. 
Taking the square root of the ratio of (9-3-9) over (9-3-8) we have 

b cos 0 y = - = -  
a ,011 

a pt: I = - = -  
b cos 0 

We shall now verify that this definition of impedance is the same as the one 
in the previous chapter. To do this we take a careful look at the matrizant to cross 
a layer exp[A,(z, - zl)] = exp(AAz). By Sylvester's theorem we have for the 
matrizant 

- ik,  Az 

exp(A Az) = C , + i k ,  O A Z  ]R (9-3-23) 

The matrizant relates the wave variables at the top z ,  of a layer to those at the 
bottom z2 . Thus (9-3-23) enables us to write 

[L] 2 = C, exp (A, Ar)Rl [&I 1 (9-3-24) 



Equation (9-3-24) which seems to have jumped at us from the mysteries of Syl- 
vester's theorem actually has a simple interpretation. Starting on the right, we 
interpret the multiplication of W, into the P and W variables as a conversion to 
up- and downgoing variables. Then the multiplication by exp (A, Az) carries these 
across the layer and the multiplication by C, converts back to P and W variables 
which are continuous crossing an interface. Multiplying (9-3-24) through by R2 
and noting (9-3-1 1) and (9-3-12) we have 

In (9-3-25) we have now defined the up- and downgoing waves just beneath the 
interface as we did in the previous chapter. We should now be able to recognize 
the matrix as having the same form. It is 

Defining the Z transform variable by 

z = exp fs) 
Now we recognize that the travel time across the layer is At = Az/u cos 0. The 
layer matrix (9-3-26) is 

which may be compared to the matrix of (8-2-4) namely, 

establishing that the definition Y = b/a has led tb the familiar definition of re- 
flection coeEcient 



EXERCISES 

1 Redefine the eigenvectors so that W = D + U and P = (D - U)/ Y. This transform- 
ation would be useful if we wanted t = 1 + c to refer to vertical velocity normalized 
variables instead of pressure variables as in Chap. 8. Deduce changes to all the equa- 
tions of this section. 

2 Write the matrizant which crosses a layer in terms of a, b, and layer thickness h. 

9-4 SOURCE-RECEIVER RECIPROCITY 

The principle of reciprocity states that a source and receiver may (under some con- 
ditions) be interchanged and the same waveform will be observed. This principle 
is often used to advantage in calculations and may also be used to simplify data 
collection. It is somewhat amazing that this principle applies to the earth with its 
complicated inhomogeneities. Intuitively, the main reason for validity of the 
reciprocal principle is that energy propagates equally well along a given ray in 
either direction. Either way, it goes at the same speed with the same attenuation. 
This is true for all common types of waves. 

Little more would need to be said if all waves were scalar phenomena with 
scalar sources and scalar receivers as, for example, acoustic pressure waves with 
explosive sources and pressure-sensitive receivers. The situation becomes more 
complicated when the sources or receivers are moving diaphragms, because then 
their orientations become important. The directional properties of the source and 
receiver are often referred to as radiation patterns. To apply the reciprocity prin- 
ciple it is necessary to regard the radiation patterns as attached to the medium, not 
as being attached to the source and receiver. Thus, when source and receiver are 
said to be interchanged, it is only a scalar magnitude which is interchanged; the 
radiation patterns stay fixed at the same place. These general ideas are made more 
precise in the following derivation. It will be seen that the notion of rays actually 
turns out to be irrelevant. Reciprocity also works in diffusion and potential 
problems. 

Theoretical treatments are often somewhat hard to read. They often begin 
by specifying that the differential operator along with suitable boundary conditions 
should constitute a self-adjoint problem. This means that when you reexpress the 
differential equations in difference form you discover that the matrix of coefficients 
is symmetric. Let us take the example of acoustic waves in one dimension. Newton's 
equation says that mass density p times acceleration a,, u equals the negative of the 
pressure gradient - d x p  plus the external force F, . Utilizing e- '"' time dependence 
we have 

which, defining F = - Fx , may be written 



The other important equation of acoustics says that the incompressibility K-I 
multiplied by the pressure p plus the divergence of displacement a,u equals the 
external (relative) volume injection V, that is 

We will now combine (9-4-1) and (9-4-2) in a finite difference form with, for con- 
venience, Ax = 1. In practice, one might like to use many grid points to approxi- 
mate the behavior of continuous functions, but for the sake of illustration we only 
need use a few grid points. Luckily, in this case reciprocity will be exactly true 
despite the small number of grid points. We have 

P2 

u2 [il 
The first and last rows of (9-4-3) require some special comment. The quantities 
I, and I ,  are called impedances. If they vanish, we have zero pressure end con- 
ditions; if they are infinite, we have zero motion end conditions. 

Now with all this fuss we have gone through to obtain the matrix (9-4-3), 
the only thing we want from it is to observe that the matrix is indeed a symmetric 
matrix (even if p and K-' were functions of x). In the exercises it is shown that a 
symmetric matrix may also be attained in two dimensions. That the matrix is 
symmetric is partly a result of the physical nature of sound and partly a result of 
careful planning on the part of the author. To obtain the correct statement of 
reciprocity in other situations you may have to do some careful planning too. The 
essence of reciprocity is that since the matrix of (9-4-3) is symmetric then the inverse 
matrix will also be symmetric. Premultiplying (9-4-3) through by the inverse 
matrix we get the responses as a result of matrix multiplication on the external 
excitations. 

The letters A, B, C,  and D indicate the symmetry of the matrix of (9-4-4). Now if 
all external sources vanish except on one end where there is a unit strength volume 
source Vo = 1, then according to (9-4-4) the pressure in the middle p,  will equal A. 
If in a second experiment all the external sources vanish except the middle volume 



source Vl = 1, then according to (9-4-4) the pressure response po at the end will also 
equal A. This is the reciprocal principle. Note that with the letter D in (9-4-4) a 
like statement applies to the forces and the displacements. A mixed statement 
applies with the letters C and B. 

In a realistic experiment it may not be possible to have a pure volume source 
or a pure external force. In other words, the external source may have some finite, 
nonzero impedance. Then the first experiment we would perform would be with 
the excitation at the middle, getting for the end response : 

Interchanging source and receiver locations, we have 

The notable feature of (9-4-5) and (9-4-6) is that the matrices are transposes of one 
another. This feature would not be lost if we were to consider a more elaborate 
experiment where the vectors in (9-4-5) and (9-4-6) contained more elements. For 
example, a vector in (9-4-5) or (9-4-6) could contain elements of an array of physic- 
ally separated volume sources or pressure sensors. In fact, if the reader is able to 
frame elastic, electromagnetic, diffusion, or potential problems as symmetric 
algebraic equations like (9-4-3), then the matrices like (9-4-5) and (9-4-6) will still 
be transposes of one another. The setting up of symmetric equations like (9-4-3) 
is often not difficult, although it may get somewhat complicated in multidimensional 
noncartesian geometry. 

In such a more general case we may denote the right-hand vectors in (9-4-5) 
or (9-4-6) by E to denote excitation and the left-hand vectors by R to denote re- 
sponse. Using M for the matrix of (9-4-5) and MT for the transposed matrix, 
(9-4-5) and (9-4-6) would be 

Ro = MEl (9-4-7) 

Now let us deduce a physic~l statement from (9-4-7) and (9-4-8). First take 
the inner product of (9-4-7) with E: 

EcRo = E,TME~ 

The right-hand side, which is a scalar, may be transposed 

E: Ro = (E:  ME^)^ = ETMTEO 

substituting from (9-4-8) we have 

E: Ro = ET R1 (9-4-9) 

Equation (9-4-9) is the basic statement of reciprocity; the inner product of the 
excitation vector and the response vector at place 0 equals their inner product at 



I 
Place 0 ! Place 1 

First 
experiment 

FIGURE 9-2 
A reciprocity example. Reciprocity says that uo = wo + 2wl + w,. 

u, Observed i 1 i An array - horizontal of vertical 
I displacement I forces 
! 

Second 
experiment 

place 1. Notice that the inner products are between vectors which occur in dzferent 
experiments. 

An example of an elastic system with vector-directed displacement and force 
vectors is depicted in Fig. 9-2. A laboratory example by J. E. White [Ref. 321 
which combines electromagnetic, solid, liquid, and gaseous media is shown in 
Fig. 9-3. A geophone is a spring pendulum coupled to an induction coil. The first 
geophone is mounted on a pipe which rests on the bottom of a glass desiccator. 
The second geophone is attached to the glass with a chunk of modeling clay, below 
the water Ievel. The top pair of traces shows the (source) current into the first 
geophone and the (open circuit) voltage at the second; the bottom traces show the 
current in the second geophone and the voltage at the first. 

I 
Horizontal I Three - unit 1 I !, i2 observations 

force of vertical 

I wo displacement 
I 

FIGURE 9-3 
An example of the reciprocal principle in a combined electromagnetic, solid, 
liquid, and gaseous system [J. E. White, Geophysics, Ref. 321. 
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EXERCISES 

I Consider Poisson's equation a,, R = - E on five grid points where the boundary 
conditions are that the end .points are zero. A unit excitation at the third grid point 
gives the solution (0, +, 1, +, 0). Find the solution with a unit excitation in the second 
grid point. Observe reciprocity if you do it right. 

2 Write an equation like (9-4-3) for the heat-flow equation. How will the introduction 
of imaginary numbers change the statement of the reciprocal principle ? 

3 Write the three first-order partial differential equations of acoustics in two-dimensional 
cartesian geometry. Observe the gridding arrangement below. 

FIGURE E9-4-3 

Write a set of 27 x 27 equations for the vector ( U I ,  P I ,  WI, U2, P2 ,  W 2 ,  . . . , Us, P9, 

Wg). Make it come out symmetric and in an obviously orderly form. 
4 In Sec. 8-3, Exercises 5 and 6 taken together illustrate the reciprocity theorem which 

states, "If source and receiver are interchanged, the same waveform will be observed." 
Solve the problem of a surface source with a receiver in the middle of the layers and 
solve the same problem with interchanged source and receiver to test the reciprocity 
theorem. 

9-5 CONSERVATION PRINCIPLES AND MODE 
ORTHOGONALITY 

We showed earlier how problems in stratified media reduce to  a first-order matrix 
differential equation of the form 

It  turns out that many problems in the form of (9-5-1) can be reformulated into 
what we will call the Atkinson form. It  is 



where J is a skew-Hermitian matrix (J* = - J) independent of z, G(z) and H(z) 
are Hermitian matrices (H* = H), and 1 is a scalar which will come to play the role 
of an eigenvalue. For example, in acoustics we have 

a P -[ az w ] = i l j  +-- -  cu ~c~~ i ] [ g ] + i [ : V . ]  (9-5-3) 

K cup 

which can be premultiplied by a skew-Hermitian matrix to give 

The significant thing about (9-5-4) is that the operators are self-adjoint, meaning 
that the right-hand matrix is Hermitian and so is the left-hand operator. To under- 
stand why J(8ld.z) is Hermitian, write it out as a difference approximation 

Inspecting (9-5-5) we see that it is two rows short of being square. Choosing two 
boundary conditions will be like obtaining two more rows. Clearly (9-5-5) is so 
close to being Hermitian that two more rows can be chosen to make it Hermitian. 
For example, the two rows 

could be squeezed between the top and bottom halves of (9-5-5). Since the operator 
(9-5-5) can be made Hermitian by choice of suitable boundary conditions and since 
the other operators in (9-5-4) are already Hermitian, it seems that the Atkinson 
form applies to physical problems in which the reciprocity principle is applicable. 
Reciprocity does apply to most geophysical prospecting problems. A simple 
physical situation in which reciprocity does not apply is sound waves in a windy 
atmosphere. Physically it is because waves go more slowly upwind than downwind, 
and mathematically it is because no J matrix can be found to convert (9-5-1) into 
the form (9-5-2). Only in a source-free region can we convert (9-5-1) to (9-5-2). 
If we choose to let u, play the role of the eigenvalue, then taking source terms to be 
zero we split (9-5-4) into 



Here G(z) has turned out to vanish and k;/o2, which is proportional to the sine 
of the incident angle, is to be regarded as a constant for variable values of the 
eigenvalue o. Alternatively, we could choose -kX2 to be the eigenvalue, and then 
(9-5-4) would become 

Obviously, still another possibility is to let the angle variable -kX2/02 be the 
eigenvalue for fixed o. 

The Atkinson form (9-5-2) leads directly to various conservation principles. 
Let us compute the vertical derivative of the quadratic form y*Jy. 

Very often we take the eigenvalues co, - k:, or -k:/02 to be real, and in such 
a case we have A - A* = 0 and (9-5-8) shows that y*Jy is a quadratic function of 
the wave variables which is invariant with z. In the acoustic example, this quadratic 
invariant is proportional to the energy flux. Specifically 

If we wish to consider a complex frequency co = co, + ico,, then in the first acoustic 
example (9-5-6) equation (9-5-8) becomes 

Noting that if P and W have time dependence exp[- i(w, + icoi)t] = exp (-ico, t + 
oi t), then quadratics like P*P and W*W have time dependence e2"lt and we see 
that the multiplier 2coi can be regarded as a time derivative. Hence (9-5-10) 
becomes 

a -- Re(P*W)= +-  a {l - ( l  --7 ") P*P + p W* W] =.: L (9-5-1 1) 
dz at 2 K  cop at 
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Equation (9-5-11) is interpreted as saying that the time derivative of the energy 
density E at a point is proportional to the negative of the divergence of energy flux 
at that point. In other problems the quadratic forms need not always turn out to 
involve energy. Sometimes momentum is involved. 

A well-known theorem in matrix theory is that Hermitian matrices have real 
eigenvalues. Why then did we consider the possibility of a complex eigenvalue in 
(9-5-8) ? The answer is that the finite difference operator matrix need not be chosen 
to have boundary conditions which make the operators Hermitian. In particular, 
for dE/dt to be nonzero, energy must leak in or out at a boundary. 

Now, let us suppose boundary conditions have been chosen to make Ja/az 
symmetric so the eigenvalues become real. Let yn(z) be a solution to (9-5-2) with 
eigenvalue A,, and let y,(z) be another solution with a different eigenvalue A,. 
The reasoning which led up to (9-5-8) can be used to obtain 

Integrating through z from za to z,, we have 

If boundary conditions have been chosen so that no energy gets in or out at za and 
z, , then the left-hand side vanishes. Since by hypothesis A, f A, we must have the 
right-hand integral vanishing. This states the orthogonality of the two solutions 
(called the two modes) and the idea is the same as the orthogonality of eigenvectors 
of the Hermitian difference operator matrices. The orthogonality of these functions 
is frequently useful in theoretical and computational work. Further details, in- 
cluding the most general form of energy-conserving boundary conditions, may be 
found in Reference 14, Chap. 9. 

EXERCISE 

I Show that application of (9-5-8) to (9-5-7) leads to a definition of horizontal energy 
flux. You may wish to take k, = k, + iki and assume I k,  I + I ki 1 .  

9-6 ELASTIC WAVES 

It is now presumed that the reader has a general knowledge of classical elasticity 
theory. Few textbooks, if any, develop the special subject of stratified media which 
is so important in seismology. Many papers on that subject may be found in the 
Bulletin of the Seismological Society of America (BSSA). For those readers un- 
familiar with the BSSA, we now present the results of applying the general methods 
of this chapter to the equations of isotropic elasticity. 

The conventions in elasticity are (u, w) displacements in x and z directions, 
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z is the stress matrix, 13. and p are Lame's constants and p is density. Hooke's law 
and Newton's law with e -  '"' time dependence leads to 

where 

Define also 

If material properties do not vary in the x direction, we have the row eigenvector 
transformation R to up- and downgoing wave variables. 

and the column eigenvector inverse transform C 



where 

The matrices partition nicely into 2 x 2 blocks. The reader may verify that 
C R = R C = I a n d C A R = A .  


