
LAYERS REVEALED BY SCATTERED WAVE 
FILTERING 

Waves occur in almost all branches of physics. We are going to study waves, but 
here we will not assume knowledge of physics and differential equations. We will 
use only assumptions about the general principles of delay, continuity, and energy 
conservation. The results will be directly applicable to sound waves, water waves, 
light in thin films, normal incident elastic waves of both pressure and shear type, 
electromagnetic waves, transmission lines, electrical ladder networks, and other 
such things. The methods can also be applied to diffusion problems. Our first 
main objective is to solve the problem of calculating wave fields given reflection 
coefficients. Our second main objective is to gain the ability to calculate the 
reflection coefficients given the observed waves. 

8-1 REFLECTION AND TRANSMISSION COEFFICIENTS 

Consider two halfspaces (the sky above, the earth below). If a wave of unit ampli- 
tude is incident onto the boundary, there will be a transmitted wave of amplitude t 
and a reflected wave of amplitude c as depicted in Fig. 8-1. 



FIGURE 8-1 y2 

Waves incident, reflected c, and trans- 
mitted t at an interface. 

A very simple relationship exists between t and c. The wave amplitudes have 
a physical meaning of something like pressure, material displacement, or tangential 
electric.or magnetic fields; and these physical variables must be the same on either 
side of the boundary. Thus, we must have 

It may be surprising that t may be greater than unity. However, this phenomenon 
may easily be seen at the ocean, where waves get larger as they approach the shore 
(until they break). Energy is not determined by wave height alone. Energy is equal 
to the squared wave amplitude multiplied by a proportionality factor Y depending 
upon the medium in which the wave is measured. If we denote the factor of the 
top medium by Yl and the bottom by Y2, then the statement that the energy before 
incidence equals the energy after incidence is 

solving for c we get 

In acoustics the up- and downgoing wave variables may be normalized to either 
pressure or velocity. When they measure velocity, the scale factor multiplying 
velocity squared is called the impedance I. When they measure pressure, the scale 
factor is called the admittance Y. 

The wave c' which reflects when energy is incident from the other side is 
obtained from (8-1-4) if Yl and Y2 are interchanged. Thus 
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A perfectly reflecting interface is one which does not allow energy through. 
This comes about not only when t = 0 or c = - 1, but also when t = 2 or c = + 1. 
To see this, note that on the left in Fig. 8-1 

Energy transmitted Yl t - --- 
Energy incident Y21 Y2 YI + y2 

Equation (8-1-6) says that 100 percent of the incident energy is transmitted when 
Y, = Y2, but 'the percentage of transmission is very small when Y, and Y2 are 
very different. 

A word of caution: Occasionally special applications are described by authors 
who do not define reflection and transmission coefficients in terms of some variable 
which is continuous at a boundary. This is usually an oversight which unfortu- 
nately obscures the relationship of the special application to  wave theory in general 
and this chapter in particular. It is almost never an essential feature of the special 
application that t # 1 + c but just a result of an unwise choice of variables in the 
description. For example, material density is an unwise variable in acoustics 
because it suffers a discontinuity at a material boundary. Pressure or normal 
velocity are better descriptors of wave strength. 

Ordinarily there are two kinds of variables used to describe waves, and both 
of these can be continuous at a material discontinuity. One is a scalar like pressure, 
tension, voltage, potential, stress, or temperature. The other is a vector of which 
we use the vertical component. Examples of the latter are velocity, stretch, electric 
current, displacement, and heat flow. Occasionally a wave variable will be a tensor. 
When a boundary condition is the vanishing of one of the motion components, 
then the boundary is often said to be rigid. When it is the pressure or potential 
which vanishes, then the boundary is often said to be free. Rigid and free bound- 
aries reflect waves with unit magnitude reflection coefficients. 

The purpose of this chapter is to establish fundamental mathematical prop- 
erties of waves in layers and to  avoid specialization to any particular physical type 
of waves. That will be done in the next chapter. However, so as not to disguise 
the physical aspect of the mathematics, a precise definition of upgoing wave U and 
downgoing wave D will now be given in terms of classical acoustics. In acoustics 
one deals with pressure P and vertical component of parcel velocity W (not to be 
confused with wave velocity 0). One possible definition for U and D (which will 
be developed in Chap. 9, Sec. 3) is 



FIGURE 8-2 
A waveform R(Z) reflecting at the surface of the sea. Pressure equal to U+ D 
vanishes at the surface. The vertical velocity of the surface is proportional to 
D - U. Theoretically, waves are observed by measuring W at the surface; how- 
ever, as a practical matter P is often observed a fraction of a wavelength below the 
surface. 

with the inverse relations 

Other definitions with different scale factors and signs are possible. With this 
definition, the relation t = 1 + c is readily seen to be associated with (8-1-8a) and 
continuity of pressure at  an interface. The minus signs in (8-1-7) and (8-1-8) are 
associated with the direction of the z axis. Reversal of the z axis changes W to 
- W and switches the roles of U and D. 

We notice that a downgoing wave D all by itself with U vanishing provides 
a moving disturbance of both pressure P and velocity W, and the vanishing of U 
assures us that the ratio between the two WIP = Y is the characteristic admittance 
Y of the material. The energy, we have said, is proportional to either Y P ~  or IW2 
from which the ratio W/P = Y allows us to deduce that the impedance of a material 
is the inverse of its admittance I = 1/Y. 

For sound waves in the ocean the sea surface is a nearly perfect reflector 
because of the great contrast between air and wate~ .  If this interface is idealized 
to a perfect reflector, then it is a free surface. Since the pressure vanishes on a free 
surface, we have that D = - U at the surface so the reflection coefficient is - 1. 
If a wave is to be seen at the surface, it is necessary to  measure not pressure but 
something proportional to velocity. In geophysical exploration practice, pressure- 
sensing hydrophones are used. They must be kept a t  a suitable distance below the 
sea surface. The situation can be depicted as in Fig. 8-2. The pressure normally 

FIGURE 8-3 
An initial downgoing disturbance 1 results in a later upgoing reflected wave 
- R(Z) which reflects back down as R(Z). The pressure at the surface is D + U = 
1+R-R=1. 



vanishes a t  the sea surface, but if we wish to  initiate an impulsive disturbance, 
the pressure may momentarily take on some other value, say 1. This is depicted 
in Fig. 8-3. The total vertical component of velocity of the sea surface due to the 
source and to the resulting acoustic wave is D - U = 1 + 2R(Z). 

EXERCISES 

I Compute t in terms of Yl and Yz . 
2 In a certain application continuity is expressed by saying that D - U is the same on 

either side of the interface. This implies that t = 1 - c.  Derive an equation like 
(8-1-4) for the reflection coefficient in terms of the admittance Y. 

3 What are reflection and transmission coefficients in terms of the impedance I? (Clear 
fractions from your result.) 

4 From the principle of energy conservation we showed that c' = -c .  It may also be 
deduced from time reversal. To do this, copy Fig. 8-1 with arrows reversed. Scale 
and linearly superpose various figures in an attempt to create a situation where a 
figure like the right-hand side of Fig. 8-1 has -c' for the reflected wave. (HINT: Draw 
arrows at normal incidence.) 

8-2 ENERGY FLUX IN LAYERED MEDIA 

First consider wave resonance in a layer. Let the travel time through the layer and 
back again be given by the delay operator 2. The situation is shown in Fig. 8-4. 
The wave seen above the layer has the form 

It is no accident that the infinite series may be summed. We will soon see that for 
n layers the waves, which are of infinite duration, may be expressed as simple 
polynomials of degree n. We will consider many layers and the general problem 

FIGURE 8-4 
Some rays corresponding to resonance in a layer. 
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FIGURE 8-5 
Waves incident and reflected from an 
interface. 

of determining waves given reflection coefficients and determining reflection co- 
efficients given waves. 

The reflection and transmission coefficients show one how to calculate the 
waves resulting from a wave impinging on a layer. Equation (8-2-1) relates to 
Fig. 8-5 and shows how from the waves U and D' one extrapolates into the future 
to get U' and D. 

Let us rearrange (8-2-1) to  get U' and D' on the right and U and D on the 
left. Then we will have an equation which extrapolates from the primed medium 
to the unprimed medium. We get 

which may be arranged in the matrix form 

Now premultiplying by the inverse of the left-hand matrix 

finally getting the result, an equation to extrapolate from the primed medium to the 
unprimed medium. 

Now let us consider the Goupillaud type [Ref. 301 layered medium shown in 
Fig. 8-6. For this arrangement of layers, (8-2-2) may be written 
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FIGURE 8-6 
Goupillaud-type layered medium (layers ,, ?u; $0; 
have equal travel time). U3 JD3 

Let Z =,eimT where T, the two-way travel time, equals the data sampling 
interval. Clearly, multiplication by JZ is equivalent to delaying a function by 
T/2, the travel time across a layer. This gives in the kth layer a relation between 
primed and unprimed waves. 

Inserting (8-2-3) into (8-2-2) we get a layer matrix 

If there is energy flowing through a stack of layers, there must be the same 
total flow through the kth layer as through the (k + 1)st layer. Otherwise, there is 
an energy sink or source at  the layer boundary. The net upward flow of energy 
(energy flux) at  any frequency o in the kth layer is given by 

To establish that this is indeed independent of k, we take the Hermitian conjugate 
(transpose and conjugate with respect to real o )  of (8-2-4). 



Now combine (8-2-4) with (8-2-6) in the form 

Since (I - ck2)/tk? = t;/tk - Yk/Yk+ this may be rewritten as the desired result, 
namely 

Equation (8-2-8) says that at each frequency co the energy flowing through the kth 
layer equals the energy flowing through the (k + 1)st layer. 

This energy flux theorem leads quickly to some sweeping statements about 
the waveforms scattered from layered structures. Figure 8-7 shows the basic 
geometry of reflection seismology. Applying the energy flux theorem to this geo- 
metry we may say that the energy flux in the top layer equals that in the lower 
halfspace so 

This very remarkable result says that if we were to observe the escaping wave E(Z), 
we could by autocorrelation construct the waveform seen at  the surface. We will 
later see that E(Z] is minimum-phase so that E could be collstructed from R by 
spectral factorization. 

FIGURE 8-7 
Basic reflection seismology geometry. 
The man initiates an impulse going 
downward. The earth sends back - R(Z) 
to the surface. Since the surface is per: 
fectly reflective, the surface sends R(Z) 
back into the earth. Escaping from the 
bottom of the layers is a wave E(Z) 
which is heading toward the other side 
of the earth. 
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FIGURE 8-8 
Earthquake seismology geometry. An impluse 1 is incident from below. The 
waveform X(Z) is incident upon the free surface and is reflected back down. The 
waveform P(Z) scatters back into the earth. 

Now let us turn our attention to the earthquake seismology geometry 
depicted in Fig. 8-8. Applying the energy flux theorem to this geometry we obtain 

The interpretation of the result is that the backscattered waveform P(Z) has the 
form of an all-pass filter. This result may have been anticipated on physical grounds 
since all the energy which is incident is ultimately reflected without attenuation; 
thus the only thing which can happen is that there will be frequency-dependent 
delay. 

Finally, we will derive a theorem which relates energy flux to impedance and 
admittance functions (these functions have Fourier transforms with a positive real 
part). Suppose that a downgoing wave D(Z) is stronger than an upgoing wave 
U(Z) at all frequencies, i.e. 

(Note that this does not imply I d, 1 > I u, I .) We will abbreviate (8-2-1 1) by 

From (8-2-11) or (8-2-12) we will deduce that ( D  - U)/(D + U) has a Fourier 
transform with a positive real part. We have 

- - 
2(DD - OU) 

(D + U ) ( D  + D) 



The numerator of (8-2-13) is positive by hypothesis (8-2-12) and the de- 
nominator of (8-2-13) is positive, since it is the spectrum of the time function 
d, + u, and any spectrum is always positive. Thus (D - U)/(D + U) is called 
" positive real." The acoustical interpretation of ( D  - U)/(D + U )  is that (D - U) 
represents the vertical component of material velocity and (D + U) represents the 
material pressure. 

8-3 GETTING THE WAVES FROM THE REFLECTION 
COEFFICIENTS 

A layered material may be specified by giving the reflection coefficient at each 
interface. Alternate descriptions are to give any one of the scattered waves R(Z), 
E(Z), X(Z), or P(Z). Our ultimate objective is to get such a good grip on the algebra 
of this kind of problem that we will be able to  start with any descriptor of the layers 
and from it deduce all the other descriptors. 

An important result of the last section was the development of a "layer 
matrix " (8-2-4) that is, a matrix which can be used to extrapolate waves observed 
in one layer to the waves observed in the next layer. This process may be continued 
indefinitely. To see how to extrapolate from layer 1 to layer 3 substitute (8-2-4) 
with k = 1 into (8-2-4) with k = 2, obtaining 

Inspection of this example suggests the general form for a product of k layer 
matrices 

1 

Now let us verify that (8-3-2) is indeed the general form. We assume (8-3-2) is 
correct for k - 1 ; then we multiply (8-3-2) by another layer matrix and see if the 
product retains the same form with k - 1 increased to k. The product is 
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By inspecting the product we see that the scaling factor is of the same form with 
k - 1 changed to k. Also the 22 matrix element can be obtained from the 11 element 
by replacing Z with 1/Z and nlultiplying by Zk. Likewise, the 21 element is obtained 
from the 12 element; thus (8-3-2) does indeed represent a general form. The poly- 
nomials F(Z) and G(Z) of order k are built up in the following way [from the first 
column of the right-hand side of (8-3-3)]: 

By inspecting (8-3-4) we can see some of the details of F and G. From (8-3-4a) 
we see that the lead coefficient fo of F(Z) does not change with k. It is always 
(f,), = 1. Knowing this from (8-3-46) we see that (g,), = ck . Also with knowledge 
that F(Z) and G ( Z )  are of the same degree in Z, we see that (8-3-4b) implies that 
the highest coefficient of G(Z), say (g,), does not change with k and therefore it 
equals the starting value of c,. Finally, with this knowledge and (8-3-4a) we deduce 
that the highest coefficient in F(Z) will always be clck. Thus, in summary 

It may be noted in (8-3-5) and proved from the recurrence relations (8-3-4) that 
the coefficients of F contain even powers of c and that G contains odd powers of c. 
This means that if all c change sign, G will change sign but F is unchanged. 

The polynomials F(Z) and G ( Z )  are not independent and a surprising energy- 
flux-like relationship exists between them. By substitution from (8-3-4) one may 
directly verify that 

Since Fl(Z) = 1 and G1(Z) = c, we have by iterative application of (8-3-6) that 

k k 

(1 - ck2) = fl t't (8-3-7) 
1 

Equation (8-3-7) is a surprising equation because on the left-hand side we have two 
spectra, the spectrum o f f ,  and the spectrum of g , ,  but the right-hand side is a 
positive, frequency-independent constant. Since the spectrum of f ,  is thus greater 
than the spectrum of g , ,  we may apply the theorem of adding garbage to a mini- 
mum-phase wavelet to deduce from (8-3-4a) and from knowledge that I ck I < 1 that 
Fk(Z) is minimum-phase if Fk- ,(Z) is minimum-phase. Since F,(Z) = 1 is minimum- 
phase, we see that all Fk(Z) are minimum-phase. Since F(Z) is minimum-phase, 
then F(Z) may be calculated from its spectrum F(Z)F(l/Z) or the spectrum of g, 
(along with the single number nt ' t ) .  However, we cannot get G from F. Before 
continuing our algebraic discussion we take up an example. 
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FIGURE 8-9 
Waves incident, reflected, and transmitted from a stack of layers between two 
half-spaces. 

Let a stack of layers be sandwiched in between two halfspaces (Fig. 8-9). 
An impulse is incident from below. The backscattered wave is called C(Z) and 
the transmitted wave is called T(Z). 

Mathematically, we describe the situation with the equations 

We may solve the first of (8-3-8) for the transmitted wave T(Z) 

and introduce the result back into the second of (8-3-8) to obtain the backscattered 
wave 

The mathematical fact that F(Z) is minimum-phase corresponds to the physical 
fact that the C(Z) and T(Z) have finite energy; therefore the denominators of 
(8-3-9) and (8-3-10) cannot have zeros inside the unit circle. Since we know that 
the backscattered wave C(Z) contains less energy than the incident wave by reference 
to (8-2-13) we know that a positive real function is given by 



Now let us see how to reconstruct the reflection coefficients c,i from the observed 
scattered wave C(Z). Referring to Fig. 8-9 we have 

The first coefficient of C(Z) is c, [this is physically obvious but may also be seen 
from (8-3-5)]. Thus the layer matrix in (8-3-12) is known. Multiplying (8-3-12) 
through by the inverse of the layer matrix we will have obtained U,-,(Z) and 
D,- ,(Z). The next reflection coefficient c,-, is obviously d,/u,. Thus we may 
proceed until all the c, are determined. 

Next let us reconsider the reflection seismology geometry. We have 

From the first equation we may solve for R(Z) 

The denominator occurs so often that we give it the name A ( Z )  

A(Z), like F(Z), is minimum-phase. The second of (8-3-13) gives the escaping 
wave as 

simplifying with (8-3-7) we get 
- 

The positive real function is 

D - U  - 1 + R - ( - R )  
-- = 1 + 2R(Z) (8-3-17) 
D + U  l + R - R  

- Vertical velocity = 1 + 2R. 
Pressure = 1 



As mentioned earlier, if the equations are interpreted in terms of acoustics, then 
Y(D - U ) / ( D  + U )  is interpreted as vertical velocity divided by pressure. It is 
called the admittance which is the inverse of the impedance. 

We have now completed the task of solving for the waves given the reflection 
coefficients. In the subsequent section we attack the inverse problems of getting 
the reflection coefficients from knowledge of various waves. 

EXERCISES 

I In Fig. 8-9 let cl = fr, cz = -*, and c3 = b .  What are the polynomial ratios T(Z) and 
C(Z) ? 

2 For a simple interface, we had the simple relations t = 1 + c, t' = 1 + c', and c = -c'. 
What sort of analogous relations can you find for the generalized interface of Fig. 8-9? 
[For example, show 1 - T(Z)T'(I/Z) = C(Z)C(l/Z) which is analogous to 1 - tt' = cZ.] 

3 Show that T(Z) and Tr(Z) are the same waveforms within a scale factor. Deduce that 
many different stacks of layers may have the same T(Z). 

4 Let an impulse be incident on a stack of layers and let a wave C(Z) be reflected. What 
is the reflection coefficient at the first layer encountered? What would be the reflected 
wave as a function of C for a situation which differs from the above by the removal of 
the first reflector? 

5 Consider the earth to be modeled by layers over a halfspace. Let an impulse be incident 
from below (Fig. E8-3-5). Given F(Z) and G(Z), elements of the product of the layer 

FIGURE E8-3-5 

matrices, solve for X and for P. Check your answer by showing that P(z)P(I/Z) = 1. 
How is X related to E? This relation illustrates the principle of reciprocity which 
says source and receiver may be interchanged. 

6 Show that 1 + R(l/Z) + R(Z) = (scale factor) X(Z) X(l/Z), which shows that one 
may autocorrelate the transmission seismogram to get the reflection seismogram. 

7 Refer to Fig. E8-3-7. Calculate R' from R. 

FIGURE E8-3-7 



8-4 GETTING THE REFLECTION COEFFICIENTS FROM THE 
WAVES 

The best starting point for inverse problems is the Kunetz equation [Ref. 311 
(8-2-9). 

We need also the expression for the escaping wave (8-3-16) 

We also need to recall that Y,/ Y, = ntlt '. With this (8-4- 1) becomes 

Multiplying through by A(Z) we get 

Since A(Z) is minimum-phase, A(Z) may be written as l/B(Z) or A(1IZ) = 
l/B(l/Z). Thus (8-4-4) becomes 

[I + R(Z) + R(I/Z)]A(Z) = (I3 t ' t )  ) (8-4-5) 

, t 

Identifying coefficients of zero and positive powers of Z as simultaneous equations, i 

we get a set of equations which for a three-layer model looks like (ro = 1). 

In (8-4-6) we see our old friend the Toeplitz matrix. It used to work for 
factoring spectra and predicting time series. Notice that - c 3  has been inserted in 
(8-4-6) as the highest coefficient of A(Z). This is justified by reference back to the 
definition of A(Z) in terms of F(Z) and G(Z) which were in turn defined from the c, . 
It is by reexamining the Toeplitz simultaneous equations (8-4-6) and the Levinson 
method of solution (3-3-10) that we will learn how to compute the reflection co- 
efficients from the waves. 

The first four equations in (8-4-6) would normally be thought of as follows: 
Given the first three reflected pulses r,, r, , and r, we may solve the equations for A, 
incidentally getting the reflection coefficient c3 . Knowing A, the 5th equation in 
(8-4-6) may be used to compute r 4 .  If the model were truly a three-layer model, 



it would come out right; if not, the discrepancy would be indicative of another 
reflector c, which could be found by expanding equation (8-4-6) from 4th order 
to 5th order. In summary, given the reflected pulses r , ,  the Levinson recursion 
successively turns out the reflection coefficients c,. 

Now suppose we begin by observation of the escaping wave E(Z). One way 
to  determine the reflection coefficients would be to form 1 + R(Z) + R(l/Z) by the 
autocorrelation of E(Z); then, the Levinson recursion could be used to solve for the 
reflection coefficients. The only disadvantage of this method is that E(Z) contains 
an infinite number of coefficients so that in practice some truncation must be done. 
The truncation is avoided by an alternative method. Given E(Z) polynomial 
division will find A(Z). The heart of the Levinson recursion is the building up of 
A(Z) by A,(Z) = Ak-l(Z) - c , z ~ A ~ -  ,(I/z). In particular, from (3-3-12) we have 

which shows how to get A,(Z) from A2(Z) and c, . To do it backwards, we see first 
that c, is -a3 .  Then write (8-4-7) upside-down 

Next multiply (8-4-7) by 1/(1 - c , ~ )  and add the product to (8-4-8) multiplied by 
c,/(l - c ,~ ) .  Notice that the upside-down vectors on the right-hand side cancel, 
leaving 

Equation (8-4-9) is the desired result which shows how to reduce A, ,  ,(Z) to ,4,(Z) 
while learning c,, ,. A program to continue this process is given in Fig. 8-10. An 
inverse program to get R and A from c is in Fig. 8-1 1. 

COMPLEX A,C,AL,BE,TOP,CONJG 
C(l)=-1.; R(l)=l.; A(l)=l.; V(l)=l. 

300 DO 310 I=l,N 
310 C (I)=A(I) 

DO 330 K=l,N 
J=N-K+2 
AL=~./(I.-C(J)*CONJG(C(J))) 
BE=C (J) *AL 

FIGURE 8-10 
A program to compute reflection co- TOP=AL*C (1)-BE*CONJG (c (J-1-1-1) 1 
eficients c, from the predictionerror C(J-I+l)=ALkC (J-I+~)-BE*coNJG(C ( I ) )  
filter A(Z). The complex arithmetic is 320 C(I)=TOP 

optional. 330 c (J)=-BE/AL 



(XXE'LEX C,R,A,BOT,CONJG 
c(l)=-1.; R(l)=l.; A(l)=l.; V(l)=l. 

100 DO 120 J=2,N 
A(J)=O. 
R(J)=C(J)*V(J-1) 
v(J)=v(J-l>*(l.-C(J)*CONJG(C(J))) 
DO 110 I=2,J 

110 R(J)=R(J)-A(I>*R(J-1+1) 
JH= (J+l) /2 

FIGURE 8-1 1 DO 120 I=l,JH 
A program inverse to the program of BOT=A(J-I+1) -C (J)*coNJG (A (I) ) 
Fig. 8-10. It computes both R and A A(I)=A(I)-C(J)*CONJG(A(J-1+1)) 
from C .  120 A(J-I+l)=BOT 

Finally, let ,us see how to do a problem where there are random sources. 
Figure 8-12 shows the "earthquake geometry." However, in order to introduce a 
statistical element, the pulse incident from below has been convolved with a white- 
light series w,  of random numbers. Consequently, all the waves internal to Fig. 
8-12 are given by the convolution of w,  with the corresponding wave in the impulse- 
incident model. Now suppose we are given the top-layer waves D = - U = X W 
and wish to consider downward continuation. We have the layer matrix 

which can be re-written as 

The Burg prediction-error scheme can be written in the form 

which makes it equivalent within a scale factor to downward continuing surface 
waveforms. The remaining question is whether B~~rg ' s  estimate of the reflection 
coefficient, namely, 

FIGURE 8-12 

white light incident from below. In the 

R 
Earthquake seismogram geometry with -XW/ vw 
top layer, the sum of the waves vanishes 
representing zero pressure at the free 
surface. The difference of up- and down- 
going waves is the observed vertical 
component of velocity. Y' 
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turns out to estimate the reflection coefficient ck in the physical model. To see how 
Burg's tk is related to the ck arising in the Levinson recursion, we define f + and f - 
for k = 2 as 

[. +] = [ '  1 :$,I and [. -1 = [ :  i. :] [ill (8-4-14) 

x2 x2 

Next form the dot product 

Now utilize the fact that (I, a,) satisfies the 2 x 2 system. Following the Levinson 
recursion (8-4-15) can be written as 

Likewise we can deduce that f + - f + = f - . f - = u. Thus, the Levinson calcula- 
tion of the reflection coefficient can be written as 

The Burg treatment differs from the Levinson treatment in that Burg omits end- 
effect terms on (8-4-14). Instead of (8-4-14) he has 

For a sufficiently long data sequence the Burg method and the Levinson technique 
thus become indistinguishable. For a data sample of finite duration we must make 
a choice. The Levinson technique with (8-4-14) is equivalent to assuming the data 
sample vanishes off the ends of the interval in which it is observed. In most appli- 
cations this is untrue, and so the Burg technique is usually preferable. 
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EXERCISES 

1 An impulse and the first part of a reflection seismogram, that is, 1 f 2R(Z) is 
1 + 2(2/4 + Z2/16 + Z3/4 + . . .). What are the fist three reflection coefficients? 
Assuming there are no more reflectors what is the next point in the reflection seis- 
mogram? 

2 A seismogram X(Z) = 1/(1 - .1Z + .9Z2) is observed at the surface of some layers 
over a halfspace. Sketch the time function and indicate its resonance frequency and 
decay time. Find the reflection coefficients if X(Z) is due to an impulsive source of 
unknown magnitude in the halfspace below the layers. 

3 A source bo + blZ deep in the halfspace produces a seismogram B(Z)X(Z) = 1 - Z + 
Z2/2 - Z3/2 4- Z4/4 - Z5/4 + Z6/8 - Z7/8 -t . -  . What are the layered structure and 
the source time function ? 


