
DATA MODELING LEAST SQUARES 

The reconciliation of theory and data is the essence of science. An ubiquitous tool 
in this task is the method of least-squares fitting. Elementary calculus books 
generally consider the fitting of a straight line to scattered data points. Such an 
elementary application gives scant hint of the variety of practical problems which 
can be solved by the method of least squares. Some geophysical examples which 
we will consider include locating earthquakes, analyzing tides, expanding the 
earth's gravity and magnetic fields in spherical harmonics, and doing interesting 
things with time series. When the past of a time series is available, one may find 
that least squares can be used to determine a filter which predicts some future 
values of the time series. When a time series which has been highly predictable for a 
long stretch of time suddenly becomes much less predictable an " event" is said to 
have occurred. A filter which emphasizes such events is called a prediction-error 
Jilter. If one is searching for a particular dispersed wavelet in a time series, it may 
help to design a filter which compresses the wavelet into some more recognizable 
shape, an impulse for example. Such a wave-shaping filter may be designed by 
least squares. With multiple time series which arise from several sensors detecting 
waves in space, least squares may be used to find filters which respond only to certain 
directions and wave speeds. 

Before we begin with the general theory, let us take up a simple example in 



the subject of time series analysis. Given the input, say x = (2, 1) to some filter, say 
f = (fo, fl) then the output is ne'cessarily c = (2f0, fo + 2f1, f,). To design an 
inverse filter we would wish to have c come out as close as possible to (I, 0, 0). In 
order to minimize the difference between the actual and the desired outputs we 
minimize 

E(f0 , f l )  = (2fo - + (fo + 2f1l2 + (f1l2 

The sum E of the squared errors will attain a minimum if fo and f, are chosen so that 

Cancelling a 2 and arranging this into the standard form for simultaneous equations, 
we get 

and the solution is 

The actual c which comes out of this filter is (H, +A, -A) which is not a bad 
approximation to (1, 0, 0). 

6-1 MORE EQUATIONS THAN UNKNOWNS 

When there are more linear equations than unknowns, it is usually impossible to 
find a solution which satisfies all the equations. Then one often looks for a solution 
which approximately satisfies all the equations. Let a and c be known and x be 
unknown in the following set of equations where there are more equations than 
unknowns. 

Usually there will be no set of x i  which exactly satisfies (6-1-1). Let us 
define an error vector e j  by 



It simplifies the development to rewrite this equation as follows (a trick I learned 
from John P. Burg). 

-el a,, 

[I i: a2 ''1 [;'I = [':I (6- 1-3) 

-cn a,, - . -  Xm en anm 

We may abbreviate this equation as 

B x = e  (6-1-4) 

where B is the matrix containing c and a. The ith error may be written as a dot 
product and either vector may be written as the column 

Now we will minimize the sum squared error E defined as 1 ei2 

I '  

'a 
The summation may be brought inside the constants 

, . 

The matrix in the center, call it r i j ,  is symmetrical. It is a positive (more strictly, 
nonnegative) definite matrix because you will never be able to find an x for which E 
is negative, since E is a sum of squared ei. We find the x with minimum E by 
requiring aE/dxl = 0, aE/ax2 = 0, . . . , dE/ax, = 0. Notice that this will give us 
exactly one equation for each unknown. In order to clarify the presentation we will 
specialize (6- 1-6) to two unknowns. 

roo r01 '-02 

= X l  ..I[;:: ;:: ;;][id (6-1-7) 

Setting to zero the derivative with respect to x,, we get 



Since rij = rji, both terms on the right are equal. Thus (6-1-8) may be written 

Likewise, differentiating with respect to x2 gives 

Equations (6-1-9) and (6-1-10) may be combined 

This form is two equations in two unknowns. One might write it in the more 
conventional form 

The matrix of (6-1-1 1) lacks only a top row to be equal to the matrix of (6-1-7). To 
give it that row, we may augment (6- 1- 11) by 

u = roo + rolxl + ro2x2 (6-1-13) 

where (6- 1- 13) may be regarded as a definition of a new variable v. Putting (6- 1 - 13) 
on top of (6-1-11) we get 

roo ro1 r02 k] = 1;;: ;:: ;:] [ ,  16-1-14, 

The solution x of (6-1- 12) or (6- 1- 14) is that set of x, for which E is a minimum. To 
get an interpretation of v, we may multiply both sides by [I x, x2], getting 

Comparing (6-1-1 5) with (6-1-7), we see that u is the minimum value of E. 
Occasionally, it is more convenient to have the essential equations in parti- 

tioned matrix form. In partitioned matrix form, we have for the error (6-1-6) 



The final equation (6-1-14) splits into 

where (6-1-18) represents simultaneous equations to be solved for x. Equation 
(6-1-18) is what you have to set up in a computer. It is easily remembered by a 
quick and dirty (very dirty) derivation. That is, we began with the overdetermined 
equations Ax w c;  premultiplying by AT gives (ATA)x = ATc which is (6-1-18). 

In physical science applications, the variable z j  is frequently a complex 
variable, say zj  = x j  + i y j .  It is always possible to go t h u g h  the foregoing 
analyses, treating the problem as though xi and y i  were real independent variables. 
There is a considerable gain in simplicity and a saving in computational effort by 
treating z j  as a single complex variable. The error E may be regarded as a function 
of either x j  and y j  or z j  and z j  . In general j = 1, 2, . . . , N, but we will treat the 
case N = 1 here and leave the general case for the Exercises. The minimum is found 
where 

Mmltiplying (6-1-20) by i and adding and subtracting these equations, we may 
express the minimum condition more simply as 

However, the usual case is that E is a positive real quadratic function of z and 
5 and that dE/az is merely the complex conjugate of aE/aZ. Then the two conditions 
(6-1-21) and (6-1-22) may be replaced by either one of them. Usually, when 
working with complex variables we are minimizing a positive quadratic form like 

where * denotes complex-conjugate transpose. Now (6- 1-22) gives 

which is just the complex form of (6-1-18). 
Let us consider an example. Suppose a set of wave arrival times ti is measured 

at sensors located on the x axis at points xi. Suppose the wavefront is to be fitted to 
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a parabola ti FZ a + bxi + cxi2. Here, the xi are knowns and a, b, and c are un- 
knowns. For each sensor i we have an equation 

When i has greater range than 3 we have more equations than unknowns. In this 
example, (6-1-14) takes the form 

This may be solved by standard methods for a, b, and c. 
The last three rows of (6-1-26) may be written 

This says the error vector ei is perpendicular (or normal) to  the functions 1, x, and 
x2, which we are fitting to  the data. For that reason these equations are often 
called normal equations. 

EXERCISES 

4 1  Extend (6-1-24) by fitting waves observed in the x, y plane to a two-dimensional 

c;1 
quadratic. 

a , , 2 Let y(t) constitute a complex-valued function at successive integer values of t. Fit 
y(t) to a least-squares straight line y(t) x a + fit where a = a, + iai and /3 = fir + ifif. 
DO it two ways: (a) Assume a,, a , ,  f i t ,  and fir are four independent variables, and 
(b) Assume a, 6, fi, and p are independent variables. (Leave answer in terms of 
S. = Cttn.) 

3 Equation (6-1-14) has assumed all quantities are real. Generalize equation (6-1-14) to 
all complex quantities. Verify that the matrix is Hermitian. 

4 At the jth seismic observatory (latitude xj , longitude yj) earthquake waves are ob- 
served to arrive at time t, . It has been conjectured that the earthquake has an origin 
time t, latitude x, and longitude y. The theoretical travel time may be looked up in a 
travel time table T(A) where T is the travel time and A is the great circle angle. One has 

cos A = sin y sin y, + cos y cos yi cos (x  - xi) 

The time residual at the jth station, supposing that the earthquake occurred at (x, y, t), 
is 
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The time residual, supposing that the earthquake occurred at (x + dx, y + dy, t + dt), 
is 

aT aa aT aA 
e j= t+dt+T(Aj)+  -- (a. ax), dx + (z G) , dy - ti 

Find equations to solve for dx, dy, and dt which minimize the sum-squared time 
residuals. ,@ 5 Gravity g, has been measured at N irregularly spaced points on the surface of the earth 
(colatitude xi, longitude yj , j = 1, N). Show that the matrix of the normal equation 

I?/?/ l> which fits the data to spherical harmonics may be written as a sum of a column times 
its transpose, as in the preceding problem. How would the matrix simplify if there 
were infinitely many uniformly spaced data points? (NOTE: Spherical harmonics S 
are the class of functions 

S."(x, y)  = Pr(cos x) exp (imy) 
. 

for (m = -n, . . . , - 1,0, 1, . . . , n) and (n = 0, 1, . . . , GO) where P; is an associated 
Legendre polynomial of degree n and order m. 

6 Ocean tides fit sinusoidal functions of known frequencies quite accurately. Associated 
with the tide is an earth tilt. A complex time series may be made from the north-south 
tilt plus d 2  times the east-west tilt. The observed complex time series may be 
fitted to an analytical form zy=, A j  ~ ' O J ' .  Find a set of equations which may be solved 
for the A j  which gives the best fit of the formula to the data. Show that some elements 
of the normal equation matrix are sums which may be summed analytically. 

7 The general solution to Laplace's equation in cylindrical coordinates (r, 8) for a 
potential field P which vanishes at r = oo is given by 

Find the potential field surrounding a square object at the origin which is at unit 
potential. Do this by finding N of the coefficients A, by minimizing the squared 
difference between P(r, 8) and ~nity~integrated around the square. Give the answer 
in terms of an inverse matrix of integrals. Which coefficients A, vanish exactly by 
symmetry ? 

6-2 WEIGHTS AND CONSTRAINTS 

I t  often happens that some observations are considered more reliable than others. 
One may desire to weight the more reliable data more heavily in the calculation. In 
other words, we may multiply the ith equation by a weight J< 

Now the weighted sum-squared error will be 

E = w i  ei2 (6-2-2) 
1 
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Following the method of the last section, it is easy to show that the x which mini- 
mizes the weighted error E of (6-2-2) is the x which satisfies the simultaneous 
equations 

Choice of a set of weights is often a rather subjective matter. However, if data are 
of uneven quality, it cannot be avoided. Omitting w is equivalent to choosing it 
equal to  unity. 

A case of common interest is where some equations should be solved exactly. 
Such equations are called constraint equations. Constraint equations often arise 
out of theoretical considerations so they may, in principle, not have any error. 
The rest of the equations often involve some measurement. Since the measurement 
can often be made many times, it is easy to get a lot more equations than unknowns 
Since measurement always involves error, we then use the method of least squares 
to  minimize the average error. In order to be certain that the constraint equations 
are solved exactly, one could use the trick of applying very large weight factors to 
the constraint equations. A problem is that "very large" is not well defined. A 
weight equal 10'' might not be large enough to guarantee the constraint equation is 
satisfied with sufficient accuracy. On the other hand, 10'' might lead to disastrous 
round-off when solving the simultaneous equations in a computer with eight- 
digit accuracy. The best approach is to analyze the situation theoretically for w -+ co. 

An example of a constraint equation is that the sum of the x i  equals M. An- 
other constraint would be x ,  = x,. Arranged in a matrix, these two constraint 
equations are 

We write a general set of k constraint equations as 

Minimizing the error as w -+ co of the equations 

is algebraically similar to  minimizing the error of Bx z 0. The rows of JFG are 
just like some extra rows for B. The resulting equation for x is 



Now we will take all the wi  to equal 1/& and we will let E tend to zero. Also let 

x = x ( ~ )  + &xu) + E2X(2) + . . . (6-2-7a) 
v = v ( ~ )  + Ev(l) + E2v(2) + . . . (6-2-73) 

With this, (6-2-6) may be written 

Identify coefficients of powers of E 

c l ,  c2 : not required 

Equation (6-2-9a) is m equations in m unknowns. I t  will automatically be satisfied 
if the k equations in (6-2-5) are satisfied. Equation (6 2-9b) appears to involve the m 
unknowns in x(O) plus rn more unknowns in x(". In fact, we do not need x('); the k 
unknowns 

L = Gx"' (6-2- 10) 

will suffice. 
Arranging (6-2-9b) and (6-2-5) together and dropping superscripts, we get a 

square matrix in nz + k unknowns. 

Equation (6-2-1 1) is now a simultaneous set for the unknowns x and L. It 
might also be thought of as the solution to the problem of minimizing the quadratic 
form 

and since we can always transpose a scalar, 

According to the method of Lagrange multipliers, one may minimize a 
quadratic form subject to constraints by minimizing instead a sum of the quadratic 
form plus constraint terms where each constraint term is the product of a constraint 
equation multiplied by a Lagrange multiplier Ai. This is precisely what we have in 
(6-2- 12), and the solution is given by (6-2- 1 1). Lagrange multipliers frequently 



arise in connection with integral equations. The concept is readily transformed to 
matrices merely by approximating integration by summation. 

EXERCISE 

1 In determining a density us. depth profile of the earth one might minimize the squared 
difference between some theoretical quantities (say, the frequencies of free oscillation) 
and the observed quantities. By astonomical means, total mass and moment of inertia 
of the earth are very well known. If the earth is divided into arbitrarily thin shells of 
equal thickness, what are the two astronomical constraint equations on the layer 
densities p i ?  If the least-squares problem is nonlinear (as it often is) it may be linear- 
ized by assuming that a given set of densities pi  is a good guess which satisfies the 
constraints and doing least squares for the perturbation dpi . What are the constraint 
equations on dpi? 

6-3 FEWER EQUATIONS THAN UNKNOWNS 

What is one to do when one has fewer equations than unknowns: give up? Cer- 
tainly not, just apply the principle of simplicity. Let us find the simplest solution 
which satisfies all the equations. This situation often arises. Suppose, after having 
made a finite number of measurements one is trying to determine a continuous 
function, for example, the mass density p(r) as a function of depth in the earth. 
Then, in a computer p(r) would be represented by p(r) sampled at N depths r i  , i = 1, 
2, . . . , N. Then merely by taking N large, one has more unknowns than equations. 

One measure of simplicity is that the unknown function xi has minimum 
wiggliness. In other words minimize 

subject to satisfying exactly the observation or constraint equations 

Another more popular measure of simplicity (which does not imply an ordering of 
the variables xi) is the minimization of 

If we set out to minimize (6-3-3) without any constraints, x would satisfy the 
simultaneous equations 

[ zeros I=:;] [i] = [ii] 



By inspection one sees the obvious result that x i  = 0. Now let us include two 
constraint equations and, for definiteness, take three unknowns. The method of 
the previous section gives 

Equation (6-3-4) has a size equal to the number of variables plus the number of 
constraints. It may be solved numerically or it may be first reduced to a matrix 
whose size is given by the number of constraints. Let us split up (6-3-4) into two 
equations : 

and 

We abbreviate these equations by x + GT3, = 0 and Gx = d. Premultiply (6-3-5) 
by G, 

insert (6-3-6) 

d + G G ~ L  = o 
solve for L 

T - 1  A = - ( G G )  d 

put back into (6-3-5) 

x = G ~ ( G G ~ ) -  Id 

Written out in full this is 

This is the final result, a minimum wiggliness solution x which exactly satisfies an 
underdetermined set called the constraint equations. 



EXERCISES 

1 If wiggliness is defined by (6-3-1) instead of (6-3-3), what form does (6-3-7) take? 
2 Given the mass and moment of intertia of the earth, calculate mass density as a 

function of depth utilizing the principle of minimum wiggliness (6-3-7). What criticism 
do you have of this procedure? (HINT : An elegant solution uses integrals instead of 
infinite sums.) 

3 Use the techniques of this section on (6-2-11) to reduce the size of the matrices to be 
inverted. 

6-4 HOUSEHOLDER TRANSFORMATIONS AND 
GOLUB'S METHOD [Ref. 211 

Our previous discussions of least squares always led us to matrices of the form 
ATA which then needed to be inverted. Golub's method of using Householder 
transformations works directly with the matrix A and has the advantage that it is 
considerably more accurate than methods which invert ATA. It seems that about 
twice as much precision is required to invert ATA than is needed to deal directly 
with A. Another reason for learning about Golub's method is that the calculation 

. 

is organized in a completely different way; therefore, it will often turn out to have 
other advantages or disadvantages which differ from one application to the next. 

T T A reflection transformation is a matrix of the form R = (I - 2vv /v v) 
where v is an arbitrary vector. Obviously R is symmetric, that is, R = RT. It also 
turns out that the reflection transformation is its own inverse, that is, R = R-'.  To 
see this, we verify by substitution that R~ = I. 

A matrix transformation M is said to be unitary if MTM = I. When a matrix M is 
unitary it means that the vector x has the same length as the vector Mx. These 
lengths are xTx and ( ~ x ) ~ ( M x )  = xTMTMx = xTIx = xTx which are the same. 
Reflection transformations are unitary because R-' = RT. They have a simple 
physical interpretation. Consider an orthogonal coordinate system in which one of 
the coordinate axes is aligned along the v vector. Reflection transformation 
reverses the sign of this coordinate axis vector (since Rv = -v) but it leaves 
unchanged all the other coordinate axis vectors. Thus it is obvious geometrically 
that reflection transformations preserve lengths and that applying the transforma- 
tion twice returns any original vector to itself? Now, we seek a special reflection 
transformation called the Householder transformation which converts a matrix 
of the form on the left to the form on the right where a is an arbitrary element 



Having determined the required transformation, we will know how to convert any 
matrix t o  an upper triangular form like 

a a a a  

0 0 0 0  

by a succession of Householder transforms. Golub recognized the value of this 
technique in solving overdetermined sets of simultaneous equations. He noted 
that when the error vector e = Ax - b is transformed by a unitary matrix Ue the 
problem of minimizing the length (eTUTUe)'I2 of Ue by variation of x reduces to 
exactly the same problem as minimizing the length (eTe)lI2 of e with respect to 
variation of x. Thus a succession of Householder transforms could be found to 
reduce e = Ax - b to  the form 

Now for the clever observation that because of the zeros in the bottom part of the 
transformed A matrix there is no possibility of choosing any x i  values which alter e2 
in any way. The top part of the transformed A matrix is an upper triangular matrix 
which for any value of el  can be solved exactly for the x i .  The least-squares solu- 
tion xi is the one for which e,  has been set equal to zero. 

Now we return to the task of finding the special reflection transformation, 
called the Householder transformation, which accomplishes (6-4-2). Observe that 
the left-hand operator below is a reflection transformation for any numerical choice 
of s. 
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Alternatively, if (6-4-5) is to be valid, then s must take a particular value such that 

This will be true only for s given by 
2 112 s = 4 (a,2 + a42 + a5 ) (6-4-8) 

Now let us see why the left-hand operator in (6-4-5) can achieve (6-4-2). Choice of 
the a vector as the third column in the matrix of (6-4-2) introduces the desired 
zeros on the right-hand side. Finally, it is necessary also to observe that this choice 
of H does not destroy any of the zeros which already existed on the left-hand side in 
(6-4-2). A subroutine for this task is in Fig. 6-1. Householder transformations can 
also be used in problems with constraints. In the set 

one may desire to satisfy the top block exactly and the bottom block only in the 
least-squares sense. Define y as a succession of Householder transforms on x; for 
example, y = H2 H,x. Then substitute x = HIH, Hz Hlx = HlH2 y into (6-4-9). 
Householder transforms used as postmultipliers on the matrix of (6-4-9) can be 
chosen to introduce zeros in the top two rows of (6-4-9), for example 

a 0 0 0  [. a a a a  z : :I["] Y 3 ; [ I  (6-4-10) 

a a a a  Y 4 
b3 

Now we could use premultiplying Householder transforms on (6-4-10) to bring it 
to the form 

a 0 0 0  

[z a a O a  . : :I["] Y 3 %[:I (6-4-11) 

a a O O  Y 4 
b3 

Since the top two equations of (6-4-10) or of (6-4-1 1) are to be satisfied exactly, then 
y, and y, are uniquely determined. They cannot be adjusted to help attain minimum 



SUBROUTINE GOLUB (A,x, B ,M, N) 
C 
C A(M,N) ; B(M) GIVEN WITH M>N SOLVES FOR X(N) SUCH THAT 
C I I B - AX I I = MINIMUM 
C METHOD OF G.GOLUB, NLTMERISCHE MATHEMATIK 7,206-216 (1965) 
C 

IMPLICIT DOUBLE PRECISION (D) 
REAL A(M,N) ,X(N) ,B(M) ,U(50) 

C.......DIMENSION U(M) 
C.......PERFORM N ORTHOGONAL TRANSFORMATIONS TO A(.,.) TO 
C.......UPPER TRIANGULARIZE THE MATRIX 

DO 3010 K=l,N 
DSrnl=O. OD0 
DO 1010 I=K,M 
DAJ=A(I,K) 

1010 DSUM=DSUM+DAJ**2 
DAI=A(K, K) 
DSIGMA=DSIGN(DSQRT (DSUM) ,DAI) 
DBI=DSQRT (1. ODDCDAIIDSIGMA) 
DFACT=l. ODO/ (DSIGMA*DBI) 
U (K) =DBI 
FACT=DFACT 
KPLUS=K+l 
DO 1020 I=KPLUS,M 

1020 U (I)=FACT*A(I,K) 
C.......I - UU' IS A SYIiMETRIC, ORTHOGONAL MATRIX WHICH WHEN,APPLIED 
C....... TO A(.,.) WILL ANNIHILATE THE ELEMENTS BELOW THE DLAGONAL K 

DO 2030 J=K,N 
c.......APPLY THE ORTHOGONAL TRANSFORMATION 

FACT=O. 0 
DO 2010 I=K,M 

2010 FACT=FACT+U(I)*A(I,J) 
DO 2020 I=K,M 

2020 A(I,J)=A(I,J)-FACT*U(I) 
2030 CONTINUE 

FACT=O . 0 
DO 2040 I=K,M 

2040 FACT=FACT+U(I)*B(I) 
DO 2050 I=K,M 

2050 B (I)=B (I)-FACT*U (I) 
3010 CONTINUE 

C.......BACK SUBSTITUTE TO RECURSIVELY YIELD X(.) 
X(N)=B(N) /A(N,N) 
LIM=N-1 
DO 4020 I=l,LIM 
IROW=N-1 
SUM=O. 0 
DO 4010 J=l,I 

4010 SUM=SUM+X(N-J+l)*A(IROW,N-J+1) 
4020 X(IROW)=(B(IROW)-SUM)/A(IROW,IROW) 

RETURN 
END 

FIGURE 6-1 
Subroutine for least squares fitting. Programmed by Don C. Riley. Note 
that this program does not do the square matrix case. It is necessary that M > N. 

error in the bottom three equations. Likewise the top two equations place no 
restraint on y3 and y,, so they may be adjusted to produce minimum error in the 
bottom three equations. No amount of adjustment in y,  and y, can change the 
amount of error in the last equation, so we can ignore the last equation in the 
determination of y3 and y, . The third and fourth equations can be satisfied with 
zero error by suitable choice of y,  and y,. This must be the minimum-squared- 
error answer. Given y we can go back and get x with x = H,H, y. 
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6-5 CHOICE OF A MODEL NORM 

In recent years, a popular view of geophysical data modeling has been that the 
earth is a continuum and that we should regard the number of unknowns as 
infinite but the number of our observations as finite. In a computer one therefore 
approximates the situation by a highly underdetermined system of simultaneous 
equations. In order to  get a unique answer, the solution should extremalize some 
integral. In practice, a sum of squares is often minimized in such a way as to  
produce a smooth solution. A typical mathematical formulation is to do a least- 
squares fitting of an equation set like 

where the top block A denotes the underdetermined constraint equations with the 
data vector d; the unknowns are in the x vector; and the bottom block is a band 
matrix (all the nonzero elements cluster about the diagonal) which says that some 
filtered version of x should vanish. The filter is often a roughing filter like the 
first-difference operator. In the absence of data, the first-difference operator leads 
to a constant solution which is sensible. What is not sensible is that it forces the 
result to  be smoothed even though realistic earth models often contain step dis- 
continuities (where two homogeneous media lie in contact). 

The choice of a filter io a rather subjective matter, the choice often being made 
on the basis of the solution it will produce. Unfortunately, the solution is often a 
rather sensitive function of the subjectively chosen weights and filters; this fact 
makes the whole business an art, a matter of experience and judgment. General- 
purpose theories of inversion exist, but they do not prepare the geophysicist to 
exploit the peculiarities of any particular stituation or data set. Inversion theories, 
like mathematical statistics, should be used like a lamp post-to light the way, not 
to  lean upon. 

One useful concept in inversion theory is the idea of coordinate-system 
invariance. The idea is that one should get the same answer in an electrical con- 
ductivity problem whether one parameterizes the earth by an unknown conductivity 
at every point on a sufficiently dense mesh, or one parameterizes with resistivity on 
the mesh, or one parameterizes by coefficients of some expansion in a complete set of 
basis functions. Clearly, the idea of fitting low-order coefficients in some expansion 
setting the high-order coefficients equal to zero is not a coordinate-invariant 
approach. A different origin for polynomial expansions can change everything. A 
different set of basis functions would change everything. Of course, it is not essen- 
tial to use a coordinate-system invariant technique in data inversion. But if one 
does not, one should beware of the sensitivity of one's solution to changes in the 
coordinate system. 

Let us consider some inversion procedures which are coordinate-system 
invariant. We will restrict ourselves to  physical problems in which we can identify a 
positive density function p as energy or dissipation per unit volume. Let us denote 
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FIGURE 6-2 
Minimizing either of these two functions will drive p toward p.  

by p the value of this power as a function of space in the default model of the 
earth. The default model is the one we want to find when we have no measure- 
ments. It will often be one in which the material properties are constant functions of 
space. Now we will need some functions which we will call model norms. They 
have the properties of being positive for all (positive) p and p and being minimized 
at p = p. Some examples plotted in Fig. 6-2 are 

Now let the adjustable earth properties be denoted by x, a function of space. 
We can choose x to minimize some volume integral of one of the model norms 
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subject to the constraint that the model produce the required observations. Some- 
times we have observations from j = 1,2,3, . . . , n, source locations. We then need 
to compute the default power distribution pj for each. Then we can minimize a 
sum of volume integrals 

min 5 1 N(pj, pj) dV 
x j = 1  

subject to fitting all the data values. 
It will be noted that the model-norm functions are all homogeneous of order 1. 

This means that N(ap, ap) = aN(p, p) for a > 0. This is our assurance that N is a 
volume density. Without this property we would have the difficulty that a sum of 
Nk(p, p) over a set of subvolumes AV, would change as the mesh were refined. 
Coordinate-system invariance is provided by the usual rules for conversion of 
volume integrals from one coordinate system to another. 

Now let us take up an example from filter theory which turns out to be 
related to maximum-entropy spectral estimation. We are given a known input 
spectrum R(Z) and are to find the finite length filter X(Z) = x, + x,Z + x, Z2 
whose output is as white as possible in the sense of minimizing the integral of N, 
across the spectrum. Let the spectrum of the filter be S(Z) = X(1/Z) X(Z). We have 
p = 1 and p = R(Z) S(Z). Thus, the minimization is 

min = (-ln R S +  RS)dm S 
Setting the derivative with respect to F, equal zero we have 

as 
0 = 1 ( - i + ~ ) - d ~  ax, 

Since we know that minimum-phase functions can represent any spectrum, we 
take X(l/Z)-' to be expandable as (6, + 6 , / ~  + b, / z2  + . . .) 

We recall that this integral selects the coefficient of Z0 of the argument. If we 
suppose that the filter is constrained to have xk = 0 for k 2 3, we get the familiar 
Toeplitz system 
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6-6 ROBUST MODELING 

The median and the mean are two kinds of statistical average. In a normal situation 
they behave in about the same way. At the present time physical scientists almost 
always use the mean and hence tend to be unaware of the dramatic ability of the 
median to cast off the effect of blunders in the data. As an example, consider an 
expensive, all-day-long experiment which yields only one number for a result. On 
the first day the result is 2.17, on the second day it is 2.14, and on the third and final 
day it is 1638.03. The mean of these results is 547.78 but the median (middle value) 
is 2.17. If one suspects a blunder on the third day, one will obviously prefer the 
median. Statisticians call this the " robust " property of the median. The objective 
of this section is to show how many kinds of geophysical data fitting can be made to 
be robust. In particular, all the calculations we now do which amount to solving 
overdetermined linear simultaneous equations by means of summed squared-error 
minimization can be made robust by minimizing summed absolute values of errors, 
instead. Computer costs are often comparable to those of least-squares methods. 
The algorithms turn out to solve a slightly broader class of problem than minimizing 
the summed absolute errors. Positive errors may be penalized with a different 
weight factor than negative errors. Such an arrangement is called an asymmetric 
linear norm. A special case of an asymmetric norm is an inequality. Not sur- 
prisingly, it turns out that all linear programming problems are special cases of 
asymmetric linear-norm problems and the solution techniques for asymmetric 
linear norms are similar to linear programming. 

First, we will see why means and medians relate to squares and absolute 
values. Let x i  be an arbitrary number. Let us define m, by the minimization of the 
sum of squared differences (called the L, norm) between m, and xi :  

N 
m, : min x (m, - xi), (6-6-1) 

i =  1 

It is a straightforward task to find the minimum by setting the partial derivative of 
the sum with respect to m, equal to zero. We get 

Obviously, m, has turned out to be given by the usual definition of mean. Next, let 
us define m, by minimizing the summed absolute values (called the L, norm). We 
have 



To find the minimum we may again set the partial derivative with respect to m, 
equal to zero 

N 

0 = 1 sgn (m, - xi) (6-6-4) 
i =  1 

Here the sgn function is + 1 when the argument is positive, - 1 when the argument 
is negative, and somewhere in between when the argument is zero. Equation 
(6-6-4) says that m, should be chosen so that m, exceeds x i  for N/2 terms, m, is less 
than x i  for N/2 terms, and if there is an x i  left in the middle, m, equals that x i .  
This defines m, as a median. [For an even number N the definition (6-6-3) requires 
only that m, lie anywhere between the middle two values of the xi.] 

The computational cost for a mean is proportional to N, the number of 
points. The cost for completely ordering a list of numbers is N In N [Ref. 221, but 
complete ordering is not required for finding the median. Hoare [Ref. 231 provided 
an algorithm for finding the median which requires about 3N operations. A com- 
puter algorithm based on Hoare's algorithm will be provided for weighted medians. 
Weighted medians are analogous to weighted sums. Ordinarily, 2.17 is taken to be 
the median of the numbers (2.14, 2.17, 1638.03) because we implicitly applied 
weights (I, 1, I). If we applied weights (3, 1, 1) it would be like having the numbers 
2.14, 2.14, 2.14, 2.17, 1638.03 and the median would then be 2.14. Formally, a 
weighted median may be defined by the minimization 

m,:  m i n ~ / w i / / m l - x i \  (6-6-5) 

Obviously if the weight factors are all unity, this reduces to the earlier definition 
whereas using a weight factor equal to 3, for example, is just like including the same 
term three times with a weight of 1 .  Figure 6-3 illustrates the definition (6-6-5) for a 
simple case. From Fig. 6-3 it is apparent that a median is always equal to one of 
the x i  even if the weights are not integers. If the weights are all unity and there is 
an even number of numbers, then the error norm will be flat between the two 
middle numbers. Then any value in between satisfies our definition of median by 
minimizing the sum. 

Let us rearrange (6-6-5) by bringing 1 wi l  into the other absolute-value 
function. We have 

m,: m i n x  1 /wi lm - Iwilxil = m i n x  Iwim - wixil (6-6-6) 
i i 

FIGURE 6-3 
A sum of weighted absolute value 
norms, The function labeled A 
is . 5 / m - 1 ,  B is . 5m-51 ,  
Cis . l lm-21,  and D i s  thesum 
of A,  B, and C. The sum D is 
minimized at m = 2, a point 
which exactly solves C = 0 = . I  I 
m-21. 1 2 5 m 



We will now relabel things from the conventions of statistics to the usual conven- 
tions of simultaneous equations and linear programming. Let 

With these new definitions (6-6-6) becomes 

The definition (6-6-7) says, in other words, to solve the rank one overdetermined 
equations 

for x by minimizing the L ,  norm. This is, in effect, a weighted median problem. If 
(6-6-8) were solved by minimizing the L, norm (least squares) x would turn out 
to be the weighted average x = (a . b)/(a a). 

We now consider a solution technique for the minimization (6-6-5). Essen- 
tially, it is Hoare's algorithm. On a trial basis we select a random equation from 
the set (6-6-8) to be exactly satisfied. This equation, called the basis equation, can 
be denoted a, x,,~,, = b,, . Inserting x,,~,, into (6-6-8) we get equations with positive 
errors, negative errors, and zero errors. If we have been lucky with x,,,,, , then we 
find that the zero error group has enough weight to swing the balance between 
positive and negative weights in either direction. Otherwise, we must pick a new 
trial basis equation from the stronger of the positive or negative group. Fortuna- 
tely, we need no longer look into the weaker group because these residuals cannot 
change signs as we descend into minimum. This may be seen geometrically on a 
figure like Fig. 6-3. We always wish to go downhill, so once it has been ascertained 
that a data point is uphill from the present point then it is never necessary to 
reinspect the uphill point. Thus, the size of the group being inspected rapidly 
diminishes. Figure 6-4 contains a computer program to do these operations. 

The next step up the ladder of complexity is to consider two unknowns. The 
obvious generalization of (6-6-8) is 

We will assume that the reader is familiar with the solution to (6-6-9) by the least- 
squares method. Solution by minimizing the sum of the absolute values of the 
errors begins in a similar way. We begin by defining the error 
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Then we set the x derivative of the error equal to zero and the y derivative of the 
error equal to zero. 

SUBROUTINE SKEWER(ND,N,W,F,GU,GD,SMALL,K,T,ML,MH) 
C SOLVE RANK 1 OVERDETERMINED EQUATIONS WITH SKEW NORM 
C INPUTS- N,W,F,GU,GD,SMALL,K. OUTPUTS- K,T,ML,MH. 
C FIND T TO MINIMIZE 
C N 
C LS = SUM SKEWNORM(K,F (K) -W (K) *T) 
C K= 1 
C WHERE ( GU (K) * (ER-SMALL) IF ER. GT .+SMALL GU.GT.0 
C SKEWNORM (K, ER) = ( GD (K) * (ER+SMALL) IF ER . LT . -SMALL GD.LT.0 
C ( 0. IF ABS(ER) .LE.SMALL.GE.O. 
C GU,GD,W,AND F ARE REFERENCED INDIRECTLY AS W(K(I)),I=l,N ETC 
C MINIMA WILL BE AT EQUATIONS K(ML),K(ML+l), ... K(MH). 

DIMENSION W(ND) ,F(ND) ,K(ND) ,GU(ND),GD(ND) 
DIMENSION G (1000) 
LOW=l 
LARGE=N 
ML=N 
MH=1 
GN=O. 
GP=O. 
DO 50 ITRY=l,N 
L=K(Low+MOD((LARGE-LOW)/3+ITRY,LARGE-LOW+l)) 
IF(ABS (W(L)).EQ.O.) GO TO 50 
T=F(L)/(W(L)) 
F(L)=W(L)*T 
DO 10 I=LOW,LARGE 
L=K(I) 
ER=F (L) -W (L) *T 
G(L)=O. 
IF (ER. GT . SMALL) G (L)=-W (L) *GU (L) 

lo IF(ER.LT.-SMALL)G(L)=-W(L)*GD(L) 
CALL SPLIT(LOW,LARGE,K,G,MLT,MHT) 
GNT=GN 
DO 20 I=LOW,MLT 

20 GNT=GNT+G (K (I) ) 
GPT=GP 
DO 30 I=MHT,LARGE 

30 GPT=GPT+G (K(1) ) 
GPLX=O . 
GMIX=O. 
DO 40 I=MLT,MHT 
L=K(I) 
IF(W(L) .LT. o. )GPLX=GPLX-W(L)*GU(L) 
IF (W (L) . GT . 0. )GPLX=GPLX-W (L) *GD (L) 
IF (W (L) . GT . 0. )GMIX=GMIX-W (L) *GU (L) 

40 IF (W(L) . LT. 0. )GMIX=GMIX-W(L)*GD (L) 
GRAD=GNT+GPT 
IF ( (GRAD-PLX) * (GRAD-MIX) . LT . 0 . ) GO TO 60 
IF(GRAD.GE.O.)LOW=MHT+l 
IF(GRAD.LE.O.)LARGE=MLT-1 
IF(LOW.GT.LARGE) GO TO 60 
IF(GRAD.GE.O.)GN=GNT+GMIX 
IF(GRAD.LE.O.)GP=GPT+GPLX 
IF((GRAD+GPLX).EQ.O.)ML=MLT 
IF((GRAD+GMIX).EQ.O.)MH=MHT 

50 CONTINUE 

(continues to next page) 



60 ML=MINO(ML,MLT) 
MH=MAXO (MH,MHT) 
RETURN 
END 

SUBROUTINE SPLIT(LOW,LARGE,K,G,ML,MH) 
C GIVEN G (K (I)), I=LOW, LARGE 
C THEN REARRANGE K(I),I=LOW,LARGE AND FIND ML,MH SO THAT 
C (G(K(I)),I=LOW,(ML-1)) .LT. 0 AND 
C (G(K(1)) ,I=ML,MH)=O. AND 
C (G(K(1)) , I=(MH+l) ,LARGE) .GT. 0. 

DIMENSION K(LARGE) ,G (41) 
ML=LOW 
MH=LARGE 

10 ML=ML-1 
20 ML=ML+l 

IF(G(K(ML)))20,30,30 
30 MH=MH+l 
40 MH=MH-1 

IF(G(K(MH)))50,50,40 
50 KEEP=K(MH) 

K(MH)=K(ML) 
K(ML) =KEEP 
IF(G(K(ML)) .NE.G(K(MH)))GO TO 10 
DO 60 I=ML,MH 
II=I 
IF(G(K(1)) .NE.O.O) GO TO 70 

60 CONTINUE 
RETURN 

7 0 KEEP=K (MH) 
K(MH)=K(T.I) 
K(II)=KEEP 
GO TO 30 
END 

FIGURE 6-4 
A subroutine to compute weighted and skewed medians. (A "skewed median " 
is often called a quantile.) This subroutine is somewhat complicated because it 
takes special care to do the correct thing when weight factors are zero and 
because it provides pointers to all equations (occasionally there is more than one) 
which are satisfied at the final minimum. 

Now we run into a snag. If the sgn function always takes the value + 1 or - 1, then 
(6-6-1 la) implies that the a, may be divided into two piles of equal weight. Clearly 
many, indeed most, collections of numbers cannot be so balanced (for example, if 
all the a i  except one are integers). The difficulty will be avoided if at least one of the 
equations of (6-6-9) is solved exactly so that sgn takes an indeterminate value for 
that term. Any algebraic confusion may be quickly dispelled by recollection of 
Fig. 6-3 and the result that even with one unknown the minimum generally occurs at 
a corner where the first derivative is discontinuous. The same situation must again 
apply to (6-6-11b). The usual situation is that for N equations and M unknowns 
precisely M of the N equations will be exactly satisfied in order to enable the error 
gradient to vanish at the minimum. Common usage in the field of linear program- 
ming is to refer to any nonsingular subset of M out of the N equations as a set of 
basis equations. The particular set of M equations which is solved when the error 
is minimized is called the optimum basis. 

Although linear programming is a twentieth-century development, the basic 
ideas seem to have been well known before Laplace in the eighteenth century. 
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Indeed, in the words of Gauss' Theoria Motus Corporum Coelestium which appeared 
in 1809 [Ref. 241 : 

Laplace made use of another principle for the solution of linear equations, the number of 
which is greater than the number of unknown quantities, which had been previously 
proposed by Boscovich, namely that the differences themselves, but all of them taken 
positively, should make up as small a sum as possible. It can be easily shown, that a 
system of values of unknown quantities, derived from this principle alone, must neces- 
sarily (except the special cases in which the problem remains, to some extent, indetermin- 
ate) exactly satisfy as many equations out of the number proposed, as there are unknown 
quantities, so that the remaining equations come into consideration only so far as they 
help to determine the choice. 

Further developments and numerous geophysical applications may be found 
in Reference 25. 

Next a simple but effective technique for descent down a multidimensional 
error surface will be described. The position x on a line through x, can be indicated 
by a scalar parameter t. The direction of the line can be specified by an M compo- 
nent vector g. Then any point x on the line may be represented as 

Inserting (6-6- 12) into the overdetermined set 

we obtain 

Defining w and e by 

w = Ag (6-6- 1 5a) 

e = b - Ax, (6-6-1 5b) 

(6-6- 14b) becomes 

Solving (6-6-16) by minimizing the summed absolute errors also gives the minimum 
error along the line in (6-6-14a). But (6-6-16) is the weighted median problem 
discussed earlier. Recall that the solution t to (6-6-16) which gives minimum 
absolute error will exactly satisfy one of the equations in (6-6-16). Let us say 
t = e,/w,. For this value of t, the kth equation in (6-6-13) will also be satisfied 
exactly. The kth equation is now considered to be a good candidate for the basis, 
and we will next show how to pick the vector g so as to  continue to  satisfy the kth 
equation (stay on the kth hyperplane) as we adjust t in the next iteration. 

Now we need a set of basis equations. This is a set of M equations which is 
temporarily taken to be satisfied. Then, as new equations are introduced into the 
basis by the weighted median soiution, old equations are dropped out. The strategy 



of the present algorithm is merely to drop out the one which has been in longest. 
Let us denote our basis equations by 

A'x = d' (6-6- 17) 

A' is a square matrix. The inverse of the matrix A' will be required and will be 
denoted by B. Now suppose we decide to throw out the pth equation from the 
basis matrix A'. Then for g we select the pth column of B. To see why this works 
note that since A'B = I the M vector A'g will now be the pth column from the 
identity matrix. Therefore, in the N vector w = Ag there is a component equal to 
+ 1, there are M- 1 components equal to 0, and there are N - M other unspeci- 
fied elements. If the kth equation in (6-6-13) or (6-6-16) has been kept in the basis 
(6-6-17), then the kth equation in Agt = d - Ax now reads 

zero t = zero (6-6- 18) 

The left-hand zero is an element from the identity matrix and the right-hand zero is 
from the statement that the kth equation is exactly satisfied. Clearly, we can now 
adjust t as much as we like to attain a new local minimum and the kth equation will 
still be exactly satisfied. There is also one equation of the form 

one t = zero (6-6-19) 

I t  will be satisfied only if t is zero. Geometrically, this means that if we must move 
to get to a minimum, then this equation is not satisfied and so we are jumping from 
this hyperplane. This equation is the one leaving the basis. Of course, if t turns out 
to be zero, then it reenters the basis. The foregoing steps are iterated until such 
time that for M successive iterations the equation thrown out of the basis by virtue 
of its age has immediately reappeared because t = 0. This means that the basis can 
no longer be improved and we have arrived at the optimum basis and the final 
solution. 


